Надежность строительных конструкций реферат

Обновлено: 04.07.2024

НАДЕЖНОСТЬ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И ОСНОВАНИЙ

Reliability for constructions and foundations. General principles

____________________________________________________________________
Текст Сравнения ГОСТ 27751-2014 с ГОСТ Р 54257-2010 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский центр "Строительство" (ОАО "НИЦ "Строительство") - Центральный научно-исследовательский институт строительных конструкций имени В.А.Кучеренко (ЦНИИСК им.В.А.Кучеренко)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2014 г. N 72-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 декабря 2014 г. N 1974-ст межгосударственный стандарт ГОСТ 27751-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

5 В настоящем стандарте учтены положения европейского стандарта EN 1990:2002* "Основы проектирования сооружений" ("Basic of structural design", NEQ) и международного стандарта ISO 2394:1998 "Основные принципы надежности сооружений" ("General principles on reliability for structures", NEQ)

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕЗДАНИЕ. Ноябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

1.1 Настоящий стандарт устанавливает общие принципы обеспечения надежности строительных конструкций и оснований.

1.2 Настоящий стандарт следует применять при проектировании, расчете, возведении, реконструкции, изготовлении и эксплуатации строительных объектов, а также при разработке нормативных документов и стандартов.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 Общие термины

2.1.1 агрессивная среда: Среда эксплуатации объекта, вызывающая уменьшение сечений и деградацию свойств материалов во времени.

2.1.2 деградация свойств материалов во времени: Постепенное понижение уровня эксплуатационных характеристик материалов, процесс их изменения в сторону ухудшения относительно проектных значений.

2.1.3 долговечность: Способность строительного объекта сохранять прочностные, физические и другие свойства, устанавливаемые при проектировании и обеспечивающие его нормальную эксплуатацию в течение расчетного срока службы.

2.1.4 здание: Результат строительной деятельности, предназначенный для проживания и (или) деятельности людей, размещения производства, хранения продукции или содержания животных.

Примечание - Здание является частным случаем строительного сооружения.

2.1.5 надежность строительного объекта: Способность строительного объекта выполнять требуемые функции в течение расчетного срока эксплуатации.

2.1.6 нормативный документ: Документ, доступный широкому кругу потребителей и устанавливающий правила, общие принципы и характеристики, касающиеся определенных видов деятельности в области строительства и их результатов.

2.1.7 нормальная эксплуатация: Эксплуатация строительного объекта в соответствии с условиями, предусмотренными в строительных нормах или задании на проектирование, включая соответствующее техническое обслуживание, капитальный ремонт и реконструкцию.

2.1.8 основание: Часть массива грунта, взаимодействующая с конструкцией сооружения, воспринимающая воздействия, передаваемые через фундамент и подземные части сооружения и передающие на сооружение техногенные и природные воздействия от внешних источников.

2.1.9 отказ: Состояние строительного объекта, при котором не выполняются одно или несколько условий предельных состояний.

2.1.10 помещение: Пространство внутри здания, имеющее определенное функциональное назначение и ограниченное строительными конструкциями.

2.1.11 расчетный срок службы: Установленный в строительных нормах или в задании на проектирование период использования строительного объекта по назначению до капитального ремонта и (или) реконструкции с предусмотренным техническим обслуживанием. Расчетный срок службы отсчитывается от начала эксплуатации объекта или возобновления его эксплуатации после капитального ремонта или реконструкции.

2.1.12 срок службы: Продолжительность нормальной эксплуатации строительного объекта с предусмотренным техническим обслуживанием и ремонтными работами (включая капитальный ремонт) до состояния, при котором его дальнейшая эксплуатация недопустима или нецелесообразна.

2.1.13 строительная конструкция: Часть сооружения, выполняющая определенные функции несущих или ограждающих конструкций или являющаяся декоративным элементом.

2.1.14 строительное изделие: Изделие, предназначенное для применения в качестве элемента строительных конструкций сооружений.

2.1.15 строительное сооружение: Результат строительной деятельности, предназначенный для осуществления определенных потребительских функций.

Примечание - В тексте стандарта вместо термина строительное сооружение используется термин сооружение, который может относиться к зданиям, мостам, резервуарам или любым другим результатам строительной деятельности.

2.1.16 строительный материал: Материал, предназначенный для изготовления строительных объектов.

2.1.17 строительный объект: Строительное сооружение, здание, помещение, строительная конструкция, строительное изделие или основание.

2.1.18 техническое обслуживание и текущий ремонт: Комплекс мероприятий, осуществляемых в период расчетного срока службы строительного объекта, обеспечивающих его нормальную эксплуатацию.

2.1.19 эксплуатация несущих конструкций объекта: Комплекс мероприятий по поддержанию необходимой степени надежности конструкций в течение расчетного срока службы объекта в соответствии с требованиями нормативных и проектных документов.

2.1.20 технический мониторинг: Систематическое наблюдение за состоянием конструкций в целях контроля их качества, оценки соответствия проектным решениям и нормативным требованиям, прогноза фактической несущей способности и прогнозирования на этой основе остаточного ресурса сооружения.

2.2 Термины расчетных положений

2.2.1 воздействия: Изменение температуры, влияние на строительный объект окружающей среды, действие ветра, осадка оснований, смещение опор, деградация свойств материалов во времени и другие эффекты, вызывающие изменение напряженно-деформированного состояния строительных конструкций.

Примечание - При проведении расчетов воздействия допускается задавать как эквивалентные нагрузки.

2.2.2 конструктивная система: Совокупность взаимосвязанных строительных конструкций и основания.

2.2.3 нагрузки: Внешние механические силы (вес конструкций, оборудования, людей, снегоотложения и др.), действующие на строительные объекты.

2.2.4 несущая способность: Максимальный эффект воздействия, реализуемый в строительном объекте без превышения предельных состояний.

2.2.5 нормативные характеристики физических свойств материалов: Значения физико-механических характеристик материалов, устанавливаемые в нормативных документах или технических условиях и контролируемые при их изготовлении, при строительстве и эксплуатации строительного объекта.

2.2.6 обеспеченность: Вероятность благоприятной реализации значения переменной случайной величины. Например, для нагрузок "обеспеченность" - вероятность непревышения заданного значения; для характеристик материалов "обеспеченность" - вероятность значений, меньших или равных заданным.

2.2.7 переменные параметры: Используемые при расчете строительных объектов физические величины (воздействия, характеристики материалов и грунтов), значения которых изменяются в течение расчетного срока эксплуатации или имеют случайную природу.

2.2.8 предельное состояние строительного объекта: Состояние строительного объекта, при превышении характерных параметров которого эксплуатация строительного объекта недопустима, затруднена или нецелесообразна.

2.2.9 прогрессирующее (лавинообразное) обрушение: Последовательное (цепное) разрушение несущих строительных конструкций, приводящее к обрушению всего сооружения или его частей вследствие начального локального повреждения.

2.2.10 расчетная схема (модель): Модель конструктивной системы, используемая при проведении расчетов.

2.2.11 расчетные критерии предельных состояний: Соотношения, определяющие условия реализации предельных состояний.

2.2.12 расчетные ситуации: Учитываемый при расчете сооружений комплекс наиболее неблагоприятных условий, которые могут возникнуть при его возведении и эксплуатации.

2.2.13 коэффициенты надежности: Коэффициенты, учитывающие возможные неблагоприятные отклонения значений нагрузок, характеристик материалов и расчетной схемы строительного объекта от реальных условий его эксплуатации, а также уровень ответственности строительных объектов. Вводится 4 типа коэффициентов надежности: коэффициенты надежности по нагрузке , коэффициенты надежности по материалу , коэффициенты условий работы , коэффициенты надежности по ответственности сооружений .

2.2.14 результат (эффект) воздействия: Реакция (внутренние усилия, напряжения, перемещения, деформации) строительных конструкций на внешние воздействия.

3 Общие требования

3.1 Для каждого сооружения необходимо установить его класс (КС-1, КС-2 или КС-3) в зависимости от его назначения, а также социальных, экологических и экономических последствий их повреждений и разрушений.

3.2 Класс сооружений устанавливается в задании на проектирование генпроектировщиком по согласованию с заказчиком в соответствии с классификацией, по приложению А.

3.3 Основным условием надежности строительных объектов являются выполнения требований (критериев) для всех учитываемых предельных состояний при действии наиболее неблагоприятных сочетаний расчетных нагрузок в течение расчетного срока службы.

3.4 Надежность строительных конструкций и оснований следует обеспечивать на стадии разработки общей концепции сооружения, при его проектировании, изготовлении его конструктивных элементов, строительстве и эксплуатации.

3.5 При особых воздействиях надежность строительных конструкций дополнительно следует обеспечивать за счет проведения одного или нескольких специальных мероприятий, включающих в себя:

- выбор материалов и конструктивных решений, которые при аварийном выходе из строя или локальном повреждении отдельных несущих элементов конструкций не приводят к прогрессирующему обрушению сооружения;

- предотвращение или снижение возможности реализации подобных воздействий на несущие конструкции;

- использование комплекса специальных организационных мероприятий, обеспечивающих ограничение и контроль доступа посторонних лиц к основным несущим конструкциям сооружения.

3.6 Принятые проектные и конструктивные решения должны быть обоснованы результатами расчета по предельным состояниям сооружений в целом, их конструктивных элементов и соединений, а также, при необходимости, данными экспериментальных исследований, в результате которых устанавливают основные параметры строительных объектов, их несущую способность и воспринимаемые ими воздействия.

В условиях ускорения научно-технического прогресса происходит интенсивное совершенствование различных технологических процессов. Это влечет за собой замену устаревшего оборудования на новое, высокопроизводительное, работающее на более высоких скоростях, что может привести к повышению нагрузок, передаваемых на строительные конструкции. Создание гибких производств связано с изменением архитектурно-планировочных решений для эксплуатируемых зданий и сооружений.

Вложенные файлы: 1 файл

Надёжность и долговечность зданий и сооружений.doc

ВОЛЖСКИЙ ИНСТИТУТ СТРОИТЕЛЬСТВА И ТЕХНОЛОГИИ

Волгоградского Государственного Архитектурно — Строительного Университета

Выполнил: ст. гр. ПГС-2-09

Принял: Добринский Л.К.

г. Волжский 2012

Определение параметров надежности строительных конструкций

В условиях ускорения научно-технического прогресса происходит интенсивное совершенствование различных технологических процессов. Это влечет за собой замену устаревшего оборудования на новое, высокопроизводительное, работающее на более высоких скоростях, что может привести к повышению нагрузок, передаваемых на строительные конструкции. Создание гибких производств связано с изменением архитектурно-планировочных решений для эксплуатируемых зданий и сооружений. Реконструкция старого жилищного фонда и повышение его комфортности до современного уровня обусловливают необходимость оценки действительного состояния жилых зданий. Поэтому вопрос об их возможной дальнейшей эксплуатации, реконструкции или усилении конструкций является определяющим и связан с обследованием и подготовкой соответствующих рекомендаций.

Обследование строительных конструкций состоит из трех основных этапов:

— первоначальное ознакомление с проектной документацией, рабочими и исполнительными чертежами, актами на скрытые работы;

— визуальный осмотр объекта, установление его соответствия проекту, выявление видимых дефектов (наличие трещин, протечек, коррозии металла, дефектов стыковых сварных и болтовых соединений и т.д.), составление плана обследования здания или сооружения, проведение комплекса исследований неразрушающими методами;

— анализ состояния здания или сооружения и разработка рекомендаций по устранению выявленных дефектов.

Ознакомление с проектной и исполнительной документацией позволяет дать оценку принятым конструктивным решениям, выявить элементы здания или сооружения, работающие в наиболее тяжелых условиях, установить значения действующих нагрузок.

Визуальная оценка здания или сооружения дает первую исходную информацию о состоянии обследуемой конструкции, позволяет судить о степени износа элементов конструкции и решить вопрос о проведении статических или динамических испытаний. В первую очередь это связано с применением неразрушающих методов испытаний, т.е. методов, которые не приводят к разрушению отдельных элементов и конструкции в целом.

При обследовании широко применяются методы инженерной геодезии, с помощью которых измеряются осадки зданий и сооружений, сдвиговые деформации грунта, параметры трещин и деформационных швов, прогибы и др. В последнее время эффективно развиваются методы лазерной интерференции.

Аналогичные методы используются при контроле качества изготовления элементов строительных конструкций и их монтажа на строительных площадках.

Обследование строительных конструкций, зданий и сооружений содержит в себе методы контроля качества изготовления и монтажа элементов строительн ых конструкций, обеспечивающие соответствие объекта проектным значениям и отображение действительной работы систем.

Материалы, применяемые для приготовления бетонов, должны удовлетворять требованиям ГОСТов на эти материалы и обеспечивать получение бетонов требуемых классов по прочности и марок по морозостойкости и водопроницаемости.

Изучение состояния монтируемой или эксплуатируемой конструкции при работе в реальных условиях обеспечивается теми же методами, что и при контроле качества их изготовления. Однако зачастую возникает ситуация, когда для эксплуатируемого объекта отсутствует проектная и рабочая документация, тогда ее восстановление связано с изучением реальных условий работы системы. К подобной ситуации отнесится и тот случай, когда необходимо определить работоспособность системы с учетом отклонения ее параметров от проектных.

Повышенные требования предъявляются к методам обследования при анализе причин аварий в результате повреждений конструкций в процессе монтажа и эксплуатации, а также катастроф — аварий, повлекших за собой человеческие жертвы. Проводимые обследования позволяют выявить наиболее характерные дефекты и разработать рекомендации по уточнению методов расчета тех или иных конструкций, совершенствованию конструктивных схем, технологии изготовления и монтажа строительных конструкций.

В современном строительстве широко применяются железобетонные, металлические и деревянные конструкции. С каждым годом разрабатываются и осваиваются все более совершенные, в том числе предварительно напряженные железобетонные и металлические конструкции, большеразмерные железобетонные конструкции (фермы пролетом до 50 м, колонны высотой до 25 м, балки покрытий пролетом до 24 м, подкрановые балки пролетом 12 м и др.).
Распространение таких конструкций стало возможным и экономически целесообразным главным образом в связи с повышением прочностных характеристик бетонов и сталей, а также благодаря появлению новых конструктивных решений.

Лабораторные испытания и практика применения таких конструкций показали их надежность и простоту изготовления. Однако несущую способность крупноразмерных конструкций необходимо тщательно проверять, так как в производственных условиях не исключена возможность отдельных нарушений технических условий и проектных указаний. Поэтому наряду с испытанием большинства внедряемых крупноразмерных конструкций в лабораторных условиях, на макетах или полигонах почти во всех случаях один или несколько образцов таких конструкций должны быть испытаны в тех условиях, в которых намечено их массовое изготовление. Только после испытания конструкции статической нагрузкой можно судить о ее фактической прочности, деформа-тивности, трещиностойкости. Надежность анкерных устройств в предварительно напряженных конструкциях, прочность сжатых и растянутых стыков при блочной сборке конструкций, прочность узлов при концентрации в них местных напряжений могут быть установлены только при испытаниях натурных фрагментов.

Общая проверка качества работ (например, правильность и точность сборки арматуры, плотность укладки бетона в конструкцию, прочность материалов, входящих в элемент здания) может быть выполнена также лишь на основе испытаний.

Необходимо отметить, что при испытании конструкций, зданий и сооружений не подменяют другие способы контроля качества работ, например испытания контрольных кубов, призм, образцов арматуры, составление актов на скрытые работы.

Все эти способы контроля сохраняют свое самостоятельное значение и должны выполняться со всей тщательностью, несмотря на последующее испытание конструкции в целом.

Можно сформулировать три основные задачи, которые решаются с помощью методов и средств испытания строительных конструкций зданий или сооружений:

первая — определение теплофизических, структурных, прочностных и деформативных свойств конструкционных материалов и выявление характера внешних воздействий, передаваемых на конструкции;

вторая — сопоставление расчетных схем строительных конструкций, действующих усилий и перемещений с аналогичными параметрами, возникающими в реальной конструкции;

третья — идентификация расчетных моделей, которая получила развитие в последние годы. Эта задача связана с синтезом расчетных схем, который следует из анализа результатов проведенных исследований. Теоретически решение этой задачи невозможно без применения кибернетики.

Надежность статически неопределимых конструкций

Понятие надежности и случайный характер поведения конструкции и нагрузки. Долгое время в практике проектирования понятия надежность и экономичность рассматривались как взаимно противоречащие. Считалось, что обеспечение надежности конструкции непременно ухудшает ее экономические показатели. И наоборот, любое снижение расхода материала уменьшает размеры конструкции, а следовательно, и снижает ее надежность. Вследствие этого конструкция рассматривалась как пассивный экономический фактор. В действительности она представляет собой часть определенного объекта или системы и активно влияет на их экономичность. Это свойство конструкции проявится, если включить в расчет экономической оценки определенную вероятность возможного ущерба. Если увеличивать надежность конструкции, то вероятность возникновения такого ущерба будет уменьшаться. Последнее обстоятельство зачастую многократно компенсирует повышенные расходы (увеличение геометрических размеров сечений, расхода стали), необходимые для обеспечения надежности конструкции.

Само понятие надежности имеет существенный недостаток, состоящий в том, что оно преимущественно субъективно. И, напротив, экономичность, или, точнее говоря, экономическая эффективность конструкции, — понятие объективное, так как его можно удовлетворительно выразить в финансовом масштабе. Необходимо лишь обратить внимание на некоторые свойства конструкции и нагрузки, которые оказываются решающими при оценке ее надежности или экономической эффективности. Ниже рассмотрим надежность конструкции в соответствии с используемым в настоящее время подходом к проектированию.

Если изучать на большой серии образцов некоторые из сопротивлений конструкции, скажем, несущую способность, то выяснится, что ее величина будет колебаться около определенного среднего значения. Такие изменения обычно очень хорошо описываются статистическими закономерностями. Причиной этою является случайный характер изменчивости механических свойств материала, размеров сечений, значения усилия предварительного напряжения и т. д. Аналогичная картина изменчивости наблюдается и у нагрузок, которая по форме часто весьма отличается от характера изменчивости сопротивления конструкции. Нельзя забывать и о статическом расчете, который сам по себе может служить источником случайных отклонений в действительном поведении конструкции от предполагаемого. Все три упомянутых фактора имеют место и при оценке надежности статически неопределимых конструкций.

Надежность конструкции контролируется с помощью так называемых условий надежности, которые представляют отношение между действующей нагрузкой или другими воздействиями S, с одной стороны, и некоторым из сопротивлений конструкции— с другой. В главе 3, п. 3 будут рассмотрены условия надежности при различных методах проектирования и их связь с перераспределением усилий. При этом важно уяснить, какие методы проектирования позволяют непосредственно использовать выгоды от перераспределения усилий или же каким образом перераспределение усилий может влиять на надежность конструкции. Необходимо заранее обратить внимание на некоторые моменты, важные с точки зрения надежности статически неопределимых конструкций, и при выполнении самого расчета.

Одновременное воздействие неблагоприятных факторов.

Многозначность определения понятия несущей способности v статически неопределимых конструкций объясняется случайным характером их работы и действующей нагрузки. Кроме того, статически неопределимые конструкции имеют и другие специфические свойства, которые отличают ее от статически определимых систем.

В главе 2 было доказано, что несущая способность статически неопределимых конструкций, а также мера перераспределения усилий в них, независимо от того, каким способом их подсчитали, определяются свойствами большого количества критических сечений и прилегающих к ним участков. Число таких критических сечений nкр различно и зависит от конструктивной схемы и характера загружения. По меньшей мере, пкр равно степени статической неопределенности конструкции п.

Свойства критических сечений не одинаковы. При перераспределении усилий и при достижении несущей способности конструкции далеко не все из них используются в одинаковой мере. В то время как предел трещинообразования наступает во всех критических сечениях, разрушающий момент может быть достигнут максимум в п+1 сечениях. Аналогично обстоит дело и с кривизнами при разрушении. Свойства сечений в некоторых критических зонах можно считать случайно переменными, что обусловливает случайный характер перераспределения усилий, и несущая способность конструкции будет также случайной величиной. Сам процесс перераспределения усилий не оказывает большого влияния на надежность конструкции. С несущей способностью дело обстоит несколько иначе. Рассмотрим поэтому последствия случайного характера изменчивости разрушающего момента (роль кривизны при разрушении не менее важна, однако выводы для нее будут те же самые).

Так как отдельные критические сечения взаимоотстоят относительно далеко и характер изменчивости свойств материала случаен, то можно предположить, что свойства сечения, а значит, и разрушающие моменты взаимонезависимы. (Более подробно эта тема изложена в работе М. Тихого и М. Ворличека. Это значит, что, к примеру, в одном сечении отклонение действительного значения разрушающего момента от среднего будет положительным, в другом оно вообще не будет отличаться от среднего значения и т. д.

Наименее благоприятным с точки зрения надежности конструкции представляется такой случай, когда во всех критических сечениях разрушающие моменты относительно небольшие и их отклонение от предполагаемого среднего значения отрицательно. Если принять предположение о том, что моменты Мр взаимонезависимы, то вероятность одновременного возникновения неблагоприятных разрушающих моментов во всех сечениях очень мала. Обозначим вероятность получения неблагоприятного значения Мр.мин через рмр. Для упрощения предположим, что эта вероятность в каждом критическом сечении одинакова. Далее из общего числа вероятностей вытекает вероятность того, что для всех пкр сечений будут справедливы выражения

В действительности же вероятность во всех сечениях неодинакова, однако в наших рассуждениях это ничего не меняет.

Из выражения (25) следует, что с ростом числа критических сечений значение р*мр уменьшается. Это очень выгодно с точки зрения надежности.

Другим важным свойством статически неопределимой конструкции, связанным со случайным характером ее работы, является возможность ее разрушения различными способами при данном загружении. Поясним оказанное на примере простой конструкции, изображенной на рис. 5. Из главы 1, п. 2 следует, что при заданном загружении Р1, Р2 расположение пластических зон, а следовательно, и схема разрушения зависят от свойств критических сечений. Так как эти свойства имеют случайный характер изменчивости, то и образование определенной схемы разрушения будет явлением случайным. Поэтому при заданном загружении разрушение может произойти по какой- либо одной из схем а, б или в рис. 5. Каждой из них соответствует определенная вероятность; отдельные вероятности взаиморазличаются. При большом числе возможных схем разрушения некоторые из вероятностей могут оказаться пренебрежительно малыми. При статическом решении необходимо принимать в расчет несколько схем. При точном решении следует учитывать то, что некоторые схемы разрушения зависят одни от других, так как некоторые критические сечения могут реализоваться в различных схемах.

В настоящее время при проектировании статически неопределимых конструкций по общепринятым методам изложенные выше свойства таких конструкций еще не используются. Только после внедрения в практику проектирования более точных статистических методов (см. ниже) появится возможность их применения.

Каменные конструкции – древнейший вид сооружений. Тысячелетиями создавался опыт строительства из камня. До настоящего времени существуют сооружения, построенные в Средневековье, древнем Риме и Египте. В те далекие времена технология строительства базировалась на предыдущем опыте, не было научно обоснованных расчетов.
Отсутствие до XX века мощного прессового оборудования, необходимого для экспериментов, тормозило создание научно обоснованных методов расчета.

Содержание работы

1. Введение…………………………………………………………………………………………………………………………….1
2. Кладочные растворы……………………………………………………………………………………………………..2
3. Материалы для каменной кладки и их свойства………..…………………………..…………….6
4.Экспертиза каменных конструкций
4.1. Долговечность и энергоэффективность наружных стен………………………….8
4.2. Причины образования трещин…………………………………………..………………………………14
4.3. Осадка зданий……………………………………………………………………………………………………….21
4.4. Температурные деформации влажной кирпичной кладки………………………….28
4.5. Прочность кладки зависит от расчета………………………………………………………..34
4.6. Каменная кладка с позиции Европейской строительной науки – - Еврокад 6…………………………………………………………………………………………………………………………….36
4.7. Методика оценки качества возведения кирпичных зданий……………………….39
4.8. Использование ЭВМ в проектировании армокаменных конструкций …….45
5.Методы мониторинга каменных зданий…………………………………………………………………..52
6.Инновационные методы ремонта и усиления каменных конструкций………….…57
6.1. Инъецирование как метод усиления каменных конструкций…………………..58
6.2. Спиралевидные жесткие связи…………………………………………………………………………64
6.3. Морозостойкие кладочные растворы пониженной плотности с добавками микрокремнезема и омыленного таллового пека…………………………………..67
7. Результаты и их обсуждения…………………………………………………….……………………………73
8. Список литературы……………………………………………………………………………………………………..76

Содержимое работы - 1 файл

Моя.docx

Национальный исследовательский Мордовский Государственный Университет им. Н.П. Огарева

Кафедра строительных конструкций

«Долговечность строительных конструкций

Автор проекта ст. гр. 403 д/о Шабаев И. Н.

Номер зачетной книжки 081062

Обозначение курсовой работы КР-02069964-СК-2011

Руководитель проекта И.П. Терешкин

Национальный исследовательский Мордовский Государственный Университет им. Н.П. Огарева

Кафедра строительных конструкций

Задание на курсовую работу

Автор проекта ст. гр. 403 д/о И. Н. Шабаев

Номер зачетной книжки 081062

Обозначение курсовой работы КР-02069964-СК-2011

Руководитель проекта И.П. Терешкин

Срок представления проекта к защите _______________

3. Материалы для каменной кладки и их свойства………..…………………………..…………… .6

4.Экспертиза каменных конструкций

4.1. Долговечность и энергоэффективность наружных стен………………………….8

4.4. Температурные деформации влажной кирпичной кладки………………………….28

4.5. Прочность кладки зависит от расчета……………………………… ………………………..34

4.6. Каменная кладка с позиции Европейской строительной науки – - Еврокад 6…………………………………………………………………………… ……………………………………………….36

4.7. Методика оценки качества возведения кирпичных зданий……………………….39

4.8. Использование ЭВМ в проектировании армокаменных конструкций …….45

5.Методы мониторинга каменных зданий……………………………………………………………… …..52

6.Инновационные методы ремонта и усиления каменных конструкций………….…57

6.1. Инъецирование как метод усиления каменных конструкций…………………..58

6.2. Спиралевидные жесткие связи…………………………………………… ……………………………64

6.3. Морозостойкие кладочные растворы пониженной плотности с добавками микрокремнезема и омыленного таллового пека……… …………………………..67

Каменные конструкции – древнейший вид сооружений. Тысячелетиями создавался опыт строительства из камня. До настоящего времени существуют сооружения, построенные в Средневековье, древнем Риме и Египте. В те далекие времена технология строительства базировалась на предыдущем опыте, не было научно обоснованных расчетов.

Отсутствие до XX века мощного прессового оборудования, необходимого для экспериментов, тормозило создание научно обоснованных методов расчета.

Наука о проектировании каменных конструкций создавалась в 20–30-е гг. ХХ столетия. Ученые России в результате изучения прочностных и деформационных свойств кладок разработали теорию расчета каменных конструкций. Большой вклад внесли Л.И. Онищик, В.А. Камейко, С.В. Поляков, С.А. Семенцов. Разработанные научно обоснованные методы расчета позволили уверенно строить каменные дома высотой 15–18 этажей и другие гражданские и промышленные сооружения.

До проведения исследовательских работ толщину стен в верхних двух этажах назначали не менее 2.5 кирпичей (для климата Москвы), а в нижерасположенных этажах толщину стен увеличивали на 0.5 кирпича для каждых двух этажей. Это приводило к излишним расходам материала и затратам труда. Средняя толщина и вес стен восьмиэтажного дома в настоящее время на 60 % меньше, чем в зданиях первой четверти прошлого века.

В настоящее время, когда проводится государственная политика энергосбережения с повышением требований к теплозащитным качествам стеновых ограждающих конструкций, актуальным становится применение многослойных стен. Если до недавнего времени термическое сопротивление ограждающих конструкций устанавливалось не менее требуемого значения из условия гигиены, то в настоящее время определяющим является требование по энергосбережению. Например, для г. Хабаровска требуемое термическое сопротивление из условия гигиены составляет R0 тр = 1.55, а по условию энергосбережения R0 тр э = 3.84 м 2 * С/Вт, т.е. в 2.5 раза больше. Поэтому традиционная для Хабаровска толщина кирпичных стен в 64 см (2.5 кирпича) перестала удовлетворять требованиям теплозащиты.

При этом возможен переход на кладку из пустотелого кирпича, многослойную облегченную кладку с эффективными плитными утеплителями или минеральными засыпками.

В 1932 году были сделаны первые попытки возведения стен в зимних условиях – методом замораживания кирпичной кладки. Раньше уже при температуре минус 2. 3 С прекращали кладку стен. Наступал перерыв в работе на 5–6 месяцев, а в условиях Дальнего Востока – и на больший срок.

Исследования свойств кладки, возведенной методом замораживания, позволили сделать его основным методом кладки в зимних условиях. Внедрение этого метода работ является большим достижением нашей отечественной науки.

В настоящее время каменные конструкции, обладающие высокой огнестойкостью и долговечностью, широко применяются при возведении фундаментов и стен зданий, подпорных стен, дымовых труб, водонапорных башен, плотин, канализационных коллекторов, резервуаров и других сооружений.

К недостаткам каменных конструкций следует отнести трудности механизации работ при мелких штучных камнях, недостаточную прочность кирпича, что приводит к большому расходу материалов, рабочей силы и ограничивает этажность зданий. Поэтому уже в середине прошлого века стали применять блоки из бетона и кирпича и стеновые панели.

В последние годы заметно ухудшилось качество выпускаемого кирпича, что связано в основном с изношенностью основных фондов заводов. Это заметно отразилось на качестве кирпичной кладки (чрезмерная толщина швов раствора, неровности рядов кладки). Специалисты-строители должны знать, что утолщение швов раствора в кладке приводит к понижению ее прочности на 30 и более процентов. Поэтому следует обращать большое внимание на качество выполнения кладки.

Основными задачами в области совершенствования каменных конструкций следует считать повышение их качественного выполнения, максимальное облегчение веса за счет применения легких материалов (ячеистые бетоны, бетоны на легких заполнителях), пустотелых и пористых, экономное расходование вяжущих материалов и металлов, применение материалов, стойких к атмосферным воздействиям и агрессивной среде.

Для кладки каменных штучных материалов и для отделочных (штукатурных) работ применяют растворы различных составов и предназначений. По количеству компонентов в составе растворы подразделяются на простые – с одним вяжущим веществом и сложные – с комбинацией вяжущих. В зависимости от вида конструкции и условий дальнейшей эксплуатации подбирают и состав растворов: цементный, цементно-глиняный, цементно-известковый.

Основной характеристикой раствора является его прочность, т.е. сопротивление нагрузкам сжатия. Марка раствора определяется пределом прочности на сжатие по прошествии 28 суток при температуре от +5 до +25. Необходимую марку раствора получают при соблюдении свойств и соотношения компонентов в строгом соответствии к расчетным показателям, при этом особо обращают внимание на активность вяжущего вещества, период твердения и набора прочности и водоцементное соотношение.

При изменении количества содержания вяжущего вещества, растворы могут быть тощими, нормальными и жирными. Тощий раствор (избыток заполнителя) – рассыпается, затрудняет производство работ и, что важно, не отвечает требованиям прочности. Жирный раствор (избыток вяжущего) – при высыхании растрескивается, выкрашивается. Определить жирность раствора можно еще в момент приготовления и внесением соответствующих компонентов довести его до нормальной консистенции.

Количество и свойства вяжущего вещества, а так же введение в раствор высокодисперсных добавок оказывает влияние на способность раствора удерживать влагу в процессе твердения (особенно на пористых основаниях).

Преждевременная потеря влаги ведет к растрескиванию швов кладки (или штукатурного слоя), несоответствию раствора проектной прочности и угрозе разрушения конструкции.

При ведении каменной кладки немаловажным свойством раствора является его подвижность, влияющая на удобство его использования в производстве кладочных работ. Удобоукладываемость раствора оказывает влияние на сроки производства работ и, как следствие, на общую экономическую эффективность. Для пустотелого (эффективного) кирпича выбирают растворы с низким показателем подвижности (чуть выше чем для штукатурных работ), для полнотелого – средним, для забутовки – высоким.

Растворы, изготовленные в заводских условиях, должны соответствовать проектной марке и завозиться на место использования в строгом соответствии с графиком производства работ и в необходимом количестве. При приготовлении раствора непосредственно на стройплощадке необходимо уделять особое внимание соблюдению пропорций состава смеси и качеству применяемых материалов. Приготовление растворов может осуществляться только под контролем технолога или опытных, обладающих необходимыми знаниями бригадиров и прорабов. Компоненты раствора просеивают через металлическую сетку с ячейками 5*5 мм (для штукатурного раствора 2,5*2,5 мм), отделяя крупные частицы и посторонние включения. Для кирпичной лицевой кладки используют карьерный (желательно намывной) песок с модулем крупности от 1 мм до 2,5 мм, для бутовой кладки размер зерен допускается до 5 мм, а в штукатурном растворе - до 1 мм. Характеристики вяжущего вещества должны подбираться в строгом соответствии с маркой, условиями эксплуатации и сложностью раствора (табл. 1).


В статье автор раскрывает суть применения системы коэффициентов запаса в расчетах при проектировании для обеспечения надежности строительных конструкций.

Ключевые слова: надежность, коэффициент надежности, конструкция, нормальная эксплуатация, расчет конструкций, метод предельных состояний.

В настоящее время уделяется большое внимание рассмотрению вопроса о мероприятиях по компенсированию несоответствий расчетной схемы строительных конструкций с реальной моделью и ее фактическими нагрузками.

Данная тема является актуальной, потому что расчетные модели конструкций зданий и сооружений должны отражать действительные условия работы. Ведь даже однотипные несущие конструкции и нагрузки, которые на них действуют, неоднозначны, что отражается в случайном характере поведения конструкций при эксплуатации. Это происходит за счет того, что на этапе проектирования создается упрощенная расчетная модель строительных конструкций, не учитывающая все факторы, которые в последующем будут оказывать воздействие на конструкцию, так как выполнить расчет реальных строительных конструкций, учитывающий все конструктивные особенности достаточно сложно, а порой и невозможно. И тем не менее строительные конструкции обязаны быть запроектированы так, чтобы они обладали достаточной надежностью при возведении и эксплуатации.

Рассмотрим понятие надежности, методику расчета строительных конструкций и принятые меры в расчетах для компенсации отличий расчетной модели от действительной.

Согласно ГОСТ 27751–2014 надежность имеет следующее определение:

Надежность строительного объекта — способность строительного объекта выполнять требуемые функции в течение расчетного срока эксплуатации [1].

Разберем методику расчета строительных конструкций в нашей стране. В основу нормативно-технической документации проектирования положен метод расчета строительных конструкций по предельным состояниям.

Предельные состояния — состояния, при которых конструкция, основание (здание или сооружение в целом) перестают удовлетворять заданным эксплуатационным требованиям или требованиям при производстве работ (возведении) [1].

Метод предельных состояний был разработан профессором Стрелецким Н. С. в 1950-е годы. Цель метода — с заданной обеспеченностью избежать наступления предельных состояний при производстве работ и при эксплуатации в течение срока службы здания или сооружения.

– Первая группа предельных состояний — предельные состояния, наступление которых ведет к полной непригодности эксплуатации конструкций зданий и сооружений (разрушение любого характера, потеря устойчивости формы/положения, переход в изменяемую систему и др.).

– Вторая группа предельных состояний — предельные состояния, наступление которых затрудняет нормальную эксплуатацию конструкций зданий и сооружений (достижение предельных деформаций конструкций, образование трещин, достижение предельных раскрытий и длина трещин, потеря устойчивости формы, вызывающая затруднение нормальной эксплуатации и др.).

Стандартами на проектирование определяются предельные состояния, по которым следует выполнять расчеты.

Условия обеспечения надежности заключаются в том, чтобы расчетные значения нагрузок или ими вызванных усилий, напряжений, деформаций, перемещений, раскрытий трещин не превышали соответствующих им предельных значений, устанавливаемых нормами проектирования конструкций.

При этом в расчет строительных конструкций вводят систему коэффициентов надежности и коэффициентов условий работы, учитывающая изменчивость нагрузок, свойств материалов и условий работы конструкции [3]:

– для КС-3 (повышенный уровень ответственности) — 1,1;

– для КС-2 (нормальный уровень ответственности) — 1,0;

– для КС-1 (пониженный уровень ответственности) — 0,8 [1].

Для разных конструктивных элементов зданий и сооружение разрешено принимать разные уровни ответственности, а значит и численные значения коэффициента надежности по ответственности.

Таким образом, введение вышеперечисленных коэффициентов позволяет выполнить расчет конструкций, зданий и сооружений, прибегая к некоторым упрощениям в расчетной схеме, а также учесть возможные неблагоприятные факторы, оказывающие воздействие на реальные строительные конструкции.

Основные термины (генерируются автоматически): конструкция, коэффициент надежности, сооружение, коэффициент условий работы, методика расчета, нормальная эксплуатация, потеря устойчивости формы, производство работ, расчет конструкций, расчетная схема.

Ключевые слова

конструкция, надежность, коэффициент надежности, нормальная эксплуатация, расчет конструкций, метод предельных состояний

надежность, коэффициент надежности, конструкция, нормальная эксплуатация, расчет конструкций, метод предельных состояний

Похожие статьи

Расчет надежности железобетонных элементов конструкций

Расчет надежности элемента конструкции. Надежность строительного объекта — это

Расчет вероятности отказа ибезотказной работы элемента по прочности бетона на сжатие.

По условию поставленной задачи необходимо, чтобы расчетные сжимающие напряжения не.

Оценка надежности и долговечности металлоконструкций

- при работе конструкций в условиях низких температур; - в случае применения материалов, подверженных хрупкому разрушению, при этом аварии могут иметь место и при нормальных температурах; - при действии на конструкцию ударных и других видов динамических нагрузок

Обследование строительных конструкций зданий по хранению.

Расчет надежности элемента конструкции. Считается, что при нормальных условиях твердения бетон принимает проектную прочность

Рекомендации [1] устанавливали следующие коэффициенты условий работы, вводимые к расчетному сопротивлению арматуры: – при.

Надежность строительных конструкций и ее влияние на несущую.

Надежность конструкции при проектировании обеспечивают применением различных коэффициентов надежности — по нагрузке, по материалу, коэффициент условий работы, коэффициент надежности по назначению, которые не могут в полной мере отвечать за.

Расчет сечения сборно-монолитной конструкции в стадии.

В рамках настоящей работы выполнен расчет характерного сечения плиты перекрытия типового этажа. Рис. 2. Пространственная модель перекрытия.

Поскольку расчет по рабочей высоте сборного элемента показал, что прочность сборно-монолитной конструкции обеспечена, то.

К вопросу об исследовании долговечности железобетонных.

Из этого следует, что расчет железобетонных конструкций на совместное воздействие силовых факторов и агрессивной среды должен производиться. При этом предлагается (п. 2.13), условия работы учитываются с помощью коэффициентов условий работы γbi.

Оценка технического состояния здания | Статья в журнале.

Обобщенный коэффициент эксплуатационной пригодности здания определяется по формуле

Эксплуатация конструкций возможна при условии восстановительных работ.

10. Рекомендации по оценке надежности строительных конструкций по внешним признакам.

Особенности прогнозирования остаточного ресурса зданий.

Для выполнения расчёта остаточного ресурса (срока эксплуатации объекта до капитального ремонта) на основе экспертных оценок устанавливаются коэффициенты значимости для отдельных видов конструкций аi, определяются максимальные величины повреждений.

Живучесть строительных конструкций | Статья в журнале.

Цель данной работы — рассмотреть понятие живучести строительных конструкций, выявить основные положения теории и оценить способы повышения живучести в сооружениях. Живучестью называют свойство строительных конструкций зданий и сооружений продолжать.

При эксплуатации зданий и сооружений, а также при их обследовании широко применяются для оценки технического состояния конструкций визуальные обследования. В связи с этим возникает необходимость в установлении надежности обследуемых конструкций по внешним признакам повреждений.

Как показали наблюдения, в процессе эксплуатации конструкций происходит циклическое изменение их надежности, что связывается с изменчивостью величин нагрузок и изменением несущей способности вследствие различных повреждений.

При достижении конструкцией определенного уровня надежности в ней будут наблюдаться необратимые повреждения: трещины, потеря устойчивости сжатых элементов, пластические деформации, коррозионные повреждения и т.п. Повреждения критического характера в конструкциях могут привести к обрушению конструкции и аварии здания или сооружения.

Учет влияния повреждений на надежность конструкции зданий и сооружений обобщен в настоящих рекомендациях.

Для удобства оценки надежности составлены подробные таблицы для различных видов конструкций. Своевременная оценка технического состояния конструкций и сооружений позволит вовремя провести их ремонт и усиление и тем самым обеспечить их надежность при эксплуатации.

Не менее важным вопросом является экспертиза здания или сооружения на предрасположенность к аварии. Выявление таких объектов по предлагаемой в рекомендациях методике позволит эксперту или автору проекта критически подойти к оценке их надежности и принять в случае необходимости дополнительные мероприятия по контролю качества, что в итоге будет способствовать повышению надежности.

1.1 . Настоящие Рекомендации предназначены для приближенной оценки надежности эксплуатируемых отдельных строительных конструкций и надежности зданий и инженерных сооружений в целом. По результатам этих оценок устанавливается пригодность конструкций зданий и инженерных сооружений для эксплуатации, сроки ремонтов, а также необходимость применения более точных методов установления надежности конструкций.

1.2 . Оценка надежности строительных конструкций при эксплуатации производится на основе имеющихся в них повреждений, устанавливаемых на основе визуальных обследований.

1.3 . Оценка вероятностей аварий зданий и сооружений и их надежность осуществляется по методике экспертных оценок.

1.4 . Под надежностью строительных конструкций понимается сохранение во времени, установленного нормами их качества: необходимой несущей способности, долговечности, деформативности.

2.1 . Повреждения в конструкции разделяются в зависимости от причин их возникновения на две группы: от силовых воздействий и от воздействия внешней среды. Последняя группа повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность. Основные виды повреждений стальных, железобетонных, каменных и деревянных конструкций приведены на рис. 1 . 31 приложения 6.1 .

2.2 . В зависимости от имеющейся поврежденности и надежности, техническое состояние конструкций разделяется на 5 категорий: нормальное, удовлетворительное, не совсем удовлетворительное, неудовлетворительное, аварийное.

2.3 . Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) g 0 = g m · g c · g f · g n конструкций в процессе эксплуатации, где g m - коэффициент надежности по материалу, g с - коэффициент условий работы, g f - коэффициент надежности по нагрузке, g n - коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации у = g / g 0 и поврежденность конструкции e = 1 - у, где g - фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения у и e , а также приближенная стоимость С ремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в табл. 1 .

2.4 . Оценка технического состояния стальных, железобетонных каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 2 - 5 . При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

2.5 . Общая оценка поврежденности здания и сооружения производится по формуле

где e 1 , e 2 , . e i - максимальная величина повреждений отдельных видов конструкций, a 1 , a 2 , . a i - коэффициенты значимости отдельных видов конструкций.

При оценке величин повреждений учитывают их максимальную величину, так как авария здания или сооружения обычно происходит из-за наличия критического дефекта в отдельно взятой конструкции.

Коэффициенты значимости конструкций устанавливаются на основании экспертных оценок, учитывающих социально-экономические последствия разрушения отдельных видов конструкций, характера разрушения (разрушение с предварительным оповещением посредством развития пластических деформаций или мгновенное хрупкое разрушение). При отсутствии данных коэффициенты значимости a i принимаются: для плит и панелей перекрытия и покрытия a = 2, для балок a = 4, для ферм a = 7, для колонн a = 8, для несущих стен и фундаментов a = 3, для прочих строительных конструкций a = 2.

КАТЕГОРИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ

Описание технического состояния

Относительная надежность y = g / g 0

Читайте также: