Наибольшее и наименьшее значение функции в замкнутой области реферат

Обновлено: 30.06.2024

1. Ознакомление и приобретение навыков вычисления наибольшего, наибольшего значения функции в ограниченной области.

Основные вопросы:

1.Наибольшее и наименьшее значение функции.

3.Равномерно непрерывная функция.

Если функция f(x, y, …) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется, по крайней мере, одна точка

N(x0 , y0 , …), такая, что для остальных точек верно неравенство

а также точка N1 (x01 , y01 , …), такая, что для всех остальных точек верно неравенство

тогда f(x0 , y0 , …) = M – наибольшее значение функции, а f(x01 , y01 , …) = m – наименьшее значение функции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î [m, M] существует точка

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.


Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1 , y1 ) и (х2 , у2 ) области, находящихся на расстоянии, меньшем D, выполнено неравенство


Точки, в которых функция принимает наибольшее или наименьшее значения в ограниченной замкнутой области, называют также точками абсолютного или глобального экстремума. Если наибольшее или наименьшее значения достигаются во внутренних точках области, то это точки локального экстремума функции z = f ( x , y ) . Таким образом точки, в которых функция принимает наибольшее или наименьшее значения являются либо локальными экстремумами, либо граничными точками области. Следовательно, чтобы найти наибольшее и наименьшее значения функции z = f ( x , y ) в ограниченной замкнутой области D, следует вычислить значение функции в критических точках области D, а также наибольшее и наименьшее значения функции на границе. Если граница задана уравнением ϕ ( x , y ) = 0 , то задача отыскания наибольшего и наименьшего значений функции на границе области D сводится к отысканию наибольшего и наименьшего значений (абсолютного экстремума) функции одной переменной, так как уравнение границы области D - ϕ ( x , y ) = 0 связывает переменные x и y между собой. Значит, если разрешить уравнение ϕ ( x , y ) = 0 относительно одной из переменных или параметрические уравнения границы области D и подставить их в уравнение z = f ( x , y ) , то придем к задаче нахождения наибольшего и наименьшего значений функции одной переменной. Если уравнение ϕ ( x , y ) = 0 невозможно разрешить относительно одной из переменных или невозможно найти параметрическое задание границы, то задача сводится к отысканию условного экстремума.

Правило нахождения наибольшего и наименьшего значений дифференцируемой в области D функции z = ƒ(х;у) состоит в следующем:

1. Найти все критические точки функции, принадлежащие D , и вычислить значения функции в них;

2. Найти наибольшее и наименьшее значения функции z = ƒ(х;у) на границах области;

3. Сравнить все найденные значения функции и выбрать из них наибольшее М и наименьшее.

1. Найти наибольшее и наименьшее значения функции z=х 2 у + ху 2 + ху в замкнутой области, ограниченной линиями: у = 1 /x , х = 1, х = 2, у = -1,5


Решение: Здесь z'x =2ху+у 2 +у, z'y =х 2 +2ху+х.

Находим все критические точки:


Решением системы являются точки (0;0), (-1;0), (0; -1),(-1/3;-1/3). Ни одна из найденных точек не принадлежит области D .

2 . Исследуем функцию z на границе области, состоящей из участков АВ, ВС, СЕ и ЕА



Значения функции z(-1) = -1,




Значения функции z(1) = 3, z(2) = 3,5.






Значения функции z(1) = -3/4,z(2) = -4,5.

3 . Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D , ограниченной: x = 0, y = 0, 4x+3y=12 .

1. Построим область D (рис. 1.5) на плоскости Оху .


Угловые точки: О (0; 0), В (0; 4), А (3; 0).

Граница Г области D состоит из трёх частей:


1. Найти наибольшее и наименьшее значения функции z = х 2 у + ху 2 + ху в замкнутой области, ограниченной линиями: х = 1, х = 2, у = 1,5

2. Найти наибольшее и наименьшее значения функции z = 2 x 3 − 6 xy + 3 y 2 в замкнутой области D, ограниченной осью OY, прямой y = 2 и параболой y = x 2 при x ≥ 0 .

3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .

4. Найти наибольшее и наименьшее значения функции z=х 2 у + ху 2 + ху в замкнутой области, ограниченной линиями: у = 1 /x , х = 1, х = 2, у = -1,5

5. Найти наибольшее и наименьшее значения функции в треугольнике, ограниченном прямыми , , .

Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x, заданная на отрезке [0; 1], достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x0 всегда найдётся точка этого интервала, лежащая правее (левее) x0, и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x0. Аналогичные утверждения справедливы для функций многих переменных

Двойной интеграл

Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y). Двойной интеграл от функции f (x,y) обозначается как


где R - область интегрирования в плоскости Oxy. Если определенный интеграл от функции одной переменной выражает площадь под кривой f (x) в интервале от x = a до x = b, то двойной интеграл выражает объем под поверхностью z = f (x,y) выше плоскости Oxy в области интегрирования R

Повторный интеграл

понятие интегрального исчисления. Вычисление двойного интеграла


от функции f (x, у) по области S, ограниченной прямыми х = а, х = b и кривыми y = φ1(x), у = φ2(х), при некоторых условиях относительно функций f (x, у), φ1(x), φ2(х), производится по формуле:


где при вычислении внутреннего интеграла х считается постоянным.

Тройной интеграл

Тройным интегралом называют кратный интеграл с d=3.



Здесь — элемент объема в рассматриваемых координатах.

В прямоугольных координатах , где является элементом объема в прямоугольных координатах.

Якобиан


функциональный определитель ½aik½1n с элементами , где yi = fi (X1. Xn), l £ i £ n, — функции, имеющие непрерывные частные производные в некоторой области А; обозначение:


Якобиан часто применяется при анализе неявных функций

Равенство определителя Якоби нулю служит удобным необходимым и достаточным условием вырожденности преобразования координат, а неравенство его нулю — необходимым и достаточным условием невырожденности.

Замена переменных

Для вычисления двойного интеграла иногда удобнее перейти в другую систему координат.

Это может быть обусловлено формой области интегрирования или сложностью подынтегральной функции.

В новой системе координат вычисление двойного интеграла значительно упрощается.

Замена переменных в двойном интеграле описывается формулой


где выражение представляет собой так называемый якобиан преобразования , а S − образ области интегрирования R, который можно найти с помощью подстановки в определение области R. Отметим, что в приведенной выше формуле означает абсолютное значение соответствующего определителя.

Двойной интеграл

Пусть область D ограничена линией r = r( ) и лучами = и = , где и r – полярные координаты точки на плоскости, связанные с ее декартовыми координатами x и y



соотношениями (рис. 5). В этом случае


Замечание. Если область D в декартовых координатах задается уравнением, содержащим бином , например, и т.д., то вычисление двойного интеграла по такой области удобнее производить в полярных координатах.

Если область D в декартовых координатах задается уравнением, содержащим бином , например, и т.д., то вычисление двойного интеграла по такой области удобнее производить в полярных координатах.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Близится к завершению изучение функций нескольких переменных, и сегодня мы рассмотрим ещё одну распространённую задачу, развёрнутую формулировку которой вы видите в заголовке статьи. Как многие догадываются, это пространственный аналог задачи нахождения наибольшего и наименьшего значений функции на отрезке, и для её решения потребуется минимальное знание темы. Заканчивается очередной учебный год, всем хочется на каникулы, и чтобы приблизить этот момент я сразу же перехожу к делу:

Плоская область обычно штрихуется, а её граница выделяется жирной либо цветной линией

Неотъемлемой частью рассматриваемого задания является построение области на чертеже. Как это сделать? Нужно начертить все перечисленные линии (в данном случае 3 прямые) и проанализировать, что же получилось. Искомую область обычно слегка штрихуют, а её границу выделяют жирной линией:

Эту же область можно задать и линейными неравенствами: , которые почему-то чаще записывают перечислительным списком, а не системой.
Так как граница принадлежит области, то все неравенства, разумеется, нестрогие.

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области

Исходя из преамбулы, решение удобно разбить на два пункта:

I) Найдём стационарные точки. Это стандартное действие, которые мы неоднократно выполняли на уроке об экстремумах нескольких переменных:

Найденная стационарная точка принадлежит области: (отмечаем её на чертеже), а значит, нам следует вычислить значение функции в данной точке:

– как и в статье Наибольшее и наименьшее значения функции на отрезке, важные результаты я буду выделять жирным шрифтом. В тетради их удобно обводить карандашом.

Обратите внимание на наше второе счастье – нет никакого смысла проверять достаточное условие экстремума. Почему? Даже если в точке функция достигает, например, локального минимума, то это ЕЩЁ НЕ ЗНАЧИТ, что полученное значение будет минимальным во всей области (см. начало урока о безусловных экстремумах).

Что делать, если стационарная точка НЕ принадлежит области? Почти ничего! Нужно отметить, что и перейти к следующему пункту.

II) Исследуем границу области.

1) Разберёмся с нижней стороной треугольника. Для этого подставим непосредственно в функцию:

Как вариант, можно оформить и так:

Геометрическая ситуация родственна предыдущему пункту:

Исследуем второй конец отрезка :

Используя функцию , выполним контрольную проверку:

3) Наверное, все догадываются, как исследовать оставшуюся сторону . Подставляем в функцию и проводим упрощения:

Концы отрезка уже исследованы, но на черновике всё равно проверяем, правильно ли мы нашли функцию :
– совпало с результатом 1-го подпункта;
– совпало с результатом 2-го подпункта.

Осталось выяснить, если ли что-то интересное внутри отрезка :

Отмечаем на чертеже точку и находим соответствующее значение функции :

из которого выбираем наибольшее и наименьшее значения. Ответ запишем в стилистике задачи нахождения наибольшего и наименьшего значений функции на отрезке:

На всякий случай ещё раз закомментирую геометрический смысл результата:
– здесь самая высокая точка поверхности в области ;
– здесь самая низкая точка поверхности в области .

Если вы немного порешаете такие задания, то от треугольников голова может пойти кругом, и поэтому я приготовил для вас необычные примеры чтобы она стала квадратной :))

Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области .

Особое внимание обратите на рациональный порядок и технику исследования границы области, а также на цепочку промежуточных проверок, которая практически стопроцентно позволит избежать вычислительных ошибок. Вообще говоря, решать можно как угодно, но в некоторых задачах, например, в том же Примере 2, есть все шансы значительно усложнить себе жизнь. Примерный образец чистового оформления заданий в конце урока.

Систематизируем алгоритм решения, а то с моей прилежностью паука он как-то затерялся в длинной нити комментариев 1-го примера:

– На первом шаге строим область , её желательно заштриховать, а границу выделить жирной линией. В ходе решения будут появляться точки, которые нужно проставлять на чертеже.

– Найдём стационарные точки и вычислим значения функции только в тех из них, которые принадлежат области . Полученные значения выделяем в тексте (например, обводим карандашом). Если стационарная точка НЕ принадлежит области, то отмечаем этот факт значком либо словесно. Если же стационарных точек нет вовсе, то делаем письменный вывод о том, что они отсутствуют. В любом случае данный пункт пропускать нельзя!

– Из выделенных чисел выбираем наибольшее и наименьшее значения и даём ответ. Иногда бывает, что такие значения функция достигает сразу в нескольких точках – в этом случае все эти точки следует отразить в ответе. Пусть, например, и оказалось, что это наименьшее значение. Тогда записываем, что

Заключительные примеры посвящены другим полезным идеям, которые пригодятся на практике:

Найти наибольшее и наименьшее значения функции в замкнутой области .

Я сохранил авторскую формулировку, в которой область задана в виде двойного неравенства. Это условие можно записать эквивалентной системой или же в более традиционном для данной задачи виде:

Напоминаю, что с нелинейными неравенствами мы сталкивались на самом первом уроке по теме ФНП, и если вам не понятен геометрический смысл записи , то, пожалуйста, не откладывайте и проясните ситуацию прямо сейчас ;-)

Мда, иногда приходится грызть не только гранит науки….

I) Найдём стационарные точки:

Стационарная точка принадлежит области, а именно, лежит на её границе.

А так, оно, ничего… весело урок пошёл – вот что значит попить правильного чая =)

II) Исследуем границу области. Не мудрствуя лукаво, начнём с оси абсцисс:

Вычислим значения функции на концах отрезка:

Вот это уже вносит некоторое оживление в монотонную езду по накатанной колее. Найдём критические точки:

Вычислим значения функции в найденных точках:

Проверку по функции проведите самостоятельно.

Теперь внимательно изучаем завоёванные трофеи и записываем ответ:

Для самостоятельного решения:

Найти наименьшее и наибольшее значения функции в замкнутой области

Всем хорошо сдать сессию и до скорых встреч в следующем сезоне!

Решения и ответы:

I) Вычислим значения функции в стационарных точках, принадлежащих данной области:

II) Исследуем границу области

1) Подставим в функцию:


Вычислим значение функции в точке :

Вычислим значение функции на другом конце отрезка:

2) Подставим в функцию :

Контроль:

Вычислим значение функции в точке :

Вычислим значение функции на конце отрезка:

3) Подставим в функцию :

Контроль:


Вычислим значение функции в точке :

Плоская область ограничена квадратом

Пример 3: Решение: изобразим область на чертеже:

I) Вычислим значения функции в стационарных точках, принадлежащих данной области:

II) Исследуем границу области

1) Если , то
– точка уже исследована.
Вычислим значение функции на другом конце отрезка:

2) Если , то

Вычислим значение функции в точке :

Вычислим значения функции на концах отрезка:

3) Если , то
– точка уже исследована.
Другой конец отрезка также исследован.

4) Если , то

Концы отрезка уже исследованы.

Плоская область представляет собой круг

Пример 5: Решение: изобразим область на чертеже:

I) Найдём стационарные точки:

II) Исследуем границу области. Подставим в функцию (таким образом, учитываются сразу обе полуокружности ):

Найдём критические точки:

Если , то
Если , то
Вычислим значения функции в точках :

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


Пусть функция определена и непрерывна в некоторой ограниченной замкнутой области D. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области необходимо:


1. Найти критические точки функции , принадлежащие области D. Вычислить значения функции в критических точках.


2. Исследовать поведение функции на границе области D, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.

3. Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.

Пример

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области

Решение.

1) Изобразим заданную область на чертеже:


2) Найдём стационарные точки. Для этого вычислим частные производные первого порядка, приравняем к нулю и решим систему двух уравнений с двумя переменными:




Найденная стационарная точка принадлежит области

Отметим точку на чертеже и вычислим значение функции в этой точке:

3) Исследуем границу области (на чертеже постепенно отмечаем появляющиеся в ходе исследования точки):


Поскольку граница состоит из сторон треугольника, сначала рассмотрим отрезки, параллельные координатным осям, и в первую очередь – лежащие на самих осях.





Для исследования правой стороны треугольника подставляем в функцию



– полученное значение тоже попадает в область, а значит, нужно вычислить, чему равна функция в точке :



Исследуем второй конец отрезка :


Для исследования стороны подставим в функцию и упростим:




Подставляя в уравнение прямой получим ординату точки и находим соответствующее значение функции:

Читайте также: