Наноматериалы в природе реферат

Обновлено: 28.06.2024

Покорение природы человеком еще не закончилось. Во всяком случае, пока мы еще не захватили наномир и не установили в нем свои правила. Посмотрим, что это такое и какие возможности нам дает мир объектов, измеряемых нанометрами.

Размеры бактерий составляют в среднем 0,5–5 мкм (500–5000 нм). Вирусы, одни из главных врагов бактерий, еще меньше. Средний диаметр большинства изученных вирусов составляет 20–300 нм (0,02–0,3 мкм). А вот спираль ДНК имеет диаметр уже 1,8–2,3 нм. Считается, что самый маленький атом – это атом гелия, его радиус 32 пм (0,032 нм), а самый большой – цезия 225 пм (0,255 нм). В целом, нанообъектом будет считаться такой объект, размер которого хотя бы в одном измерении находится в нанодиапазоне (1–100 нм).

Можно ли увидеть наномир?

Конечно, все, о чем говорится, хочется увидеть своими глазами. Ну хотя бы в окуляр оптического микроскопа. Можно ли заглянуть в наномир? Обычным способом, как мы наблюдаем, например, микробов, нельзя. Почему? Потому что свет с некоторой долей условности можно назвать нановолнами. Длина волны фиолетового цвета, с которого начинается видимый диапазон, – 380–440 нм. Длина волны красного цвета – 620–740 нм. Длины волн видимого излучения составляют сотни нанометров. При этом разрешение обычных оптических микроскопов ограничивается дифракционным пределом Аббе примерно на уровне половины длины волны. Большинство интересующих нас объектов еще меньше.

Поэтому первым шагом на пути проникновения в наномир стало изобретение просвечивающего электронного микроскопа. Причем первый такой микроскоп был создан Максом Кноллем и Эрнстом Руска еще в 1931 году. В 1986 году за его изобретение была вручена Нобелевская премия по физике. Принцип работы такой же, как и у обычного оптического микроскопа. Только вместо света на интересующий объект направляется поток электронов, который фокусируется магнитными линзами. Если оптический микроскоп давал увеличение примерно в тысячу раз, то электронный уже в миллионы раз. Но у него есть и свои недостатки. Во-первых, это необходимость получить для работы достаточно тонкие образцы материалов. Они должны быть прозрачны в электронном пучке, поэтому их толщина варьируется в пределах 20–200 нм. Во-вторых, это то, что образец под воздействием пучков электронов может разлагаться и приходить в негодность.

Похожий принцип работы использует и другой микроскоп из класса сканирующих зондовых микроскопов – атомно-силовой. Здесь есть и игла-зонд, и аналогичный результат – графическое изображение рельефа поверхности. Но измеряется не величина тока, а силовое взаимодействие между поверхностью и зондом. В первую очередь подразумеваются силы Ван-дер-Ваальса, но также и упругие силы, капиллярные силы, силы адгезии и другие. В отличие от сканирующего туннельного микроскопа, который может применяться только для исследования металлов и полупроводников, атомно-силовой позволяет изучить и диэлектрики. Но это не единственное его преимущество. Он позволяет не только заглянуть в наномир, но и манипулировать атомами.

Молекула пентацена. А – модель молекулы. В – изображение, полученное сканирующим туннельным микроскопом. С – изображение, полученное атомно-силовым микроскопом. D –несколько молекул (АСМ). А, B и C в одном масштабе. / © Science

Молекула пентацена. А – модель молекулы. В – изображение, полученное сканирующим туннельным микроскопом. С – изображение, полученное атомно-силовым микроскопом. D –несколько молекул (АСМ). А, B и C в одном масштабе. / © Science

Наномашины

В природе на наноуровне, то есть на уровне атомов и молекул, происходит множество процессов. Мы можем, конечно, и сейчас оказывать влияние на то, как они протекают. Но делаем мы это практически вслепую. Наномашины – это адресный инструмент для работы в наномире, это устройства, позволяющие манипулировать одиночными атомами и молекулами. До недавнего времени только природа могла создавать их и управлять ими. Мы в шаге от того дня, когда тоже сможем делать это.

Что могут наномашины? Возьмем, к примеру, химию. Синтез химических соединений основан на том, что мы создаем необходимые условия для протекания химической реакции. В результате на выходе имеем некое вещество. В будущем химические соединения можно будет создать, условно говоря, механическим путем. Наномашины смогут соединять и разъединять отдельные атомы и молекулы. В результате будут образовываться химические связи или, наоборот, имеющиеся связи будут рваться. Наномашины-строители смогут создавать из атомов нужные нам молекулярные конструкции. Нанороботы-химики – синтезировать химические соединения. Это прорыв в создании материалов с заданными свойствами. Одновременно это прорыв в деле защиты окружающей среды. Несложно предположить, что наномашины – прекрасный инструмент для переработки отходов, которые в обычных условиях сложно поддаются утилизации. Тем более если говорить о наноматериалах. Ведь чем дальше заходит технический прогресс, тем сложнее окружающей среде справляться с его результатами. Слишком долго происходит разложение в природной среде новых материалов, придуманных человеком. Всем известно, как долго разлагаются выброшенные пластиковые пакеты – продукт предыдущей научно-технической революции. Что будет с наноматериалами, которые рано или поздно окажутся мусором? Их переработкой должны будут заняться те же наномашины.

Ученые давно уже говорят о механосинтезе. Это химический синтез, который осуществляется благодаря механическим системам. Его преимущество видится в том, что он позволит позиционировать реагирующие вещества с высокой степенью точности. Вот только пока не существует инструмента, который позволил бы эффективно осуществлять его. Конечно, такими инструментами могут выступать существующие сегодня атомно-силовые микроскопы. Да, они позволяют не только заглянуть в наномир, но и оперировать атомами. Но они как объекты макромира не лучшим образом подходят для массового применения технологии, чего нельзя сказать о наномашинах. В будущем на их основе будут создавать целые молекулярные конвейеры и нанофабрики.

Но уже сейчас имеются целые биологические нанофабрики. Они существуют в нас и во всех живых организмах. Вот поэтому от нанотехнологий ожидают прорывов в медицине, биотехнологиях и генетике. Создав искусственные наномашины и внедрив их в живые клетки, мы можем добиться впечатляющих результатов. Во-первых, наномашины могут быть использованы для адресной переноски лекарственных препаратов к нужному органу. Нам не придется принимать лекарство, понимая, что только часть его попадет к больному органу. Во-вторых, уже сейчас наномашины берут на себя функции редактирования генома. Технология CRISPR/Cas9 , подсмотренная у природы, позволяет вносить изменения в геном как одноклеточных, так и высших организмов, и в том числе человека. Причем речь идет не только о редактировании генома эмбрионов, но и генома живых взрослых организмов. И займутся всем этим наномашины.

Нанорадио

Если наномашины – это наш инструмент в наномире, то ими как-то нужно управлять. Впрочем, и здесь что-то принципиально новое придумывать не придется. Один из наиболее вероятных способов управления – это радио. Первые шаги в этом направлении уже сделаны. Учеными из Национальной лаборатории Лоуренса в Беркли во главе с Алексом Зеттлом создан радиоприемник из всего одной нанотрубки диаметром около 10 нм. Причем нанотрубка выступает одновременно в качестве антенны, селектора, усилителя и демодулятора. Принимать нанорадиоприемник может как FM, так и AM волны с частотой от 40 до 400 МГц. Использовать устройство, по словам разработчиков, можно не только для приема радиосигнала, но и для его передачи.

В качестве тестового сигнала послужила музыка Эрика Клэптона и группы Beach Boys. Ученые передали сигнал из одной части комнаты в другую, где находилось созданное ими радио. Как оказалось, качество сигнала было достаточно хорошим. Но, естественно, предназначение такого радиоприемника не прослушивание музыки. Радиоприемник может быть применен во множестве наноустройств. К примеру, в тех же нанороботах-доставщиках лекарств, которые будут пробираться к нужному органу по кровотоку.

Наноматериалы

Нульмерные (0D) – нанокластеры, нанокристаллы, нанодисперсии, квантовые точки. Ни одна из сторон 0D-наноматериала не выходит за пределы нанодиапазона. Это материалы, в которых наночастицы изолированы друг от друга. Первые сложные нульмерные структуры, полученные и применяемые на практике, – это фуллерены. Фуллерены – это сильнейшие антиоксиданты из известных на сегодняшний день. В фармакологии с ними связывают надежды на создание новых лекарств. Производные фуллеренов хорошо показывают себя в лечении ВИЧ. А при создании наномашин фуллерены могут быть использованы в качестве деталей. Наномашина с фулереновыми колесами на изображении выше.

Одномерные (1D) – нанотрубки, волокна и прутки. Их длина составляет от 100 нм до десятков микрометров, но диаметр укладывается в нанодиапазон. Самые известные одномерные материалы сегодня – это нанотрубки. Они обладают уникальными электрическими, оптическими, механическими и магнитными свойствами. В ближайшее время нанотрубки должны найти применение в молекулярной электронике, биомедицине, в создании новых сверхпрочных и сверхлегких композиционных материалов. Уже используются нанотрубки и в качестве игл в сканирующих туннельных и атомно-силовых микроскопах. Выше говорилось о создании на основе нанотрубок нанорадио. Ну и, конечно, на углеродные нанотрубки возлагается надежда как на материал для троса космического лифта.

Двумерные (2D) – пленки (покрытия) нанометровой толщины. Это всем известный графен – двумерная аллотропная модификация углерода (за графен вручена Нобелевская премия по физике за 2010 год). Менее известные общественности силицен – двумерная модификация кремния, фосфорен – фосфора, германен – германия. В прошлом году ученые создали борофен, который, в отличие от других двумерных материалов, получился не плоским, а гофрированным. Расположение атомов бора в виде гофрированной структуры обеспечивает уникальные свойства полученного наноматериала. Борофен претендует на лидерство по прочности на растяжение среди двумерных материалов.

Двумерные материалы должны найти применение в электронике, при создании фильтров для опреснения морской воды (графеновые мембраны) и создании солнечных батарей. Уже в ближайшее время графен может заменить окись индия – редкого и дорогого металла – при производстве сенсорных экранов.

Трехмерные (3D) наноматериалы – это порошки, волоконные, многослойные и поликристаллические материалы, в которых вышеперечисленные нульмерные, одномерные и двумерные наноматериалы являются структурными элементами. Плотно прилегая друг к другу, они образуют между собой поверхности раздела – интерфейсы.

Пройдет еще немного времени и нанотехнологии – технологии манипуляции наноразмерными объектами станут привычным явлением. Так же, как привычными стали технологии микроэлектроники, подарившие нам компьютеры, мобильные телефоны, спутники и многие другие атрибуты современной информационной эпохи. Но влияние нанотехнологий на жизнь будет куда шире. Нас ожидают изменения практически во всех сферах деятельности человека.

Разработку новых материалов и технологий их получения и обработки в настоящее время относят к ключевым аспектам основы экономической мощи и обороноспособности государства. Одним из приоритетных направлений развития современного материаловедения являются наноматериалы и нанотехнологии.

Содержание
Вложенные файлы: 1 файл

Курсовая 1 курс.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Уральский Государственный Университет им. А.М. Горького

Кафедра неорганической химии

НАНОМАТЕРИАЛЫ: КЛАССИФИКАЦИЯ, МЕТОДЫ ПОЛУЧЕНИЯ, СВОЙСТВА

Студентки 1-го курса

Астафьевой Юлии Дмитриевны

доц., к.х.н. Кочетова Н.А.

обработки поверхности 26

      1. Технологии, основанные на физических процессах 26
      2. Технологии, основанные на химических процессах 28

      Разработку новых материалов и технологий их получения и обработки в настоящее время относят к ключевым аспектам основы экономической мощи и обороноспособности государства. Одним из приоритетных направлений развития современного материаловедения являются наноматериалы и нанотехнологии.

      Среди основных составляющих науки о наноматериалах и нанотехнологиях можно выделить следующие:

      1. фундаментальные исследования свойств материалов на наномасштабном уровне;
      2. развитие нанотехнологий как для целенаправленного создания наноматериалов, так и поиска и использования природных объектов с наноструктурными элементами, создание готовых изделий с использованием наноматериалов и внедрение наноматериалов и нанотехнологий в различные отрасли промышленности и науки;
      3. развитие средств и методов исследования структуры и свойств наноматериалов, а также методов контроля и аттестации изделий и полуфабрикатов для нанотехнологий.

      Начало XXI века ознаменовалось масштабным началом развития нанотехнологий и наноматериалов. Они уже используются во всех развитых

      странах мира в наиболее значимых областях человеческой деятельности (промышленности, обороне, информационной сфере, радиоэлектронике, энергетике, транспорте, биотехнологии, медицине). Анализ роста инвестиций, количества публикаций по данной тематике и темпов внедрения

      фундаментальных и поисковых разработок позволяет сделать вывод о том,

      что в ближайшие 20 лет использование нанотехнологий и наноматериалов

      будет являться одним из определяющих факторов научного, экономического

      и оборонного развития государств. Некоторые эксперты даже предсказывают, что XXI века будет веком нанотехнологий (по аналогии с тем как XIX век называли веком пара, а XX век – веком атома и компьютера).

      Таким образом, тема наноматериалов в наше время очень актуальна. Поэтому я и взяла ее для своей курсовой. Цель моей работы - рассмотреть основные представления о наноматериалах, их структуре, свойствах и технологиях их получения.

      1. Наноматериалы: прошлое и настоящее

      Научные исследования нанообъектов берут свое начало в XIX веке, когда в 1856-1857-е годы М. Фарадей впервые получил и изучил свойства коллоидных растворов нанодисперсного золота и тонких пленок на его основе. Но свое основное развитие наноматериалы получили в ХХ веке. Этот термин ввел в научный обиход Глейтер в 80-х годах XX века. Он же первый и сформулировал концепцию наноматериалов. Глейтер указал на возможность создания материалов с размерами зерен менее 100 нм, которые должны обладать многими интересными и полезными дополнительными свойствами по сравнению с традиционными микроструктурными материалами.

      В настоящее время интерес к новому классу материалов в области как

      фундаментальной и прикладной науки, так и промышленности и бизнеса постоянно увеличивается. Это обусловлено такими причинами, как:

      - стремление к миниатюризации изделий;

      - уникальными свойствами материалов в наноструктурном состоянии;

      - необходимостью разработки и внедрения новых материалов с качественно и количественно новыми свойствами;

      - развитие новых технологических приемов и методов, базирующиеся на принципах самосборки и самоорганизации;

      - практическое внедрение современных приборов исследования и контроля наноматериалов (зондовая микроскопия, рентгеновские методы, нанотвердость);

      - развитие и внедрение новых технологий (ионно-плазменные технологии обработки поверхности и создания тонких слоев и пленок, LIGA-технологии, представляющие собой последовательность процессов литографии, гальваники и формовки, технологий получения и формования нанопорошков и т.п.).

      Развитие фундаментальных и прикладных представлений о наноматериалах и нанотехнологиях уже в ближайшие годы может привести

      к кардинальным изменениям во многих сферах человеческой деятельности: в

      материаловедении, энергетике, электронике, информатике, машиностроении,

      медицине, сельском хозяйстве, экологии. Наряду с компьютерно- информационными технологиями и биотехнологиями, нанотехнологии являются фундаментом научно-технической революции в XXI веке.

      2. Понятие о наноматериалах. Классификация и типы структур наноматериалов

      Так что же такое наноматериалы? В общем, это материалы, обладающие каким-либо уникальным свойством, полученным благодаря использованию наночастиц и нанотехнологий в целом. Размер наночастиц лежит в диапазоне от 1 до 100 нм. Однако в настоящее время уже получены многие наноматериалы на основе нитридов и боридов с размером кристаллитов около 1–2 нм и менее. Но необходимо понять, что размеры частиц, из которых состоят наноматериалы, ничего не значат. Суть в том, что эти наночастицы позволяют получить какие-то ранее недосягаемые свойства (например, текучесть одновременно с возможностью притягиваться к магнитам). Наночастицы в руках нанотехнологов это всего лишь инструмент. Например, можно взять много наночастиц слепить их в комок, но это не будет наноматериалом, это будет просто комком наночастиц.

      2.1. Классификация наноматериалов

      Существует несколько типов классификаций наноматериалов (НМ). Одна из них - классификация по Глейтеру. Немецкий ученый разделил наноматериалы на следующие типы:

      1. материалы в виде наноразмерных частиц, тонких волокон и пленок, которые изолированы, нанесены на подложку или внедрены в матрицу;

      1. материалы, в которых наноструктура ограничивается тонким поверхностным слоем массивного материала. Такие свойства поверхности, как коррозионная стойкость, твердость и износостойкость, значительно улучшаются за счет создания в них наноструктуры;
      2. массивные НМ, которые можно разделить на два класса:
        1. НМ, атомная структура и/или химический состав которых меняются по объему материала на атомном уровне. К таким материалам относятся стекла, гели, пересыщенные твердые растворы или имплантированные материалы получаемые;

        б. НМ, состоящие из наноразмерных блоков (кристаллитов), которые могут различаться атомной структурой, кристаллографической ориентацией, химическим составом, и областей между соседними блоками (границы зерен).

        Но более обширное и четкое представление о наноматериалах дает классификация по структурным признакам (рис.1). Согласно ей все наноматериалы подразделяются на наночастицы и наноструктурные материалы.

        Рис.1. Классификация наноматериалов по структурным признакам.

        Наночастицы представляют собой наноразмерные комплексы определенным образом взаимосвязанных атомов или молекул. К ним относятся:

        Наноструктурные материалы представляют собой ансамбли наночастиц. В таких материалах наночастицы играют роль структурных элементов. Нано-структурные материалы подразделяются по характеру взаимосвязи наноча-стиц на консолидированные наноматериалы и нанодисперсии.

        Консолидированные наноматериалы – это компактные твердофазные материалы, состоящие из наночастиц, которые имеют фиксированное пространственное положение в объеме материала и жестко связаны непосредственно друг с другом. К консолидированным наноматериалам относятся:

        1. нанокристаллические материалы, состоящие из нанокристаллов, которые обычно называют нанозернами, или нанокристаллитами;
        2. фуллериты, состоящие из фуллеренов;
        3. фотонные кристаллы, состоящие из пространственно упорядоченных элементов, которые сравнимы по размеру в одном, двух или трех направлениях с полудлиной световой волны;
        4. слоистые нанокомпозиты (сверхрешетки), состоящие из слоев различных материалов наноразмерной толщины;
        5. матричные нанокомпозиты, состоящие из твердофазной основы – матрицы - в объеме которой распределены наночастицы (или нанопроволоки);
        6. нанопористые материалы, характеризующиеся наличием нанопор;
        7. наноаэрогели, содержащие прослойки наноразмерной толщины - разделяющие поры.

        Нанодисперсии представляют собой дисперсные системы с наноразмерной дисперсной фазой. К нанодисперсиям относятся указанные выше матричные нанокомпозиты и нанопористые материалы, а также:

        1. нанопорошки, состоящие из соприкасающихся друг с другом наночастиц;
        2. наносуспензии, состоящие из наночастиц, свободно распределенных в объеме жидкости;
        3. наноэмульсии, состоящие из нанокапель жидкости, свободно распределенных в объеме другой жидкости;
        4. наноаэрозоли, состоящие из наночастиц или нанокапель, свободно рас-пределенных в объеме газообразной среды.

        Особой разновидностью наноструктурных материалов являются биомолекулярные комплексы, которые, так же как и биомолекулы, имеют биологическую природу.

        Еще одна классификация делит наноматериалы по количеству измерений. Согласно ей НМ бывают:

        История развития нанотехнологии

        Немецкими физиками Гердом Бинниг и Генрихом Рорером был создан сканирующий туннельный микроскоп (СТМ), который позволил манипулировать веществом на атомарном уровне (1981 г.), Позже они получили за эту разработку Нобелевскую премию. Сканирующий атомно-силовой (АСМ) микроскоп еще больше расширил типы исследуемых материалов (1986 г.).

        В 1985 году Роберт Керл, Харольд Крото, Ричард Смолли открыли новый класс соединений — фуллерены (Нобелевская премия, 1996 год).

        В 1988 году независимо друг от друга французский и немецкий ученые Альберт Ферт и Петер Грюнберг открыли эффект гигантского магнетосопротивления (ГМС) (в 2007г. присуждена Нобелевская премия по физике), после чего магнитные нанопленки и нанопровода стали использоваться для создания устройств магнитной записи. Открытие ГМС стало основой для развития спинтроники. С 1997 года компания IBM в промышленных масштабах начала изготавливать спинтронных приборы — головки для считывания магнитной информации на основе ГМС размерами 10-100 нм.

        ГМС, или, иначе, гигантское магнетосопротивление (англ. giant magnetoresistance сокр., GMR) — представляет собой эффект изменения электрического сопротивления образца под действием магнитного поля (преимущественно в гетероструктурах и сверхрешетках), отличающееся от магнетосопротивления масштабом эффекта (возможно изменение сопротивления на десятки процентов, в отличие от магнетосопротивления, когда изменение сопротивления не превышает единиц процентов). Его открытие сделало возможным разработку современных носителей информации для компьютеров — накопителей на жестком магнитном диске (HDD)

        1991 год ознаменовался открытием углеродных нанотрубок японским исследователем Сумио Ииджимою.

        В 1998 году впервые создан транзистор на основе нанотрубок Сизом Деккером (голландский физик). А в 2004 году он соединил углеродную нанотрубку с ДНК, впервые получив полноценный наномеханизм, открыв тем самым путь к развитию бионанотехнологии.

        2004 год — открытие графена, за исследования его свойств А. К. Гейму и К. С. Новоселову в 2010 г. присуждена Нобелевская премия по физике. Известные фирмы IBM, Samsung финансируют научные проекты с целью разработки новых электронных устройств, смогли бы заменить кремниевые технологии.

        Общая характеристика нанотехнологий и наноматериалов

        1 нанометр (нм) = 10 -9 метра.

        На сегодня основными отраслями нанотехнологий являются: наноматериалы, наноинструменты, наноэлектроника, микроэлектромеханические системы и нанобиотехнологии.

        • получения наноматериалов с заданной структурой и свойствами;
        • применения наноматериалов по определенному назначению с учетом их структуры и свойств;
        • контроль (исследования) структуры и свойств наноматериалов как в ходе их получения, так и в период их применения.

        Существует два основных подхода к нанопроизводства: сверху вниз и снизу вверх . Технология сверху вниз заключается в измельчении материала, имеющего большие размеры (массивный материал), до наноразмерных частиц. При подходе снизу вверх продукты нанопроизводства создаются путем выращивания (создания) их из атомного и молекулярного масштабов.

        Производство на наноуровне известно как нанопроизводств — предусматривает масштабные мероприятия, создание надежного и экономически эффективного производства наноразмерных материалов, конструкций, устройств и систем. Оно предусматривает исследования, разработки и интеграции технологий сверху вниз и более сложную — снизу вверх или процессы самоорганизации.

        Наноматериалы — это дисперсные или массивные материалы (структурные элементы — зерна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и имеющие качественно новые свойства, функциональные и эксплуатационные характеристики, которые проявляются вследствие наномасштабных размеров.

        Все вещества в начальном состоянии или после определенного обработки (измельчения) имеют разную степень дисперсности, размер составляющих частиц можно не увидеть невооруженным глазом.

        Объекты с размерами в пределах 1-100 нм принято считать нанообъектами , но такие ограничения являются весьма условными. При этом данные размеры могут касаться как всего образца (нанообъектом является весь образец), так и его структурных элементов (нанообъектом является его структура). Геометрические размеры некоторых веществ приведены в таблице.

        Основные преимущества нанообъектов и наноматериалов состоит в том, что за малых размеров в них проявляются новые особые свойства, не характерные этим веществам в массивном состоянии.

        Классификация вещества в зависимости от степени дисперсности

        состояние вещества раздробленность вещества Степень дисперсности, см -1 Число атомов в частице, шт.
        макроскопическое грубодисперсная 10 0 -10 2 > 10 18
        Средство наблюдения: невооруженный глаз
        микроскопическое тонкодисперсная 10 2 -10 5 > 10 9
        Средство наблюдения: оптический микроскоп
        коллоидное ультрадисперсных 10 5 -10 7 10 9 -10 2
        Средство наблюдения: оптический ультрамикроскоп, электронный и сканирующий зондовый микроскоп
        Молекулярное, атомное и ионное Молекулярная, атомная и ионная > 10 7 2
        Средство наблюдения: микроскоп с высоким разрешением (
        пример геометрический размер
        наномир атом водорода 0,18 нм
        Сечение молекулы ДНК 2 нм
        Длина видимого света 400-700 нм
        микромир пыль 800 нм
        Эритроцит (диаметр) 7,2 мкм
        макромир Толщина компакт-диска 1,2 мм
        насекомые 4-10 мм

        Нанообъекты одномерные (1D) — углеродные нанотрубки и нановолокна, наностержни, нанопровода, то есть цилиндрические объекты с одним измерением в несколько микрон и двумя нанометровыми. В данном случае один характерный размер объекта, по крайней мере на порядок превышает два других.

        Нанообъекты двумерные (2D) — покрытие или пленки толщиной несколько нанометров на поверхности массивного материала (подложке). В этом случае только одно измерение — толщина должна нанометровые размеры, два других являются макроскопическими.

        Особые свойства наноматериалов

        В макромасштабе химические и физические свойства материалов не зависят от размера, но при переходе к наномасштабу все меняется, включая цвет материала, точку плавления и химические свойства. В нанокристаллических материалах существенно изменяются механические свойства. При определенных условиях эти материалы могут быть сверхтвердыми или сверхпластичными. Твердость нанокристаллического никеля при переходе к наноразмерных размеров увеличивается в несколько раз, а прочность на растяжение возрастает в 5 раз. Температура плавления кластеров (более 1000 атомов) золота становится такой же как и для объемного золота. Добавление наноструктурированного алюминия в ракетное топливо радикально меняет его скорость сгорания. Теплопроводность моторного масла существенно возрастает при добавлении многослойных углеродных нанотрубок.

        Так, в нанокристаллических и нанопористых материалах резко увеличивается удельная поверхность, то есть доля атомов, находящихся в тонком (~ 1 нм) приповерхностном слое. Это приводит к повышению реакционной способности нанокристаллов, поскольку атомы, находящиеся на поверхности, имеют ненасыщенные связи в отличие от тех, что находятся в объеме и связанных с соседними атомами.

        Экспериментальные данные, полученные в разных лабораториях для нанопорошков, свидетельствуют, что в большинстве случаев чувствительность к возгоранию от электрической искры, сталкивания или механического трения и интенсивность горения возрастают при уменьшении размера частиц в пылевом облаке (и соответственно при увеличении удельной поверхности).

        Если металлические частицы имеют размеры порядка мкм — нм, то их минимальная энергия воспламенения (МЭЗ) значительно уменьшается и составляет менее 1 мДж (это нижняя граница чувствительности аппарата, который обычно используется для измерения МЭЗ). Была изучена зависимость размеров частиц Al, полиэтилена и оптического отбеливателя от МЭЗ. Результаты по огнеопасности Al приведены в таблице. Согласно полученным данным, максимальное давление взрыва Pmax возрастает при переходе в нанодиапазон, минимальная концентрация воспламенения (МКЗ) существенно не меняется, а МЭЗ резко уменьшается как минимум, в 60 раз.

        Концепция нанотехнологии впервые была введена в научную практику американским физиком и лауреатом Нобелевской премии Ричардом Фейнманом в 1959 году. Последующее развитие науки и техники подтвердило актуальность теории Фейнмана – наноматериалы стали одним из ключевых разделов современного материаловедения. Фейнман описал также своё видение использования машин, предназначенных для создания оборудования меньших размеров вплоть до молекулярного уровня.

        В определении японского учёного Норио Танигучи, нанотехнология состоит из целенаправленной совокупности методов обработки, разделения, консолидации и деформации вещества на уровне и с помощью одного атома или одной молекулы.

        Структура нанокристаллических материалов

        технология наноматериалы

        Продукты нанотехнологий с типичным размером зерна менее 100 нм благодаря своим новым свойствам и разнообразным возможностям применения привлекает возрастающий интерес во всем мире. Эти структуры традиционно подразделяются на:

        • одномерные (или слоистые);
        • двумерные (стержневые или проволочные);
        • трёхмерные (или равноосные).

        Одно- и и двумерные структуры широко исследуются для нанесения покрытий в электронных компонентах, а с трёхмерными равноосными структурами ведутся эксперименты по их использованию в объёмных изделиях. Из-за небольшого размера зерна и, как следствие, большой объёмной доле атомов на границах зерен (или вблизи них), наноматериалы демонстрируют свойства, которые часто превосходят свойства обычных крупнозернистых материалов.

        Установлено, что структура кристаллитов по существу такая же, как у крупнозернистых наноматериалов, с той разницей, что параметры решётки в нанокристаллическом состоянии немного увеличены (от 0,2% до 0,8%). Впрочем, это касается только изделий, которые получены путём кристаллизации аморфной фазы.

        Имеется два предположения относительно структур границ зёрен - одно предполагает наличие газоподобного беспорядка на границах другое - что структура границ зерен одинакова как в нанокристаллических, так и в крупнозернистых материалах. Последнее предположение получило более широкое признание.

        Классификация наноматериалов

        нанокристаллические материалы

        Большинство современных нано материалов можно разделить на четыре типа:

        • Продукты на углеродной основе;
        • Материалы на основе металлов;
        • Дендримеры;
        • Композиты.

        Продукты на основе углерода состоят в основном из углерода, чаще всего принимающего форму полых сфер, эллипсоидов или трубок. Сферические и эллипсоидальные углеродные наноматериалы называют фуллеренами, а цилиндрические - нанотрубками. Эти частицы имеют множество потенциальных применений, в том числе улучшенные плёнки и покрытия, более прочные и легкие материалы, а также приложения в электронике.

        Материалы на основе металлов включают квантовые точки, нанозолото, наносеребро и оксиды металлов, например, диоксид титана. Квантовая точка представляет собой плотно упакованный кристалл полупроводника, состоящий из сотен или тысяч атомов, размер которого составляет от нескольких нанометров до нескольких сотен нанометров. При изменении размера квантовых точек их оптические свойства также меняются.

        Дендримеры -это наноразмерные полимеры, состоящие из разветвлённых элементов. Поверхность дендримера имеет многочисленные концы цепей, которые можно приспособить для выполнения определенных химических функций, в частности, при проведении реакций катализа. Поскольку трёхмерные дендримеры содержат внутренние полости, в которые могут быть помещены другие молекулы, они могут быть полезны для доставки лекарств.

        Композиты объединяют одни наночастицы с другими, превращаясь в крупногабаритные сыпучие продукты. Например, наноразмерные глины уже добавляются к различным продуктам - от автомобильных запчастей до упаковки – с целью улучшения механических, термических, барьерных и огнестойких свойств.

        Способы получения

        нано материалы

        Производственные подходы к синтезу различных наноструктур подразделяются на две категории: нисходящие и восходящие, которые различаются по степени качества, скорости и стоимости.

        Нисходящий подход - это, по сути, разделение сыпучих веществ для получения наноразмерных частиц. Этого можно достичь, используя передовые методы, такие как точное машиностроение и литография, которые были разработаны и оптимизированы промышленностью в течение последних десятилетий.Точное машиностроение поддерживает большую часть микроэлектронной промышленности на протяжении всего производственного процесса, а высокая производительность может быть достигнута за счет использования комбинации улучшений. К ним относятся использование передовой наноструктуры на основе алмаза или кубического нитрида бора и датчиков для контроля размера в сочетании с числовым программным управлением и передовыми технологиями сервоприводов. Литография включает в себя формирование рисунка на поверхности посредством воздействия света, ионов или электронов и осаждение материала на эту поверхность для получения желаемого результатаа.

        Технология наноматериалов базируется на основе синтеза, при этом исходный образец может находиться в парообразном, жидком или твёрдом состоянии. Исторически первым методом, который был использован для синтеза нанокристаллических металлов и сплавов был метод конденсации инертного газа, при которой испаряющееся вещество закаливается на холодную подложку.

        получение наноматериалов

        Впоследствии также использовались плазменная обработка и другие методы физического и химического осаждения из паровой фазы. При электроосаждении и быстром затвердевании в качестве исходного сырья используется жидкое состояние веществ.

        Механическое легирование, сварка трением с перемешиванием, сильная пластическая деформация, искровая эрозия, износ при скольжении и многократная холодная прокатка также приводят к образованию нанокристаллических структур. Некоторые из этих методов используются в достаточно крупных производственных масштабах для конденсации инертного газа, расположения электродов и при механическом легировании

        Остальные пока не вышли из стадии лабораторных исследований.

        Выбор метода синтеза нанокристаллических материалов определяется следующими факторами:

        • Простотой процесса;
        • Его экономической целесообразностью;
        • Масштабируемостью;
        • Желаемой чистотой конечного продукта.

        Большинство упомянутых технологий производят нанокристаллическую заготовку в форме порошка. Применение таких структур требует, чтобы порошки были уплотнены до максимально возможных значений, когда пористость практически отсутствует. Уплотнение с полным связыванием частиц требует воздействия на порошок высоких температур и давлений в течение продолжительных периодов времени, что приводит к укрупнению микроструктурных особенностей. Однако сохранение материала в сверхплотном состоянии возможно лишь при условии, что порошок не подвергается воздействию высоких температур в течение длительных периодов времени. Таким образом, успешное уплотнение до полной плотности требует инновационных методов уплотнения.

        нанотехнологичные материалы

        Известно, что рассматриваемые вещества имеют преобладающую долю атомов на границах зерен, поэтому эффективный коэффициент диффузии нанокристаллических материалов намного выше, чем у крупнозернистых структур того же состава. Это будет способствовать достижению полной консолидации наноматериалов при температурах на 300…400 ° C ниже, чем те, которые требуются для крупнозернистых материалов. Успешное уплотнение нанокристаллических порошков может достигаться:

        • Электроразрядным уплотнением;
        • Плазменным спеканием;
        • Ударным (взрывным) уплотнением;
        • Горячим изостатическим прессованием;
        • Гидростатической экструзией;
        • Прокаткой предварительно напряжённого порошка.

        Уплотнение не требуется, если порошок может использоваться в исходном состоянии, например, в виде суспензии.

        Свойства наноматериалов

        При выяснении свойств данных веществ решающим фактором оказывается их термоустойчивость. Из-за своего малого размера зерна, нанокристаллические материалы с большой площадью поверхности обладают сильной потенциальной энергией роста зёрен. Знание термической стабильности важно как по научным, так и по технологическим причинам. С технологической точки зрения термостойкость важна для консолидации нанокристаллического порошка без огрубления микроструктуры. С научной точки зрения было бы полезно проверять, отличается ли поведение роста зёрен в нанокристаллических материалах от подобных процессах, протекающих в крупнозернистых структурах.

        Энергию активации роста зёрен в нанокристаллических материалах обычно сравнивают с энергией активации решёточной, либо межзёренной диффузии в крупнозернистых веществах. Отмечено, что энергия активации роста зерен в нанокристаллических материалах более выгодна по сравнению с межзёренной диффузией. При этом рост зёрен в нанокристаллических материалах, полученных любым способом, очень мал до достаточно высокой температуры. Это сопротивление росту зёрен объясняется такими факторами, как узким распределением зёрен по своим размерам, равноосной морфологией зёрен, низкоэнергетической границей зёрен.

        наноматериалы наноструктуры

        Из-за очень маленького размера зерна и, как следствие, высокой плотности поверхностей раздела, нанокристаллические материалы обладают множеством свойств, которые отличаются (и часто превосходят) от свойств обычных крупнозернистых образцов. К ним относятся:

        • Повышенная прочность/твёрдость;
        • Повышенный коэффициент диффузии;
        • Повышенная пластичность/вязкость;
        • Уменьшенный модуль упругости;
        • Повышенное удельное электрическое сопротивление;
        • Повышенная удельная теплоемкость;
        • Более высокие значения коэффициента теплового расширения;
        • Более низкая теплопроводность;
        • Отличные магнитомягкие свойства.

        Следует отметить, что первые результаты исследования свойств нанокристаллитов не очень надёжны, в основном из-за значительной пористости, присутствующей в исследуемых образцах. Например, в керамических образцах при комнатной температуре не удаётся воспроизвести пластичность. Некоторые исследователи утверждают, что коэффициент теплового расширения увеличивается с уменьшением размера зерна. В то же время другие сообщают о том, что данный параметр примерно одинаков как для нанокристаллических, так и для крупнозернистых материалов. Аналогичным образом, уменьшение модуля упругости может быть связано с пористостью и трещинами, присутствующими в консолидированном продукте.

        Таким образом, важно сравнивать между собой свойства только полностью плотных материалов, не имеющих пористости, трещин или неоднородностей.

        функциональные наноматериалы

        Наиболее важными для практического применения являются механические свойства. Достоверно устанавливать их сложно из-за отсутствия достаточно больших и бездефектных образцов, необходимых при испытаниях. Поэтому наиболее распространенным показателем для оценки механических свойств нанокристаллических материалов является твёрдость.

        В результате испытаний установлено, что увеличение твёрдости и предела текучести связано с уменьшением размера зерна. Поскольку существующие экспериментальные методики разработаны на основе активности дислокаций в крупнозернистых образцах, допустимо считать, что в нанокристаллических материалах активность дислокаций минимальна и, следовательно, упрочнения не происходит. Приравнивая силу отталкивания дислокаций к приложенному усилию силе, можно вычислить критический размер зерна, ниже которого будет наблюдаться размягчение размера зерна. По расчетам, это значение составляет около 10…30 нм для большинства материалов.

        Прочность нанокристаллитов намного выше, чем у крупнозернистых материалов. Однако другой подход к синтезу высокопрочных продуктов, по-видимому, заключается в создании нанокристаллических композитов с частицами, размерная фаза которых диспергирована в аморфной матрице. Это может быть достигнуто путём получения полностью аморфной фазы такими методами, как быстрым затвердеванием из расплава, механическим легированием, а также низкотемпературной первичной кристаллизацией, которая воздействует на образование нанокристаллической фазы.

        Области применения

        получение наноматериалов

        При существующем уровне развития науки и техники наноматериалы характеризуются нестабильностью свойств. Например, в зависимости от способа получения исходного образца прочность нанокомпозитов намного выше, чем их аморфных аналогов того же химического состава.

        Широкое использование и поиск технологических приложений требуют экономичного производства хорошо изученных нанокристаллитов в промышленных масштабах и с воспроизводимыми свойствами.

        В настоящее время нановещества используются:

        • При производстве очков, устойчивых к царапинам;
        • Стойких к растрескиванию красок;
        • Прочных настенных покрытий;
        • Прозрачных солнцезащитных кремов;
        • Пятноотталкивающих тканей;
        • Самоочищающихся окон;
        • Керамических покрытий для солнечных батарей.

        Наноматериалы, которые используются в качестве наполнителя в шинах, могут улучшить сцепление с дорогой, уменьшая тормозной путь во влажных условиях, а жёсткость кузова автомобиля можно повысить за счет использования стали, упрочненной нановеществами. Новые методы гель-напыления позволяют экономично наносить просветляющие слои диоксида кремния или других материалов нанометровой толщины на дисплеи или панели. Ультратонкие прозрачные слои на серебряной основе можно использовать для обогреваемых оконных стекол, которые очищаются от запотевания и льда.

        Установлено, что использование нанотехнологий перспективно в производстве, переработке, обеспечении безопасности и упаковке пищевых продуктов. Не исключено, что нанотехнологии позволят манипулировать молекулярными формами пищевых продуктов, чтобы обеспечить больше возможностей повышения качества и пищевой ценности, а также более низкие затраты.

        2. Методы получения наноматериалов…………………………………. 4 стр.

        3. Классификация методов получения наноматериалов……………… 5 стр.

        4. Метод интенсивной пластической диформации………………………6 стр.

        5. Основные методы получения наноматериалов………………………..7 стр.

        6. Список использованной литературы………………………………… 8 стр.

        Вступление

        Наномасштаб подразумевает порядок размеров между 1 и 100 на- нометрами (1 нм = 10-9 м = 10-6 мм = 10-3 мкм). На рис. 1.1 приведены раз- меры некоторых естественных и искусственных созданий природы в диа- пазоне размеров от 10 м до 1 А.

        Нанотехнология – междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространст- венных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых мо- лекул, наноструктур, наноустройств и материалов со специальными физи- ческими, химическими и биологическими свойствами.

        Нанотехнология – это также совокупность методов и приемов, обес- печивающих возможность контролируемым образом создавать и модифи- цировать объекты, включающие компоненты с размерами менее 100 нм.

        Методы получения наноматериалов

        К настоящему времени разработано большое количество методов и

        способов получения наноматериалов. Это обусловлено разнообразием состава и

        свойств наноматериалов, с одной стороны, а с другой – позволяет расширить

        ассортимент данного класса веществ, создавать новые и, уникальные образцы.

        Формирование наноразмерных структур может происходить в ходе таких

        процессов, как фазовые превращения, химическое взаимодействие,

        рекристаллизация, аморфизация, высокие механические нагрузки,

        биологический синтез. Как правило, формирование наноматериалов возможно

        при наличии существенных отклонений от равновесных условий существования

        вещества, что требует создания специальных условий и, зачастую, сложного и

        2.Основные требования к методам получения наноматериалов.

        Совершенствование ранее известных и разработка новых методов

        получения наноматериалов определило основные требования, которым они

        должны соответствовать, а именно:

        · метод должен обеспечивать получение материала контролируемого

        состава с воспроизводимыми свойствами;

        · метод должен обеспечивать временную стабильность наноматериалов, т.е.

        в первую очередь защиту поверхности частиц от самопроизвольного

        окисления и спекания в процессе изготовления;

        · метод должен иметь высокую производительность и экономичность;

        · метод должен обеспечивать получение наноматериалов с определенным

        размером частиц или зерен, причем их распределение по размерам должно

        быть, при необходимости, достаточно узким.

        Следует отметить, что в настоящее время не существует метода,

        отвечающего в полной мере всей совокупности требований. В зависимости от

        способа получения такие характеристики наноматериалов, как средний размер и форма частиц, их гранулометрический состав, величина удельной поверхности,

        содержание в них примесей и др., могут колебаться в весьма широких пределах.

        Например, нанопорошки в зависимости от метода и условий изготовления могут иметь сферическую, хлопьевидную, игольчатую или губчатую форму; аморфную

        Читайте также: