Неразветвленные и разветвленные электрические цепи реферат

Обновлено: 05.07.2024

При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.

Что такое электрические цепи

Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.

Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.

Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.

В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.

Основные компоненты


Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.


Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.

Классификация цепей

Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.

Разветвленные и неразветвленные

Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.


Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.

Линейные и нелинейные

Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.

В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.

Обозначения элементов на схеме


Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.

К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.

  • Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
  • Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
  • В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.


Для чтения электросхем нужно знать условные графические обозначения. Провода, которые соединяют элементы, изображаются линиями. Сплошная линия – это общее обозначение проводки. Над ней могут быть указаны данные о способе прокладки, материале, напряжении, токе. Для однолинейной схемы группа проводников изображается пунктирной линией. В начале и в конце указывают маркировку провода и место его подключения.

Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.

Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.


Кроме основных чертежей есть схемы замещения.

Трехфазные электрические цепи


Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.


Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.

Законы, действующие в электрических цепях

На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

Как производится расчет электрических цепей

Путь вычисления делится на множество способов, которые используются на практике:

  • метод, основанный на законе Ома и правилах Кирхгофа;
  • способ определения контурных токов;
  • прием эквивалентных преобразований;
  • методика измерений сопротивлений защитных проводников;
  • расчет узловых потенциалов;
  • метод идентичного генератора, и другие.

Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.

По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.


На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:

R = R1 + R’ + R”, где

R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.

R” – общее сопротивление резисторов R5 и R6.

Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.

Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:

Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:

U1 = IR1; U2 = IR’; U3 = IR”;

Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.

Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.

Электрической цепью называют совокупность у средств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе (ЭДС), токе, напряжении и сопротивлении.

Отдельное устройство, входящее в состав электрической цепи и выполняющее в ней определённую функцию, называется элементом электрической цепи. К основным элементам относятся источники электрической энергии и приёмники этой энергии. В источниках неэлектрические преобразуются в электрическую. К ним относятся гальванические батареи, акуммуляторы, солнечные батареи, термопары, электромагнитные генераторы.

В приёмниках происходит обратное преобразование электрической энергии в иные виды энергии. К приёмникам относятся электрические двигатели, гальванические ванны, нагревательные приборы и элементы, осветительные приборы и др.

Электрическая цепь содержит кроме того вспомогательные элементы, предназначенные для регулирования величины тока (реостаты), для регулирования напряжения (делители и потенциометры), для защиты цепи от перегрузок (предохранители), для коммутации (выключатели), для контроля режимов работы цепи (измерительные приборы) и др.

На схеме электрической цепи её элементы изображаются с помощью условных графических изображений (рис. 2.1.9)

2 Схема замещения электрической цепи

Электрические цепи принято изображать в виде различного рода схем. Чаще всего пользуются тремя видами схем: монтажными, принципиальными и замещения.

Монтажными цепями пользуются при изготовлении, монтаже и ремонте электрических устройств и цепей.

Принципиальными схемами пользуются при изучении принципа работы устройства, а также при монтаже и ремонте устройств и цепей.

Схемами замещения пользуются при расчёте режима работы электрической цепи. Схема замещения – графическое изображение электрической цепи, содержащее условные обозначения её основных элементов и способы их соединения. На этой схеме реальные элементы замещаются расчётными моделями (идеализированными элементами). При этом все вспомогательные элементы, не влияющие на результаты расчёта на схеме замещения, отсутствуют. На (рис. 1.1) приведена схема замещения разветвлённой электрической цепи с двумя источниками электрической энергии (источниками ЭДС) и пятью приёмниками (резисторами).


1 I3 2

3 Параметры и характеристики элементов электрической цепи

При расчёте режима работы электрической цепи по схеме замещения каждый элемент цепи учитывается с его основными электрическими параметрами.

Источник электрической энергии задаётся величиной ЭДС E и внутренним сопротивлением R0.

Напряжение на зажимах реального источника ЭДС зависит от величины тока. Эта зависимость U(I) называется вольт – амперной характеристикой.

В цепях постоянного тока приёмник на схеме замещения обозначается резистором и учитывается величиной электрического сопротивления R. Зависимость величины тока через резистор от величины приложенного напряжения является его основной характеристикой.

Если параметры элемента цепи не зависят от величины тока (напряжения), то такой элемент линейную вольт – амперную характеристику и сам элемент называется линейным.

Если элемент имеет нелинейную характеристику, то его называют нелинейным.

4 Классификация электрической цепи

Электрические цепи классифицируют по различным признакам.

По виду тока цепи подразделяются на цепи постоянного и переменного (изменяющегося) тока.

При этом под постоянным током понимают не изменяющийся во времени ток (ни но величине, не по направлению). Все остальные токи – изменяющиеся во времени или переменные. На рис. 1.2 приведены графики для постоянного тока а), синусоидального тока б), линеобразного тока в).

I i i

По характеру параметров элементов цепи разделяются на линейные и нелинейные.

Если все элементы цепи имеют линейные характеристики, то вся цепь относится к линейным цепям. Если хотя бы один элемент цепи является нелинейным, то и вся цепь относится к нелинейным цепям.

По наличию или отсутствию в цепи источника электрической энергии цепи делятся на активные (А) и пассивные (П).

По степени сложности – цепи бывают простые (неразветвлённые) и сложные (разветвлённые). Разветвлённые цепи в свою очередь делятся на разветвлённые – с одним источником электрической энергии и разветвлённые – с несколькими источниками.

5 Топологические понятия в теории цепей

В теории цепей применяются такие топологические понятия как ветвь, узел, контур, независимый контур и другие.

Ветвь электрической цепи – участок цепи, через все элементы которого протекает одинаковый ток. Ветвь может содержать только один пассивный или активный элемент, а также может быть образована последовательным соединением нескольких элементов. Ветви, присоединённые к одной паре узлов называют параллельными.

Узел электрической цепи – место соединения (гальванической связи) трёх и более ветвей. Различают понятия геометрического и потенциального узла. На рис. 1.1 имеется четыре геометрических и три потенциальных узла. Точки 3 и 3‘, имеющие одинаковые потенциалы, могут быть объединены в один потенциальный узел.

Контур – любой замкнутый путь, проходящий по нескольким ветвям без их повторного обхода.

Независимый контур – контур, в состав которого входит хотя бы одна ветвь, не принадлежащая другим контурам.

Число ветвей в цепи принято обозначать буквой “В”, либо “Nв”, число узлов – буквой “у”, либо “Nу”. При этом в числе независимых контуров К=В-(у-1) имеет Nк=Nв-(Nу-1). В электрической цепи (рис. 1.1) три узла у=3, пять ветвей (В=5) и три независимых контура (К=3). Между узлами 1 и 3 включены параллельно две ветви, как и между узлами 2 и 3‘. Между точками 3 и 3‘ расположен проводник, являющийся продолжением ветви R3.

6 Физические величины, характеризующие процессы в электрических цепях

В источниках электрической энергии в результате действия сил неэлектрической природы (химических, механических, тепловых и др.), называемых сторонними силами, создаётся электрическое поле, которое характеризуется напряжённостью.

Напряжённость электрического поля - векторная величина, определяющая силу, с которой электрическое поле действует на единичный заряд . Направление вектора совпадает с направлением силы , действующей на положительный заряд. В системе СИ Е измеряется в В/м.

Разделённые под действием сил стороннего поля заряды создают своё поле, которое при отключённой нагрузке уравновешивает стороннее поле.

Основной характеристикой источника электрической энергии является электродвижущая сила.

Электродвижущая сила характеризует способность стороннего поля (или индуцированного поля) вызывать электрический ток, т.е. совершать работу по перемещению свободных зарядов. ЭДС (Е) численно равна работе (А), совершаемой сторонними силами (полями) при переносе единицы заряда Q.

В системе СИ ЭДС измеряется в вольтах (В).

Электрический ток – направленное движение заряженных свободных носителей электрического заряда.

В металлах – это электроны, а в электролитах и плазме – ионы.


При переменном токе , а при постоянном токе I=Q/t.

В системе СИ величина тока измеряется в амперах (А). [I]=[Q]/[t]=Кл/с=А.

Во внешней цепи (в нагрузке) за положительное направление тока принято направление от (+) к (-), а внутри источника – от (-) к (+).

При расчёте токов в цепи положительным направлением его в каждой ветви задаются произвольно (указывают стрелками). Если в результате расчёта получается отрицательное значение тока, то это означает, что действительное положительное направление обратно указанному стрелкой.

При протекании тока через внешние элементы электрическая энергия преобразуется в другие виды энергии и силами электрического поля выполняется работа по переносу электрических зарядов, которая характеризуется электрическим напряжением.

Напряжение U численно равно работе по перемещению заряда в один кулон (Кл) вдоль пути l:


(1.1.2)

Под знаком интеграла берётся скалярное произведение векторов. За положительное направление напряжения между точками a и b цепи принимают направление, совпадающее с положительным направлением тока на этом участке цепи (рис. 1.1). Измеряется U в вольтах (В).

Электрический потенциал и разность потенциалов


Электрическое напряжение вдоль электрической цепи вне источника между точками a и b, называют также разностью потенциалов между этими точками.

При этом под потенциалом любой точки электрической цепи понимается электрическое напряжение между этой точкой и точкой цепи, потенциал которой выбран равным нулю.

Таким образом и потенциал и напряжение и разность потенциалов являются электрическими характеристиками точек цепи, отнесёнными к единице электрического заряда и все они измеряются в вольтах.

Электрическое сопротивление

Среда (материал проводника) противодействует движению зарядов. На преодоление этого противодействия затрачивается электрическая энергия, которая преобразуется в тепло.

Величина, характеризующая противодействие проводящей среды движению электрических зарядов, т.е. электрическому току называется электрическим сопротивлением. Определяется оно как отношение напряжения на участке электрической цепи к току в этом участке цепи R≈U/I (1.2)

Элемент электрической цепи, предназначенный для ограничения тока в цепи, параметром которого является электрическое сопротивление, называется резистором. В системе СИ электрическое сопротивление R измеряется в Омах (Ом).

Для однородных проводов постоянного сечения:

ρ – удельное сопротивление, Ом*м

S – площадь поперечного сечения провода, м2

l – длина провода, м.

Сопротивление проводов, резисторов и других проводников электрического тока зависит от температуры окружающей среды.

Электрическая проводимость – это величина, обратная сопротивлению, т.е. G=1/R (1.1.4)

7 Энергия и мощность в электрической цепи. Баланс мощности

В источнике электрической энергии, так же, как и в нагрузке (в резисторах) происходит необратимое преобразование электрической энергии в тепло. Это учитывается внутренним сопротивлением R0 источника ЭДС, показываемого на схеме замещения отдельным резистором, включённым последовательно с ЭДС E.

Работа, совершаемая источником электрической энергии за время t, т.е. работа по разделению зарядов сторонними силами в источнике равна W=E*Q=E*I*t.

В приёмнике электрической энергии при напряжении U и токе I расходуется энергия

Wпр=U*Q=U*I*t=I2 *R*t=U2 *t/R.

Мощность P характеризует интенсивность преобразования энергии из одного вида в другую за единицу времени.

Для цепей постоянного тока мощность источника


, (1.1.5)

а мощность приёмника


(1.1.6)

В системе СИ энергия и мощность измеряются в Джоулях (Дж) и Ваттах (Вт) соответственно.

Для всех величин, введённых выше, применяются кратные и дольные единицы измерения (см. приложение 2).

Энергия часто выражается в киловатт-часах. 1кВт*ч=3,6*106 Дж.

На основании закона сохранения энергии мощность, развиваемая всеми источниками электрической энергии, входящими в электрическую цепь, должна быть равна мощности преобразования электрической энергии в другие виды энергии всеми приёмниками, входящими в эту цепь:


, где (1.1.7)

ΣEiIi – алгебраическая сумма мощностей, развиваемых источниками (Если положительное направление тока через источник ЭДС, то источник ЭДС работает в режиме генератора и произведение E*I>0. Если же направление I и E противоположны, то источник ЭДС потребляет энергию, т.е. работает в режиме приёмника и произведение E*I 10R1.


При измерении сопротивлений резисторов Rx на постороннем токе часто применяется схема одинарного места постоянного типа рис.1.23.


Потенциометр включён в одну диагональ места, а в другую диагональ включён чувствительный гальванометр G. К точкам С и D (к потенциометру) подключён источник постоянного напряжения Е. при помощи скользящего контакта S можно изменять соотношения сопротивлений R3 и R4 делителя. Этот контакт при измерении Rx устанавливают так, чтобы свести к нулю напряжение между точками А и В моста добиваемся нулевого показания гальванометра (I6 = 0).

Условие отсутствия напряжения между точками А и В можно записать так:

, или (11.53)

При отсутствии тока через гальванометр, ток I1 в сопротивлении Rά и R2 одинаков. В сопротивлении R3 и R4 ток I2 тоже одинаков. Т.е. U1=I1Rά , U2=I1*R2 , U3=I2*R3 , U4=I2*R4

Подставив эти выражения в (11.53), получим отношение сопротивлений моста при его равновесии:

, или , или (11.54)

Из (11.54) следует, что при равновесии моста сопротивление резисторов, включённые в противоположные плечи моста, равны друг другу.

Из (1.54) следует также, что:


(11.55)

Если в качестве сопротивлений R3и R4 используется высокоомная проволока, то выражение (11.55) можно выразить через длины l3 и l4 соответствующих участков этой проволоки:


Список использованных источников

1. Иванов Н. И., Равдоник В. С. Электротехника / Иванов Н. И., Равдоник В. С. - М.: Высшая школа, 1984

2. Клаусинтцер П. Введение в электротехнику / Клаусинтцер П. – М.: Энрегоатомиздат, 1985.

3. М. П. Тиличенко Электротехника: Учебное пособие / М. П. Тиличенко, 2004 г.

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС - E ), токе ( I ) и напряжении ( U ).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Таким образом, электрическая цепь на рис.


Точка Н определяет номинальный режим, если напряжение и ток соответствуют их номинальным значениям Uном и Iном, приведенным в паспорте источника электрической энергии.



Элемент электрической цепи, параметры которого сопротивление и др. Электрические цепи (часть 1)



Элементы цепи Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода. По закону Ома токи в каждой ветви: По первому закону Кирхгофа общий ток Смешанное соединение — комбинация первых двух соединений, где параллельное соединение может быть преобразовано к последовательному. Для их составления необходимо задать условные направления токов в ветвях номер введем в соответствии с порядковым номером сопротивлений.



Метод узловых потенциалов Вторым методом, которым пользуются для решения сложных цепей, является метод узловых потенциалов. Тогда из выражения 1. Внешняя вольт-амперная характеристика источника электрической энергии Точка X вольт-амперной характеристики источника электрической энергии отвечает режиму холостого хода х.


Подключение цепи к источнику постоянной ЭДС 5. Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты. КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА [РадиолюбительTV 89]

Что такое электрические цепи



Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока
Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.

Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.

Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.

В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.






Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Светильник ДРЛ 400

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства.



Основные компоненты



Инвентор электрического тока
Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.





Классификация цепей

Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.

Разветвленные и неразветвленные

Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.


Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.

Линейные и нелинейные

Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.

В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.

Выключатель ножевого типа

Возможно, лучший вид переключателя для иллюстрации принципа действия — это выключатель ножевого типа:



Рисунок 4 – Выключатель ножевого типа



Рисунок 5 – Переключатель ножевого типа с 3-мя контактами



Рисунок 6 – Сравнение размеров переключателей

Обозначения элементов на схеме



Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.
К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.

  • Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
  • Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
  • В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.

Для чтения электросхем нужно знать условные графические обозначения. Провода, которые соединяют элементы, изображаются линиями. Сплошная линия – это общее обозначение проводки. Над ней могут быть указаны данные о способе прокладки, материале, напряжении, токе. Для однолинейной схемы группа проводников изображается пунктирной линией. В начале и в конце указывают маркировку провода и место его подключения.

Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.

Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.


Кроме основных чертежей есть схемы замещения.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Будет интересно➡ Законы Кирхгофа простыми словами: определение для электрической цепи

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил, давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Трехфазные электрические цепи



Трехфазная цепь в рабочем режиме
Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.

Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.

Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:

  • экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
  • простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
  • одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.

Трехфазная система выгодна при передаче электроэнергии на большие расстояния. К тому же материалоемкость значительно ниже, чем однофазных. Основные потребители – трансформаторы, асинхронные электродвигатели, преобразователи, индукционные печи, мощные нагревательные и силовые установки. Среди однофазных маломощных устройств можно отметить электроинструменты, лампы накаливания, бытовые приборы, блоки питания.

Законы, действующие в электрических цепях



На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:

  1. Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
  2. Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
  3. Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.

В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.

Области применения постоянного тока Линии электропередачи низкого напряжения

Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

Читайте также: