Натуральные числа реферат 6 класс

Обновлено: 02.07.2024

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Запомните!

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Запомните!

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Галка

Важно!

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Запомните!

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
Миллиарды Миллионы Тысячи Единицы
Название разрядаСотни миллиардов Десятки миллиардов МиллиардыСотни миллионов Десятки миллионов МиллионыСотни тысячДесятки тысяч ТысячиСотни ДесяткиЕдиницы
Цифра
(символ)
78 350 2 19 7 04 8
Название
класса
Миллиарды Миллионы Тысячи Единицы
Название разрядаСотни миллиардов Десятки миллиардов МиллиардыСотни миллионов Десятки миллионов МиллионыСотни тысячДесятки тысяч ТысячиСотни ДесяткиЕдиницы
Цифра
(символ)
78 350 2 19 7 04 8

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Теперь прочтем число 783 502 197 048 из таблицы: 783 миллиарда 502 миллиона 197 тысяч 48 .

Запомните!

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Число, как основное понятие математики. Начало тождественности, принцип формы неопределенной двоицы. Абстрактное отношение величины к другой величине и аксиоматическое построение математической теории. Функции чисел и характеристика количества предметов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 05.10.2015
Размер файла 26,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Число играет первенствующую роль и в так называемом неписанном, или эзотерическом, учении Платона, незафиксированном в текстах самого Платона и дошедшем до нас лишь в реконструированном виде из отдельных свидетельств его учеников и последователей. Согласно этому учению, следы которого мы находим у Аристотеля, его ближайшего ученика Теофраста и позднеантичных неоплатоников, в основе всего лежит единица - начало тождественности, принцип формы и неопределенная двоица - принцип инаковости, или материи, которыми и порождается вся иерархия сущего - эйдосы и числа, души и геометрические объекты, физические тела. Принцип числа оказывается тем основанием, на котором покоится (более позднее) античное миросозерцание с его обостренным переживанием бытия, присутствующего в космосе, но не смешанного с ним.

1. Число, как основное понятие математики

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами.

2. Натуральные числа

3. Аксиомы натуральных чисел

О есть натуральное число.

Следующее за натуральным числом есть натуральное число.

О не следует ни за каким натуральным числом.

Всякое натуральное число следует только за одним натуральным числом.

Существует натуральное число 1, непосредственно не следующее ни за каким натуральным числом, т. е. для любого, а имеем: а*1. Для каждого натурального числа, а существует одно и только одно непосредственно за ним следующее натуральное число а*, т.е. а = b а* = b*.Любое натуральное число, кроме 1, непосредственно следует за одним и только одним натуральным числом, т. е. если а1, то из а*=b*а=b. Аксиома индукции. Пусть М -- подмножество множества N натуральных чисел, обладающее свойствами: а) 1 принадлежит М, б) если натуральное число, а принадлежит М, то а* также принадлежит М; тогда множество М содержит все натуральные числа, т.е. М совпадает с N.

То, что в первоначальной формулировке (Пеано) первый элемент есть 0, а не 1, не имеет принципиального значения. Дело в том, что в настоящее время нуль причисляется не к натуральным, а к целым числам. Символы 1, 2, 3, . которыми обычно обозначают натуральные числа, были выработаны, как мы уже знаем, на протяжении веков. На основе аксиом 1--4 можно определить арифметические действия и построить всю арифметику натуральных чисел чисто дедуктивным путем. В частности, на основе аксиомы 4 доказывается следующее предложение: если некоторая теорема Т, в формулировку которой входит натуральное число n, верна для n=1 и в предположении, что она верна для n, будет верна и для n+1, то Т верна для любого натурального числа. Это предложение, эквивалентное аксиоме 4, называют принципом математической индукции. На этом принципе и основан метод математической индукции, с помощью которого доказывают многие теоремы арифметики, алгебры, теории чисел и геометрии. Под индукцией (от латинского inductio -- наведение) понимают в логике одну из форм умозаключений, состоящую в выведении общего суждения относительно бесконечного множества объектов на основании изучения некоторого конечного числа частных случаев.

4. Функции натуральных чисел

Натуральные числа имеют две основные функции:

характеристика количества предметов;

характеристика порядка предметов, размещенных в ряд.

В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.). Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ?. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи.

Простые Числа Мерсенна, совершенные числа.

Натуральное число Р называется совершенным, если оно равно сумме всех своих делителей кроме Р. Евклид доказал, что если р и 2 р -1 - простые числа, то число Рр=2 р-1 (2 р -1)=2 р-1 Мр является совершенным. Действительно, делителями такого числа, включая само это число, являются 1,2, . ,2 р-1 ,Мр,2Мр, . ,2 р-1 Мр . Их сумма Sp=(1+2+ . +2 р-1 )(Мр+1)=(2 р -1) . 2 р =2 . 2 р-1 Мр. Вычитая из S само число Рр , убеждаемся, что сумма всех делителей числа Рр равна этому числу, следовательно Рр - совершенное число. Числа Р2=6 и Р3=28 были известны ещё пифагорейцам. Числа Р5=496 и Р7=8128 нашел Евклид. Используя другие простые числа Мерсенна и формулу 4, находим следующие совершенные числа: Р13=33550336, Р17=8589869056, Р19=137438691328, Р31=2305843008139952128.

Для всех остальных чисел Мерсенна числа Рр имеют очень много цифр. До сих пор остаётся загадкой, как Мерсенн смог высказать правильное утверждение, что числа Р17, Р19, Р31 являются совершенными. Позднее было обнаружено, что почти за сто лет до Мерсенна числа Р17, Р19 нашел итальянский математик Катальди - профессор университетов Флоренции и Болоньи. Считалось, что божественное провидение предсказало своим избранникам правильные значения этих совершенных чисел. Если учесть, что ещё пифагорейцы считали первое совершенное число 6 символом души, что второе совершенное число 28 соответствовало числу членов многих учёных обществ, что даже в двенадцатом веке церковь учила: для спасения души достаточно изучать совершенные числа и тому, кто найдёт новое божественное совершенное число, уготовано вечное блаженство, то становится понятным исключительный интерес к этим числам. Однако и с математической точки зрения чётные совершенные числа по-своему уникальны. Все они - треугольные. Сумма величин, обратных всем дилителям числа, включая само число, всегда равна двум. Остаток от деления совершенного числа, кроме 6, на 9 равен 1. В двоичной системе совершенное число Рр начинается р единицами, потом следуют р-1 нулей. Например: Р2=110, Р3=11100, Р5 =111110000, Р7 =1111111000000 и т.д. Последняя цифра чётного совершенного числа или 6, или 8, причём, если 8, то ей предшествует 2. Леонард Эйлер доказал, что все чётные совершенные числа имеют вид 2 р-1 . Мр, где Мр - простое число Мерсенна. Однако до сих пор не найдено ни одного нечётного совершенного числа. Высказано предположение (Брайен Такхерман, США), что если такое число существует, то оно должно иметь не менее 36 знаков.

математика аксиоматический двоица

Подобные документы

Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

реферат [104,5 K], добавлен 12.03.2004

Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

реферат [81,7 K], добавлен 13.01.2011

Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.

учебное пособие [895,7 K], добавлен 09.03.2009

Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

монография [575,3 K], добавлен 28.03.2012

Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

Гост

ГОСТ

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд, который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

Единица- натуральное число, которое не следует ни за каким натуральным числом.

За каждым натуральным числом следует одно и только одно число

Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

Переместительное свойство: $a+b=b+a$

Сумма не изменяется при перестановке слагаемых

Сочетательное свойство: $a+ (b+c) =(a+b) +c$

Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

Если из числа вычесть нуль, то число не изменится

Если из числа вычесть его само, то получится нуль

Готовые работы на аналогичную тему

Свойства умножения

Переместительное $a\cdot b=b\cdot a$

Произведение двух чисел не изменяется при перестановке множителей

Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

При умножении на единицу произведение не изменяется $m\cdot 1=m$

При умножении на нуль произведение равно нулю

Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

Распределительное свойство умножения относительно сложения

Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

Распределительное свойство умножение относительно вычитания

Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

Сравнение натуральных чисел

Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

Решение: На основании указанного свойства ,т.к. по условию $a

в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна ,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

Все цифры, расположенные правее разряда, до которого округляют число ,заменяют нулями

Читайте также: