Наша галактика открытие других галактик квазары реферат

Обновлено: 05.07.2024

Гершель в XVIII веке открыл и занес в каталоги тысячи наблюдаемых на небе туманных пятен. У многих из них впоследствии была обнаружена спиральная структура.

Американский астроном Хаббл в XX в. получил фотографии туманности в созвездии Андромеды, на которых было видно, что это туманное пятно состоит из множества звезд. Он обнаружил в туманности вспышки новых звезд, рассеянные и шаровые скопления и цефеиды. Определив периоды переменности и видимую звездную величину цефеид, Хаббл установил, что они находятся очень далеко за пределами нашей Галактики. Таким образом, спиральная туманность в созвездии Андромеды также находится вне пределов Галактики и уже этим отличается от газовых и пылевых туманностей нашей звездной системы. Зная расстояние до этой туманности и ее угловой диаметр, вычислили его в линейных единицах.

Оказалось, спиральная туманность в созвездии Андромеды примерно такая же огромная звездная система, как и наша Галактика. Мы знаем теперь, что до нее 2 миллиона световых лет. В ней есть газовые и пылевые туманности, как и в нашей Галактике. Вследствие того, что галактику в созвездии Андромеды мы видим под некоторым углом к ее оси, она имеет продолговатую форму. Галактика в созвездии Треугольника, тоже спиральная, менее наклонена к лучу зрения и имеет поэтому иной вид в телескоп. Астрономы нашли великое множество спиральных галактик, у которых из ядра в плоскости диска выходят спиральные ветви. Им и другим, столь же гигантским звездным системам, дали нарицательное название галактик, в отличие от нашей Галактики.

Расстояние до более далеких галактик, в которых цефеиды или даже ярчайшие сверхгиганты не видны, определяют по величине так называемого красного смещения в их спектрах. Хаббл выяснил, что в спектрах галактик, расстояния до которых уже были оценены по видимому блеску их ярчайших звезд, линии смещены к красному концу спектра. Это красное смещение возрастает пропорционально расстоянию до галактики. Установлено, что если величину красного смещения выражать в лучевой скорости галактик, то на каждый миллион парсеков расстояния оно возрастает на 100 км/сек. Поэтому расстояние до далекой галактики можно определить по величине красного смещения линий в ее спектре. Если, например, сдвиг линий спектра соответствует 10 000 км/сек, то до галактики 100 млн. парсеков.

В спиральных галактиках ветви, как и у нашей Галактики, состоят из горячих звезд, цефеид, сверхгигантов, рассеянных звездных скоплений и газовых туманностей. Радиотелескопы обнаруживают в них нейтральный водород в количестве до 5—10% от массы галактики. Те из них, которые повернуты к нам ребром, похожи на веретено или чечевицу. Вдоль них проходит темная полоса — скопление пылевых туманностей — в экваториальной плоскости. Наша Галактика и галактика в созвездии Андромеды относятся к наибольшим. Все спиральные галактики вращаются с периодами в несколько сот миллионов лет. Массы их составляют 108—1011 масс Солнца.

С давних времен в южном полушарии неба были известны два больших звездных облака. Их назвали Большим и Малым Магеллановыми Облаками. Это галактики неправильного типа. Они являются спутниками нашей Галактики. Расстояние до них около 150 000 световых лет. Их звездный состав такой же, как и у ветвей спиральных галактик. Неправильные галактики значительно меньше спиральных и встречаются редко. В большом числе встречаются эллиптические галактики, по виду похожие на шаровые звездные скопления, но больше их по размерам. Они вращаются крайне медленно и потому почти не сплющились в противоположность быстрее вращающимся спиральным галактикам. Эллиптические галактики не содержат ни звезд сверхгигантов, ни темных, ни светлых диффузных туманностей.

У гигантских галактик абсолютная звездная величина около —21. Существуют галактики-карлики в полторы тысячи раз более слабые, с абсолютной звездной величиной до —13.

Некоторые галактики обнаруживают очень сильное радиоизлучение. Это так называемые радиогалактики.

Мир галактик так же разнообразен, как и мир звезд.

Совокупность всех известных галактик является частью более гигантской системы, называемой Метагалактикой.

Радиогалактики

Галактики излучают радиоволны. Радиоизлучение исходит от нейтрального водорода на длине волны 21 см, а также от ионизированного горячего водорода в светлых туманностях. Кроме того, галактики служат источниками нетеплового радиоизлучения, происходящего от торможения электронов магнитным полем галактик. Это излучение называется синхротронным.

У радиогалактик очень сильное синхротронное излучение. Замечательно, что чаще всего радиогалактика имеет два очага радиоизлучения, расположенные по обе стороны от оптически видимой галактики.

Огромное значение имело обнаружение того, что слабо излучающая радиогалактика неправильной формы в созвездии Большой Медведицы обнаруживает последствия огромного взрыва в ее ядре. Взрыв произошел около 2 млн. лет тому назад. В настоящее время длинные волокна горячего водорода, выброшенные при взрыве, распространяются со скоростью около 1000 км/сек преимущественно в направлении ее полюсов. По-видимому, так возникают двойные радиогалактики. При происходящем в радиогалактике взрыве два облака газа с быстрыми электронами и с магнитным полем в каждом из них выбрасываются в противоположные стороны. Эти два облака начинают испускать нетепловое радиоизлучение.

Квазары

На месте некоторых радиоисточников нашли объекты, не отличимые от очень слабых звезд. В их спектре имеются яркие линии с очень большим красным смещением. Оказалось, что это линии ультрафиолетовой области спектра, смещенные в его видимую часть. Красное смещение их так велико, что ему соответствуют расстояния в миллиарды световых лет. Эти объекты, названные квазивездными (звездоподобными) источниками радиоизлучения или квазарами, являются самыми далекими небесными телами, расстояния до которых удалось определить. Ярчайший из квазаров выглядит как звезда 13-й звездной величины, но по светимости квазары оказываются в сто раз ярче, чем гигантские галактики. Открытые всего лишь несколько десятилетий назад и доступные для изучения только в сильнейшие телескопы, квазары являются пока загадкой. Удивительно и то, что у некоторых из них меняются и блеск и радиоизлучение. Но особенно загадочны колоссальные потоки энергии, излучаемой ими в виде света и в виде радиоволн. Ничего более грандиозного, чем явление квазаров, мы в природе не знаем. Быстрое накопление знаний о квазарах дает надежду скоро приблизиться к разгадке их природы.

Метагалактика

Большинство галактик сосредоточено в скоплениях. Скопления галактик, как и скопления звезд, бывают рассеянными и шарообразными и содержат десятки, иногда тысячи членов. Ближайшее к нам скопление галактик находится в созвездии Девы на расстоянии около 10 млн. парсеков.

При помощи сильного телескопа можно заснять много миллионов галактик до 21-й звездной величины, из которых самые далекие с трудом отличимы от слабых звезд и отстоят от нас на несколько миллиардов световых лет. Распределение скоплений галактик в пространстве, по-видимому, равномерно, и нет признаков его разрежения.

Метагалактикой называется вся система скоплений галактик, из которых нам пока известна лишь часть.

В Метагалактике действует закон красного смещения Хаббла и признано, что смещение это действительно допплеровское. А это означает, что галактики удаляются от нас во все стороны и тем быстрее, чем они от нас дальше. Это поставили в связь с тем, что еще до открытия красного смещения советский физик А. А. Фридман из теории относительности Эйнштейна сделал вывод, что возможна модель Вселенной, которая может сжиматься и расширяться.

Учение о Вселенной в целом называется космологией.

По теории относительности большие массы искривляют возле себя пространство и оно становится таким, что постулаты геометрии Эвклида в нем не оправдываются. Этот вывод Эйнштейна подтвержден астрономической проверкой, так как лишь в масштабе Метагалактики можно заметить различие между механикой Ньютона и механикой Эйнштейна. Теоретически допустимо, что при определенной средней плотности вещества и однородности свойств по всем направлениям Вселенная может быть конечной, хотя и безграничной. Сейчас еще неизвестно, в какой мере реальная Вселенная имеет свойства, приписываемые той или иной космологической модели. По-видимому, Метагалактика расширяется с замедлением.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Астрономы обнаружили, что некоторые галактики, всего несколько процентов от их общего числа, обладают необычайной мощностью. Нормальные галактики – основное население Вселенной – излучает энергию, вырабатываемую их звездами: свет нормальной галактики – это в основном звездный свет, испускаемый миллиардами звезд, входящих в ее состав. Для активных галактик это не так. В энергии активной галактики преобладает не звездный свет, а нечто иное.

Нормальные звезды светятся из-за того, что они раскалены, и спектр их свечения – “тепловой”. Спектр активной галактики не похож на спектр звезды. Активные галактики дают сильнейшее излучение, которое исходит не от горячих звезд, а от чего-то еще. Обычно активная галактика испускает гораздо больше инфракрасных лучей, радиоволн, ультрафиолетового и рентгеновского излучений, чем нормальная. Конечно, небольшое количество такой радиации дают и нормальные галактики. Но дело в том, что в активных галактиках радиоволны, либо ультрафиолетовое излучение, либо рентгеновские лучи являются главным видом энергии. Кроме того, количество энергии, которое регистрируют астрономы, может очень сильно меняться всего за несколько дней. Энергия наиболее активных галактик исходит из их центра, или ядра, которое может быть в миллиард раз ярче Солнца.

Активные галактики представлены радиогалактиками, сейфертов-скими галактиками и квазарами.

Сейфертовские галактики относительно недалеки от нас, а большинство радиогалактик находится на средних расстояниях. Гораздо дальше в космосе встречаются квазары – наиболее мощные источники энергии. Открытие квазаров потребовало тщательных исследований.

Начало истории открытия квазаров относится к 1960г. радиоастрономы совершенствовали свои методы точного определения местонахождения радиоисточников. Радиоисточник 3С48 как будто совпадал с одной звездой, не похожей ни на какие другие: в ее спектре присутствовали яркие линии, которые не удавалось соотнести ни с одним из известных атомов. Затем, в 1962г., еще одна таинственная звезда, по-видимому, совпала с другим радиоисточником, 3С 273.

Годом позже Мартен Шмидт из обсерватории Маунт Паломар в Калифорнии доказал, что если этому звездоподобному объекту приписать смещение 16%, то его спектр совпадет со спектром газообразного водорода. Такое красное смешение велико даже для большинства галактик. Объект 3С 273 оказался не экзотической звездой из Млечного Пути, а чем-то совсем иным, мчащимся от нас со скоростью в 16% скорости света. Расстояние до этого квазара составляет около 3 млрд. световых лет, а видимый блеск равен 12,6 m .

Размер 3С 273 не превышает одного светового года. Оказалось, что и другие звездоподобные радиоисточники, такие как 3С 48, имеют большие красные смещения. Вот эти-то компактные объекты с большим красным смещением, которые на фотографиях напоминают звезды, и есть квазары.

Слово “квазар” было придумано как сокращение от “квази-звездный радиоисточник”. “Квази-звездный” означает “похожий на звезду, но не звезда”. Сейчас астрономы считают, что квазары – это самая яркая из разновидностей активных галактических ядер.

Хотя первые из них были найдены радиоастрономами, только одна десятая часть из известных ныне квазаров излучает радиоволны. На фотографиях они выглядят как звезды (это означает, что они малы по сравнению с галактиками), но все они имеют большое красное смещение. Наибольшее красное смещение почти достигает 5. В этом случае длина волны света, посылаемого квазаром, растягивается примерно в 6 раз. Это искажение гораздо сильнее, чем для большинства галактик, хотя с помощью самых больших телескопов к настоящему времени обнаружено несколько исключительно слабых галактик с большим красным смещением.

Эдвин Хаббл показал, как по красному смещению галактики определять расстояние до нее. Можно ли применить тот же метод к квазарам? Другими словами, говорит ли красное смещение квазара о его удаленности от нас? По мнению многих астрономов, это так: они считают, что квазары следуют закону Хаббла.

Сейчас известны тысячи и тысячи квазаров, и почти все они отстоят от нашей Галактики на несколько миллиардов световых лет. Самые далекие квазары улетают от нас со скоростями, достигающими девяти десятых скорости света. Чтобы обнаружить очень далекие объекты, астрономы обследуют очень много слабых объектов. С помощью больших оптических телескопов удается получить спектры сотен таких объектов за ночь, что ускоряет поиски квазаров с большими красными смещениями.

Теория тяготения Эйнштейна утверждает, что свет, проходя через сильное гравитационное поле, искривляет свою траекторию. Квазары демонстрируют нам этот эффект. Они редко оказываются на небе по соседству друг с другом. Но в 1979г. астрономы обнаружили пару идентичных квазаров, расположенных очень близко друг к другу. На самом деле это оказались два изображения одного и того же объекта, свет от которого был искажен гравитационной линзой. Где то на пути луча света, идущего от этого квазара, находится нечто очень плотное и массивное. Тяготение этого объекта и расщепляет свет в двойное изображение.

Сейчас известно много гравитационных линз. Некоторые из них создают многократные изображения далеких квазаров. В других случаях квазар расплывается в красивую дугу. Зрительный обман возникает из-за того, что свет от квазара на своем пути к Земле проходит сквозь скопление галактик. Если в таком скоплении есть плотно сконцентрированная масса – например гигантская черная дыра или огромная эллиптическая галактика, - то возникает искаженное изображение. В одном случае квазар оказался настолько точно на одной линии с неким массивным объектом, что радиоизображение квазара имеет вид почти идеального круга.

Очень далекие объекты дают астрономам возможность путешествовать во времени. Когда мы видим звезду, удаленную на 10 млрд. световых лет, мы наблюдаем нечто, что на 10 млрд. лет моложе, чем наша Галактика сейчас, в момент наблюдения. Несомненно, за миллиарды лет далекие галактики очень изменились. Одна из причин, по которой требуются все более крупные и эффективные телескопы, состоит в том, что при наблюдении наиболее далеких частей Вселенной мы можем узнать о том, какова она была в прошлом. Мы видим эти объекты в то время, когда галактики лишь начали формироваться. При наблюдении наиболее далеких квазаров можно увидеть, что собой представляла Вселенная задолго до рождения солнца.

Квазары погружены в галактики. Однако почти во всех случаях квазар сияет столь ярко, что затмевает гораздо более слабый свет породившей его галактики. Поэтому на фотографиях можно увидеть лишь светлую точку от активного ядра. Внутри квазара находится исключительно мощный источник энергии, почти наверняка это черная дыра. она окружена диском из вещества диаметром в несколько световых лет. Вблизи диска быстро несутся облака газа, а еще дальше, на расстоянии около 100 световых лет, более тонкие и более холодные облака, где квазар сливается со своей галактикой.

§ 29. ДРУГИЕ ГАЛАКТИКИ

1. Открытие других галактик. В начале XX в. было до­казано, что некоторые туманные пятна, видимые в телескоп в разных участках неба, находятся вне нашей Галактики и представляют собой другие галактики, каждая из которых, подобно нашей, состоит из многих миллиардов звезд. Огром­ные расстояния, отделяющие Солнечную систему от этих миров, почти лишают нас возможности видеть их невоору­женным глазом. Зато телескоп раскрывает перед человеком поистине глубины Вселенной: крупнейшим современным те­лескопам доступна область Вселенной, в которой находятся миллиарды галактик. Исследованием мира галактик зани­мается внегалактическая астрономия. Подобно физике эле­ментарных частиц, проникающей в тайны невидимого ми­кромира, внегалактическая астрономия изучает разнообраз­ные, очень далекие от нас, не видимые невооруженным гла­зом космические объекты безграничного мегамира, непре­рывно расширяя наши представления о Вселенной.

2*. Определение размеров, расстояний и масс галактик. Один из методов определения расстояния до галактик основан на определении видимых и абсолютных звездных величин цефеид, новых и сверхновых звезд, открываемых в других галактиках. По формуле (41) можно вычислить расстояние до тех галактик, в которых обнаружены цефе­иды, новые и сверхновые звезды.

Обозначив расстояние до галактики через r , линей­ный диаметр — D , угловой диаметр — d ˝, легко вывести следующую формулу для определения диаметра галак­тики:

где D и г выражены в парсеках, a d ˝ — в секундах дуги.

Линейный диаметр Туманности Андромеды не менее 40 кпк, т. е. превышает диаметр нашей Галактики.

Смещение спектральных линий, наблюдаемое в различ­ных частях какой-нибудь близкой к нам галактики, свиде­тельствует о том, что галактики вращаются. Если область галактики, расположенная на окраине (на расстоянии R от ее центра), имеет линейную скорость вращения v , то центростремительное ускорение этой области будет . Приравняем его к гравитационному ускорению, получаемому из закона всемирного тяготения , где М — масса ядра галактики:

отсюда найдем массу ядра галактики:

Масса всей галактики на один-два порядка больше массы ее ядра. Например, масса ядра галактики в созвездии Андромеды порядка 10 40 кг (примерно 10 10 масс Солнца), а всей галактики — примерно в 100 раз больше (такова же примерно и масса нашей Галактики).

По внешнему виду галактики условно разделены на три основных типа: эллиптические, спиральные и неправиль­ные.

Пространственная форма эллиптических галактик — эл­липсоиды с разной степенью сжатия. Среди эллипти­ческих галактик встречаются гигантские и карликовые. Почти четверть всех изученных галактик относится к эл­липтическим. Это наиболее простые по структуре галактики. Распределение звезд в них равномерно убывает от центра, пыли и газа почти нет. Самые яркие звезды — красные ги­ганты.

Рис. 97. Туманность Андромеды.

Спиральные галактики — самый многочисленный тип галактик (рис. 97, 98). К нему относятся наша Галактика и гигантская Туманность Андромеды (М 31 или NGC 224, рис. 97), удаленная от нас примерно на 2,5 млн. св. лет. Это одна из немногих галактик, видимых невооруженным глазом. Массы спиральных галактик — по­рядка 10 9 —10 12 масс Солнца. Ближайшая к нам галактика М 31 не только красива, но и опасна. Через несколько миллионов лет она может столкнуться с Галактикой.

Неправильные галактики не имеют центральных ядер и не обнаруживают закономерностей в своем строении. Жители Южного полушария Земли могут невооруженным глазом видеть две неправильные галактики — Большое и Малое Магеллановы Облака, являющиеся спутниками на­шей Галактики (рис. 99). Они находятся сравнительно неда­леко от нас, на расстоянии всего лишь в полтора раза боль­шем диаметра Галактики. Магеллановы Облака значительно меньше нашей Галактики по массе и размерам. Изучение Магеллановых Облаков позволяет получить ценнейшие сведе­ния о звездах, звездных скоплениях и диффузной материи. Вспомните, например, об открытии сверхновой звезды в Большом Магеллановом Облаке (с. 151).

Рис. 99. Неправильные галактики: Большое(слева) и Малое(справа) Магеллановы Облака(соответственно в созвездиях Золотой Рыбы и Тукана).

Другой известный источник радиоизлучения — шаровая галактика NGC 5128 в созвездии Центавра (рис. 100). На фотографии этой галактики четко выделяются огромные об­лака темной пылевой материи, которые как бы разделяют галактику на две части.

Рис. 100. Радиогалактика Центавр А.

Рис. 101. Радиогалактика Дева А.

Водной из ближайших к нам радиогалактик (Дева А; М 87 или NGC 4486) хорошо видна газовая струя, устрем­ленная из ядра (рис. 101). Длина струи достигает несколь­ких тысяч световых лет, внутри нее заметны отдельные сгу­щения.

Еще недавно считалось, что самые грандиозные проявле­ния взрывных процессов — вспышки сверхновых. Однако при взрывах в ядрах галактик выделяется во много раз больше энергии. Наблюдаемая активность ядер галактик проявляется в следующих основных формах: непрерывное истечение потоков вещества; выбросы сгустков газа и обла­ков газа с массой в миллионы солнечных масс; нетепловое (т. е. не связанное с нагреванием) радиоизлучение из около­ядерной области; взрывы, превращающие галактику в ра­диогалактику. Причина активности ядер галактик пока не выяснена. На протяжении многих лет активность ядер га­лактик в нашей стране исследовали академик В. А. Амбарцумян ( 1908 —1996) и его ученики.

Квазар 3C 273

Просторы Вселенной не прекращают удивлять земных наблюдателей разнообразием загадочных объектов, а одним из невероятных открытий космологии ушедшего столетия стали квазары.

Общие сведения

Гравитационное линзирование квазара HE 1104-1805

Гравитационное линзирование квазара HE 1104-1805

Квазар в ИК

Инфракрасный снимок Квазара в тандеме с зарождающейся галактикой со вспышкой звездообразования

Квазары выделяют в 100 раз больше энергии, чем совокупность всех светил в нашей галактике. Большинство квазаров и нас разделяют 10 млрд. световых лет, а дошедший до Земли их свет послан еще до процесса его формирования. Первоначально предполагалось, что все псевдозвезды являются мощными источниками радиоизлучения, но к 2004 году стало известно, что, оказывается, таких совсем немного – порядка 10%, остальные же – считаются радиоспокойными.

История открытия

3C 273 — квазар в созвездии Дева. Считается первым астрономическим объектом идентифицированным в качестве квазара.

Первый квазар был замечен американскими астрономами А. Сендиджем и Т. Метьюзом, проводившими наблюдение за звездами в калифорнийской обсерватории. В 1963 году М. Шмидт с помощью рефлекторного телескопа, собирающего в одну точку электромагнитное излучение, обнаружил отклонение в спектре наблюдаемого объекта в красную сторону, определяющее, что его источник удаляется от нашей системы. Последующие исследования показали, что небесное тело, записанное как 3C 273, находится на отдалении в 3 млрд. св. лет и отдаляется с огромной скоростью – 240 000 км/с. Московские ученые Шаров и Ефремов изучили имевшиеся ранние фотографии объекта и выяснили, что он неоднократно менял свою яркость. Нерегулярная смена интенсивности блеска предполагает маленький размер источника.

Строение и теория происхождения

Квазары и процесс возникновения их мощного излучения все еще не разгаданы до конца. Рассматривается несколько версий, объясняющих чем они являются по сути.

Материалы по теме


Большинство ученых-астрофизиков склонны предполагать, что это черная дыра гигантского масштаба, поглощающая окружающее вещество. Под воздействием притяжения частицы набирают огромную скорость, натыкаются друг на друга и ударяются, их температура от этого повышается, появляется видимое свечение. Непреодолимое притяжение энергии черной дыры заставляет вещество двигаться к центру по спирали и превращаться в аккреционный диск – структуры, возникающей при падении обращающихся частиц на массивное космическое тело. Магнитная индукция черной дыры посылает часть вещества к полюсам, где создаются джеты – узкие пучки, излучающие радиоволны. На краях аккреционного диска температура понижается, и длина волн возрастает до инфракрасного спектра.

Другая гипотеза считает квазары юными галактиками в период их формирования. Существует вариант, объединяющий две версии, согласно которому, черная дыра поглощает зарождающиеся вещество галактики. Количество найденных квазаров к 2005 году равнялось 195 000, но этот процесс непрерывен, постоянно открываются новые объекты.

Необычные свойства

Квазар, снимок Хаббла

Изображение с космического телескопа Хаббла показывает самый отдаленный квазар (обведен белым), появившийся менее чем через 1 млрд. лет после Большого Взрыва.

Активность квазара изменяется во всех диапазонах: инфракрасных и ультрафиолетовых волн, видимого света, рентгеновских лучей, радиоволн. Величина его энергии в 1 млн. раз больше, чем у любой открытой звезды. Вариации светимости объекта происходят в разные промежутки времени – от года до недели. Такие колебания характерны для космических тел, размер которых находится в границах светового года.

Интересные факты

Квазар QSO-160 913 + 653 228 расположенный в этом скоплении галактик, снятых телескопом Хаббл, удален от нас на расстоянии 9 млрд. св. лет!

Читайте также: