Могут ли передаваться по наследству приобретенные признаки реферат

Обновлено: 05.07.2024

Ольга Орлова: Александр, вы рассказывали о том, что в последние годы знания о том, как предается наследственная информация у живых существ, эти знания ученых существенно расширились. Явилось ли расширение представлений о том, как передается наследственная информация, в данном случае ударом по эволюционным представлениям?

Александр Марков: Нет, конечно, ни в коем случае, это просто детальная модель того, что происходит в живой клетке, вот и все. То есть основа осталась, никто не опроверг транскрипцию, трансляцию и так далее.

Ольга Орлова: Давайте как раз поговорим о второй догме, которая связана непосредственно с первой. Мы уж говорили о том, что пока не удается передавать информацию от белков к РНК и, соответственно, приобретенные признаки поэтому никогда не наследуются, как утверждалось. Как возникла эта вторая догма?

Александр Марков: Это представление о ненаследовании приобретенных признаков, сразу скажу, в своей основе абсолютно правильное, сформировалось еще раньше, до расшифровки структуры ДНК, в основном благодаря работам Августа Вейсмана, который, в частности, отрубал крысам хвосты из поколения в поколение и убедился, что это не приводит к рождению бесхвостых крысят, крысята все равно рождаются с хвостами. Так же ряд других экспериментов в таком же духе проводился. И стало ясно, что действительно такого рода приобретенные признаки, как травмы или натренированные мышцы, они не передаются по наследству. Когда была сформулирована предыдущая догма молекулярной биологии об однонаправленной передаче наследственной информации, это представление о ненаследуемости приобретенных признаков укрепилось. Потому что подумали, что и на молекулярном механизме нет способа переносить информацию от строения организма в ДНК, не существует.

Ольга Орлова: То есть если у нас есть один индивид, живой организм, то мы не можем сделать так, чтобы все его признаки были зафиксированы в ДНК и дальше транслировались в следующее поколение.

Александр Марков: Признаки, приобретенные в течение жизни. Он передаст своим потомкам только те признаки, которые сам получил от своих родителей, плюс мутации, которые возникнут. Но потом оказалось, что все-таки есть кое-какие способы менять геном даже в половых клетках. Высшие организмы, такие как животные, например, они выработали ряд приспособлений, чтобы оградить свои половые клетки от каких бы то ни было несанкционированных изменений, чтобы туда не проникали вирусы, бактерии, зародышевая линия так называемая, те клетки, которые становятся потом половыми, чтобы туда ничего не проникло, никакой гадости генетической. Но эти барьеры иногда не срабатывают. Простейший пример – вирусная инфекция. Что будет, если мать заболеет какой-нибудь вирусной инфекцией? Вирусы встраиваются в бином, обычно они, к счастью, не проникают в яйцеклетки, но иногда все-таки проникают или зародыш может заразиться этим вирусом от матери на более поздней стадии, когда не яйцеклетка, уже зародыш маленький, и вирус проникнет в будущие половые клетки этого зародыша. Вирусная инфекция унаследует. Вот вам, пожалуйста, разве это не наследование приобретенного признака?

Ольга Орлова: Но ВИЧ-инфицированные дети так и появляются.

Александр Марков: Совершенно верно. Вирусная инфекция, встроенный в геном вирус – это признак приобретенный, и он может наследоваться. Один пример. Помимо вирусов существует еще другие способы горизонтального генетического обмена, то есть обмена генами между взрослыми организмами, это очень широко распространено у бактерий, у одноклеточных, у простейших так называемых одноклеточных, имеющих одно ядро, эукариотов, это встречается реже, но тоже встречается. И понятно, что у одноклеточных нет разделения на зародышевую линию и соматические клетки. У них единственная клетка, она же соматическая, она же и половая, поэтому все мутации или все вирусы, которые выстроятся в этот геном, все это передается потомству без всяких оговорок. То есть одноклеточные все приобретенные генетические изменения передают потомству. А у многоклеточных могут ли мутации, возникающие в клетках тела, передаться потомству, соматические мутации? У животных нет, а у растений - пожалуйста, потому что у них есть вегетативное размножение. Произошла мутация в какой-то части растений, возникает участок измененной ткани. Если вегетативное размножение, возьмем веточку от мутантной части растения, посадим, пожалуйста, соматическая мутация передалась потомству. Хорошие возможности для наследования приобретенных признаков дает обратная транскрипция, то есть переписывание информации с РНК на ДНК. Дело в том, что РНК после того, как она считывается с молекулы ДНК, она может подвергаться редактированию, различным модификациям. Много есть вариантов, как редактируется РНК, и некоторые элементы этого редактирования зависят от внешних условий. РНК редактируется в зависимости от условий по-разному. И если есть обратная транскрипция, то эти отредактированные молекулы РНК могут быть переписаны обратно в ДНК.

Ольга Орлова: И таким образом в следующем поколении, которое появляется, которое наследуется от следующего ДНК, они уже получают измененный геном от предыдущего РНК.

Александр Марков: Да, совершенно верно. Таким образом возникают ретро-гены, обратная транскрипция. Ретро-гены – это с нормального гена считалась ДНК, отредактирована была каким-то образом, а потом отредактированная версия была переписана в форму ДНК и вставлена в геном. Возникает новый ген. Скорее всего по функции будет как старый, но с какими-то вариациями. И таких генов на самом деле полно в нашем геноме, которые возникли таким путем. То есть это иногда происходит. Таким образом открывается некоторая возможность для наследования некоторых приобретенных признаков. Теперь приобретенные признаки никогда не наследуются. Есть еще такая вещь, как эпигенетическая наследственность, особенно развита у млекопитающих и цветковых растений. Это фактически разметка генома при помощи особых знаков пунктуации, можно сказать, в половых клетках гены проявляются таким образом, что они потом не работают или проявляют меньшую активность.

Ольга Орлова: Их маркируют, чтобы они не включились.

Александр Марков: Причем самки одни гены в своих яйцеклетках могут отключить, самцы в сперматозоидах другие гены могут исключать.

Ольга Орлова: В чем цель подобных исключений, почему так в организме устроено?

Александр Марков: Вот это явление связано с тем, что у млекопитающих большой родительский вклад в потомство. Самка вынашивает детеныша страшно долго, отдавая ему кучу энергии. И здесь возникает масса проблем в связи с этим. Самка заинтересована поменьше отдать своих соков детенышу, чтобы родить других, а самец заинтересован в обратном, чтобы самка отдала как можно больше соков этому зародышу, потому что этот зародыш – это его ребенок, а следующий, кого она родит и от кого - большой вопрос. Поэтому самцы в своих сперматозоидах отключают те гены, которые играют в пользу самки в этой игре, а самки отключают те гены, которые играют в пользу самца или в пользу зародыша. То есть если гены, регулирующие, управляющее развитием плаценты, они отключены в яйцеклетке, но они на полную катушку включены в сперматозоидах. Поэтому млекопитающие, в отличие от других животных, принципиально не могут размножаться без оплодотворения, из неоплодотворенных яиц, плацента не разовьется.

Ольга Орлова: Плацента - это как раз источник для эмбриона.

Александр Марков: Плацента - это тот орган, с помощью которого эмбрион сосет соки из матери.

Ольга Орлова: То есть это источник всех жизненных сил для эмбриона и поэтому, соответственно, самец заинтересован в том, чтобы плацента была как можно лучшего качества, а самка наоборот хотела бы ее оптимизировать, чтобы для остальных, для следующего потомства что-то осталось.

Александр Марков: Совершенно верно. Это явление, оно в принципе теоретически открывает некоторые возможности для наследственности приобретенных признаков, но эта возможность не очень используется. По-видимому, дело в том, что ламарковского наследования почти нет в природе не потому, что это технически невозможно, а потому что это оказывается невыгодно в большинстве случаев.

Ольга Орлова: Почему невыгодно наследование приобретенных признаков? Почему чаще всего все-таки они не наследуются?

Александр Марков: Два примера можно взять. Вот тренировка мышц, например. Хорошо бы у теннисистов рождались дети с большой правой рукой, у бегунов рождались бы дети с переразвитыми ногами сразу. Какой в этом смысл, если ребенок может сам тренировкой любую мышцу развить. Понимаете, в одном случае есть универсальная способность тренировать те или иные мышцы и гармонично развиваться в зависимости от рода занятий. А в другом случае мы фиксируем какой-то один вариант. То есть так у нас есть свобода выбора и возможность приспосабливаться к условиям жизни.

Ольга Орлова: Рожденный бегать, играть в хоккей не сможет.

Александр Марков: Или с иммунитетом. Нам приходится к большинству заразы приобретать иммунитет в течение жизни. Его можно было бы унаследовать технически, сделать врожденным. Но зачем? Гораздо эффективнее универсальная система адоптивного иммунитета, которая позволяет нам выработать устойчивость к новым инфекциям, которых раньше не было. Хотя в некоторых случаях, конечно, против особо тяжелых болезней, наверное, было бы полезно иметь врожденный иммунитет. Но в общем случае универсальная способность к адаптивной модификационной изменчивости, то есть приспосабливаться в течение жизни, она лучше, она эффективнее, чем какое-то одно фиксированное раз и навсегда приспособление, то есть это упрощение, специализация - это не хорошо.

Ольга Орлова: Конечно, организму и поколениям организмам, разным видам выгоднее быть универсальными в этом смысле. И если следующее поколение попадает в другие условия обитания, то хорошо бы, если бы оно умело приспосабливаться в течение жизни.

Александр Марков: Обычно естественный отбор сделает то же самое, но он сделает медленнее и только в том случае, если из поколения в поколение повторяется типичная ситуация. Например, все время одна и та же болезнь уносит значительную часть популяции, может выработаться врожденный иммунитет. Или все время приходится быстро бегать, за сто тысяч лет могут зафиксироваться изменения в мышцах, стать наследственными.

Наследование приобретенных признаков

В прошлых статьях мы разобрали несколько мифов о теории эволюции и опровергли некоторые аргументы креационистов. Сегодня же мы обратимся к теме, которая на протяжении полутора веков вызывает нешуточные споры среди самих эволюционистов.

Речь у нас пойдет о наследовании приобретенных признаков. Вопрос обычно ставится так: если животное при жизни приобрело некое качество, то передаст ли оно его своим потомкам? Или это качество останется лишь индивидуальным достижением особи, а ее детям так ничего и не перепадет?

Последние полвека наука отвечала так: нет, приобретенные признаки не наследуются. В школах и вузах нам рассказывали, что эволюционные изменения происходят исключительно благодаря генетическим мутациям, а все альтернативные идеи — это ламаркизм, лысенковщина и мракобесие.

В этой статье мы с вами рассмотрим историю вопроса, а заодно узнаем, как на него отвечает современная наука.


Учение Ламарка

Как мы помним, первая эволюционная теория была разработана Жаном-Батистом Ламарком. Держалась она на двух китах:

2. Наследование приобретенных признаков (далее — просто НПП). Ламарк считал, что изменения, которые происходят с животным в течение жизни, передаются его потомкам.



Что же заставляет животных меняться? Ламарк утверждал, что все эволюционные преобразования происходят под воздействием окружающий среды. Если животное, например, поселилось в воде, оно отрастит плавники и жабры. А если оно обосновалось в лесу, то научится лазить по деревьям или маскироваться среди ветвей и листьев.

И это не сильно бы противоречило современной теории эволюции, если бы не одно но. Дело в том, что Ламарк ничего не говорил о естественном отборе. По его словам, животные меняются благодаря тренировке того или иного органа.

Если животное по какой-то причине перестанет ходить в качалку не будет тренировать свои органы, те постепенно атрофируются. Именно это произошло с крыльями страусов, пингвинов и прочих нелетающих птиц.

Ни о какой ДНК и ни о каких генах Ламарк, естественно, не знал. На дворе стояло начало XIX века, и эти теории казались ученому чем-то вполне логичным и очевидным. И, возможно, именно так они выглядят до сих пор, поскольку идеи НПП оказались на редкость жизнеспособными.

А как считал Дарвин?

В наше время многие уверены, что Чарльз Дарвин полностью отрицал учение Ламарка, включая НПП. Вызвано это тем, что в школах и вузах сегодня преподают синтетическую теорию эволюции, однако связывают ее с именем Дарвина.

На самом деле первоначальный дарвинизм не был столь близок к современной науке. Расхождение у Дарвина с Ламарком было в основном по первому пункту — о стремлении жизни к совершенству. Всю эту метафизику Дарвин поменял на естественный отбор и оказался абсолютно прав.


Пангенез был очень похож на генетику, которую вывернули наизнанку. По словам Дарвина, в каждой живой клетке содержатся мельчайшие частицы — геммулы, которые накапливают информацию об изменениях, происходящих в организме. Эти частицы разносятся вместе с кровью по всему телу и постепенно проникают в половые клетки. Таким нехитрым способом хранящаяся в них информация передается следующему поколению.

В отличие от самой теории эволюции, эта идея Дарвина не оказала никакого влияния на науку. О геммулах вскоре почти забыли, поскольку они противоречили последующим открытиям.

Порог Вейсмана и неодарвинизм


В 1860-х годах немецкий зоолог Август Вейсман пересмотрел теорию Дарвина и положил начало неодарвинизму. Это учение с некоторыми поправками и дополнениями вполне успешно дожило до наших дней. Главным же нововведением Вейсмана как раз и стало отрицание НПП.

Ученый пришел к этому не сразу. Первоначально он разделял взгляды Ламарка и Дарвина на наследственность. Но в отличие от них, он решил не ограничиваться умозрительными рассуждениями, а проверил все с помощью опытов.

В одном из экспериментов ученый на протяжении нескольких поколений отрубал крысам хвосты. Он ждал, что рано или поздно у них начнут рождаться бесхвостые крысята. Этого, естественно, не произошло (в этом месте автор хотел пошутить про иудеев, но передумал).

В другом эксперименте Вейсман пересаживал яичники от белых мышей к черным. В результате все черные особи (которые сумели после такого выжить) внезапно начали производить на свет белое потомство.

Соматические клетки не могут передавать информацию половым клеткам.

Почему так происходит? Ответ на этот вопрос дала в XX веке молекулярная биология. Оказалось, что информация в организме может передаваться только от ДНК к белкам, но никак не наоборот.

Сам процесс передачи информации проходит в два этапа:

1. Транскрипция. Информация переписывается из ДНК на молекулу РНК.
2. Трансляция. На основе информации из РНК создаются белки, от которых и зависит строение организма.

Схематически все это можно обозначить так:


Впрочем, позже выяснилось, что у этой последовательности бывают исключения. Оказалось, что некоторые вирусы умеют переписывать информацию со своей РНК в ДНК хозяина. Именно по такому принципу работает печально известный ВИЧ — вирус СПИДа.

С учетом этого, схему можно переписать так:


Сведений о передаче информации от белков к РНК или ДНК до сих пор нет.

Лысенковщина и ее последствия

Барьер Вейсмана был подтвержден молекулярной биологией и надолго превратился в догму. А любые попытки заявить о возможности НПП вызывали у научного сообщества раздражение и неприязнь. Почему? Дело в том, что в развитие эволюционной теории вмешалась политика.

И тут нам придется затронуть такую непростую тему, как деятельность академика Трофима Денисовича Лысенко, который долгие годы фактически возглавлял советскую биологическую науку.


К сожалению, создать объективную картину того, что происходило в то время, у нас не получится. Проблема в том, что все разговоры о Лысенко велись и ведутся исключительно через призму политики и идеологии.

Первоначально Лысенко всячески восхваляли и превозносили. Затем академика начали демонизировать, сделав его символом воинствующего невежества (обычно критика Лысенко соседствует с критикой сталинского СССР). И даже сегодня все попытки разобраться в его деятельности ничем хорошим не заканчиваются. Современные авторы или опять скатываются в бездумное восхваление, с замалчиванием ошибок, или в такую же бездумную демонизацию.

Так или иначе, но Лысенко и его соратники последовательно отстаивали принцип НПП. Они отрицали хромосомную теорию наследственности, законы Менделя и даже пользу молекулярной биологии для сельского хозяйства. Вот некоторые высказывания Лысенко:

В ответ на Ваше отношение ещё раз заявляю, что никаких идей и методов молекулярной генетики в своих работах мы не применяли и не намерены их применять. Я хотел бы посоветовать всем биологам, селекционерам, а также студентам Советского Союза не воспринимать эти идеи и методы, так как они только тормозят познание сущности живого, то есть развитие теоретической биологии.

— Лысенко Т.Д. Из письма Н.П. Дубинину (1974).

Именно этому и посвящены главные работы Лысенко: о яровизации и о стадийном развитии растений.

(Примечание: Забегая вперед, замечу, что сегодня некоторые публицисты пытаются преподносить теории Лысенко как опередившие свое время. Дескать, талантливый ученый предвосхитил открытия в области эпигенетики и использовал метилирование ДНК еще до того, как до этого дошла молекулярная биология. Так это или нет — вопрос очень спорный).


По поводу НПП между советскими агробиологами, которых возглавлял Лысенко, и советскими генетиками-неодарвинистами долгие годы шел нешуточный спор.

Какими экспериментами ученые подтверждали свою правоту? Если какие-то эксперименты и проводились, то о них мало что известно. Дискуссии в основном ограничивались теорией и велись примерно на таком уровне:

Как мы помним, в противостоянии генетиков и агробиологов победили последние (и к науке это опять же никого отношения не имело). В результате идеи Лысенко безраздельно царили в СССР долгие годы, а когда маятник качнулся в другую сторону, все они были преданы анафеме.

Эти события нанесли серьезный ущерб не только советской науке, но и западной. Проблема НПП отныне перешла в область идеологии, и любые разговоры о ней еще долго вызывали у генетиков стойкое отвращение.

Что говорит современная наука?

Например, в эту картину совсем не вписывался вирусный перенос генетической информации. Оказалось, что вирусы, покидая клетку-хозяина, могут захватывать из нее кусочки ДНК и переносить их в другие клетки.

Эпигенетическое наследование

Вскоре ученым стало понятно, что врожденные признаки организма зависят не только от ДНК. Вот только несколько примеров:

— Мыши-полевки в период похолодания рождаются с более густой шерстью. Эти изменения не затрагивают строение ДНК и зависят от концентрации мелатонина в организме матери.

— В 1998 году швейцарский ученый Ренато Паро обнаружил аналогичный эффект у дрозофил. Он проводил опыты с мушками, у которых в результате мутации глаза стали желтого цвета. Когда же ученый повысил температуру среды, на свет снова начали появляться особи с нормальными глазами. И этот признак передавался в течение еще четырех поколений.

— Нечто похожее можно наблюдать и у людей. Оказалось, что предрасположенность взрослого человека к диабету 2-го типа зависит от месяца его рождения. При этом сама болезнь часто проявляется только в возрасте 50-60 лет.

Чтобы объяснить все эти явления, ученые выдвинули интересную гипотезу. Они предположили, что таким способом организм родителей помогает детям быстро приспособиться к изменениям окружающей среды.

Например, если организм матери не получает достаточного количества питательных веществ, то у ее детей будет проявляться склонность к ожирению. Ведь с точки зрения природы, это качество поможет им выжить в голодные годы.

Самое интересное, что эти изменения вообще не затрагивают структуру ДНК, но при этом часто передаются по наследству. Изучением таких изменений занимается эпигенетика — одно из самых молодых и перспективных направлений биологии.


Рисунок метилирования передается по наследству. Например, дети, родившиеся во время последнего сильного голода в Голландии (1944-1945 годы), оказались склонны к ожирению и диабету.


Их дети, в свою очередь, тоже унаследовали все эти заболевания. А те, кто родились в 1943 или в 1946 году подобных отклонений не имели, поэтому и дети у них рождались здоровыми.

Кроме метилирования ДНК, есть и другие механизмы эпигенетического наследования: инактивация X-хромосомы, РНК-интерференция и ремоделирование хроматина. При этом эпигенетика в наши дни еще только набирает обороты. В ее развитие ученые видят залог будущей победы над старением и онкологическими заболеваниями.

Иммунная система

Наша иммунная система — одно из самых удивительных изобретений эволюции. Ученые долго ломали голову, как лимфоциты умудряются создавать столько разнообразных антител. Ведь в организме человека их может быть до одного миллиона, и чтобы их произвести нам понадобилось бы почти два миллиона генов.

Но у людей их всего около 30 тысяч. Как же так?

Оказалось, что антитела не запрограммированы заранее, а создаются по мере необходимости из специальных генов-заготовок. Когда наш организм сталкивается с неизвестным возбудителем заболеваний, заготовки начинают интенсивно мутировать. Рано или поздно из них получается необходимое антитело, которое и побеждает врага.


Но это еще не все. Недавно группа австралийских биологов выдвинула интересную версию, что эти иммунные изменения способны передаваться по наследству. Судя по некоторым данным, лимфоциты умеют создавать подобия вирусов, которые несут в себе информацию о строении антитела.

Несмотря на все эти открытия, барьер Вейсмана по-прежнему работает для большинства случаев. И именно генетические мутации являются главной движущей силой эволюции.

Однако даже сам Вейсман не пытался представить свое открытие как аксиому. Он справедливо полагал, что будущие исследования и эксперименты помогут нам гораздо лучше понять, как происходит наследование.

Познание нельзя сводить к догмам. Любые догмы, не подкрепленные надежной экспериментальной базой, способны серьезно затормозить развитие науки.

Тем более что эволюция — это явление сложное и многогранное. И за миллионы лет природа сумела создать множество удивительных механизмов, которые помогают организмам выживать и приспосабливаться к окружающей среде.

2020. Т. 13. № 1. С. 110– 117

The Philosophy Journal

2020, Vol. 13, No. 1, pp. 110 – 117

DOI 10.21146/2072-0726-2020-13-1-110- 117

ВОПРОС НАСЛЕДОВАНИЯ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ
В СВЕТЕ НОВЫХ ЗНАНИЙ ПО ЭПИГЕНЕТИКЕ

Трускинов Эрнст Валентинович – доктор биологических наук, ведущий научный сотрудник. Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР). Россий­ская Федерация, 190000, г. Санкт-Петербург, ул. Б. Морская, д. 42‒44; e - mail : truskinov @
yandex . ru

В статье поднимается и обсуждается старый, исторически все еще не отживший в научной эволюционной теории вопрос наследования так называемых приобретен­ных признаков. О его живучести свидетельствует возрождение неоламаркизма, чер­пающего свои представления из новой отрасли генетики – эпигенетики. В прошлом веке расцвет их был связан с периодом диктата Лысенко в агробиологии. Отмечает­ся сходство эпигенетических изменений с тем, что ранее относили к длительным модификациям. Теперь раскрыт и изучается молекулярно-биологический механизм их возникновения и наследования. Дается своя концептуальная оценка, согласно которой следует различать безусловно и условно наследственные признаки. К пер­вым относятся мутации, непосредственно затрагивающие генную структуру ДНК, ко вторым – эпимутации, влияющие на нее опосредованно.

Ключевые слова : изменчивость, наследственность, Лысенко, эволюция, эпигенетика

Для цитирования : Э.В. Трускинов . Вопрос наследования приобретенных призна­ков в свете новых знаний по эпигенетике // Философский журнал / Philosophy Jour­nal . 2020. Т . 13. № 1. С . 110 ‒ 117 .

Сама традиционная формулировка вопроса о наследовании приобретенных признаков неудачна, ибо в свете учения об эволюции понятно, что все при­знаки биологических организмов так или иначе приобретаются и, конечно, наследуются, иначе не было бы никакой эволюции. Проблема наследова­ния является по существу проблемой изучения взаимоотношения организма со средой. Это так, поскольку на современном уровне биологических зна­ний общепризнано, что новоприобретения у организмов происходят при непременном участии тех или иных факторов внешней среды.

Спрашивается, откуда вообще возник этот вопрос наследования или ненаследования приобретенных признаков? Ламарк, да и Дарвин в принципе этот вопрос не ставили, т.к. считалось само собой разумеющимся, что все при­обретенное должно закрепляться в эволюции. По Ламарку – путем прямой адаптации, по Дарвину – путем естественного отбора наиболее приспособ‐

Э.В. Трускинов. Вопрос наследования приобретенных признаков…

ленного. Впервые проблема наследования возникла благодаря А. Вейсману, который разграничил сому (тело) и зародышевую плазму (половые клетки), а все изменения организации разделил на соматогенные и бластогенные. Со­гласно такому представлению, наследование приобретенных признаков, если оно имеет место, происходит по типу соматической индукции, т.е. путем пере­дачи влияния внешней среды на репродуктивные органы через соматическую ткань. По Ламарку, эти изменения адекватны и передаются в таком виде по на­следству. Вейсман не признавал это за научный факт, экспериментально до­казал ненаследуемость повреждений, отрубая в ряде поколений хвосты кры­сам. Опыт этот был в общем показателен, но излишен. Многовековой опыт по обрезанию мужского населения у иудеев и мусульман более убедителен. Однако наряду с недоказанной адекватной соматической индукцией возможна неадекватная, и здесь также надо доказать, насколько она реальна и соответ­ствует современным знаниям о мутационной изменчивости.

С возникновением в XX веке науки генетики, воспринявшей идею Вей­смана о неадекватности изменений в соме и половых клетках, взявшей за ос­нову открытия Менделя, Моргана о корпускулярном характере и дискретно­сти факторов наследственности, все изменения, возникающие в онтогенезе, принято делить на наследственные и ненаследственные, соответственно, на мутации и модификации. Отобранные мутации – это филогенетическая изменчивость, которая, однажды возникнув, фиксируется в генотипе и тем самым имеет решающее значение в эволюционном процессе. Иначе говоря, мутации – это сырье для эволюции. Модификации же являются чисто онто­генетическими изменениями, имеющими значение только в жизни одного

1 Дарвин Ч. Происхождение видов. М.; Л., 1935. С . 124.

Философия и научное познание

поколения. Поначалу считалось, что они не существенны для эволюции. Если соотнести их с определенной и неопределенной изменчивостью Дарви­на, то первой должны бы соответствовать модификации, второй – мутации. Соответствие это отчасти подтверждает и прозрение Дарвина о возможности той и другой наследоваться. Теперь уже не вызывает сомнения возможность определенных направленных изменений мутационного характера (искус­ственная полиплоидизация, опыты по трансформации, применение мутаге­нов специфического действия и др.). И наоборот, некоторые неопределенные изменения могут иметь модификационный, ненаследственный характер (на­пример, морфозы).

Э.В. Трускинов. Вопрос наследования приобретенных признаков…

Хрущева. Урон, причиненный ею биологической науке, сказывался еще ка­кое-то время в сельскохозяйственной практике, но не мог остановить то но­вое в селекции и семеноводстве растений, что дала миру генетика, букваль­но воскрешенная у нас после разгрома, учиненного на августовской сессии ВАСХНИЛ 1948 г. и после.

2 Kolchinsky E.I , Kutschera U., Hossfeld U., Levit G.S. Russia’s new Lysenkoism // Current Bio­logy. 2017. Vol . 27. P . 1042–1047.

3 См.: Животовский Л.А . Неизвестный Лысенко. М., 2014.

4 См.: Закиян С.М., Власов В.В., Дементьева Е.В. Эпигенетика. Новосибирск, 2012.

Философия и научное познание

термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Эпигенетическое наследование в соматических клетках играет важней­шую роль, обеспечивая их дифференцировку и развитие многоклеточного организма через поступающие сигналы окружающей среды. В рассматрива­емом здесь аспекте наибольший интерес представляют факты, так или ина­че свидетельствующие о возможности передачи эпигенетически возникших изменений потомству. Если при вегетативном, клоновом, митотическом раз­множении это объяснимо, то при генеративном, половом воспроизведении понять это более сложно, поскольку требует изменений в процессе мейоза. При этом важно понять также и эволюционный смысл эпигенетических из­менений, если он имеется. Рассматривая эпигенетику в основном в контек­сте соматической клеточной памяти, надо разобраться, насколько она сродни генетике как таковой. В отличие от истинных генных мутаций, эпигенетиче­ские изменения обратимы. Большинство из них исчезает через несколько по­колений и носит характер лишь временных адаптаций или модификаций. Теперь их принято называть эпимутациями.

5 Филипченко Ю.А. Наследственность. М.; Л. 1926. C . 40.

Э.В. Трускинов. Вопрос наследования приобретенных признаков…

В настоящее время к сфере эпигенетики, эпигенетического наследования относят любые фенотипические проявления организмов. Фактически эпиге­нетика стала последовательным этапом развития феногенетики, изучающей пути реализации генотипа в процессе развития и становления его фенотипа. Из круга наследственных заболеваний лишь примерно 5% связаны с наруше­нием генного или хромосомного аппарата, т.е. относятся к истинно генетиче­ским, остальные являются наследственно предрасположенными или эпигене­тическими. Например, туберкулезом болеют не все инфицированные им, а лишь генетически к нему расположенные. Это касается и поколений людей, испытавших экстремальные, стрессовые условия голода, заключения. Иссле­дования потомства людей, выдержавших блокаду Ленинграда, фашистские лагеря смерти, показали определенное негативное последействие наслед­ственного эпигенетического характера у многих, но не у всех обследованных.

Философия и научное познание

называемым переделкам озимости и яровости, если они действительно имели место, можно понять лишь с позиций популяционной р азнородно­сти материала и генетики, а не воспитания средовыми факторами. Словом, вряд ли Лысенко обладал каким-то даром научного предвидения, скорее упрямства и переоценки своих опытов, иногда просто фальсифицирован­ных его приверженцами. Должного знания и понимания генетических за­конов наследования ни у него, ни у них не было.

Подводя итоги вышеизложенному, можно утверждать следующее:

Сама формулировка вопроса не правомерна. Следует иметь в виду в данном контексте наследование адаптивных, благоприобретенных в онто­генезе признаков в ламаркистском понимании их передачи половому по­томству по типу адекватной соматической индукции. Бесспорных доказа­тельств такой передачи пока не предъявлено.

Данные по эпигенетическому наследованию не позволяют относить из­менения, вызванные таким путем, к категории благоприобретенных путем соматической индукции, т.к. являются эпимутациями, не затрагивающими напрямую генетический код ДНК, но косвенно влияющими на экспрессию генов, их фенотипическое проявление. Наследование это в ряде поколений может затухать по типу длительных модификаций.

Исходя из современных генетических и эволюционных, а также старых дарвиновских представлений, все признаки так или иначе могут стать наслед­ственными. Можно их лишь разделять на безусловно и условно наследствен­ные. К первым относятся мутации, непосредственно затрагивающие ген­ные структуры клетки и передающиеся по наследству половому потомству. Ко вторым – эпимутации, наследуемые по типу длительных модификаций.

Список литературы

Ванюшин Б.Ф. Материализация эпигенетики, или Небольшие изменения с большими последствиями // Химия и жизнь. 2004. № 2. С. 32‒37.

Дарвин Ч. Происхождение видов / Пер. с англ. К.А. Тимирязева; под общ. ред. Н.И. Вавилова. М.; Л.: Сельхозгиз, 1935. 630 с.

Животовский Л.А. Неизвестный Лысенко. М.: КМК, 2014. 120 с.

Филипченко Ю.А. Наследственность. М.; Л.: Госиздат, 1926. 268 с.

Эпигенетика / Под ред. С.М. Закияна, В.В. Власова, Е.В. Дементьевой. Новосибирск: Изд-во СО РАН, 2012. 592 с.

Kolchinsky E . I ., Kutschera U ., Hossfeld U ., Levit G . S . Russia ’ s new Lysenkoism // Current Biology . 2017. Vol. 27. P. 1042‒1047.

The question of inheritance of acquired characteristics
in the light of the new knowledge in epigenetics

Ernst V. Truskinov

The article raises and discusses the old question of inheritance of the so-called acquired characteristics, which has not yet become obsolete in the theory of scientific evolution.

Э.В. Трускинов. Вопрос наследования приобретенных признаков…

Its vitality is evidenced by the revival of neolamarckism, which derives its ideas from a new branch of genetics – epigenetics. In the 20 th century, the principle bloomed during the period of the dictatorship of Lysenko’s agrobiology. The authors observe the similari­ties between the so-called epigenetic changes and those that used to be called long-term modifications. The molecular biological mechanism of their origin and inheritance has been discovered and is now studied. The author provides a conceptual assessment of these changes, according to inherited characteristics must be distinguished as those that are in­herited unconditionally and conditionally. The former are the mutations that directly affect the genetic structure of the DNA, the latter are the epimutations that affect it indirectly.

Ольга Орлова: Александр, вы рассказывали о том, что в последние годы знания о том, как предается наследственная информация у живых существ, эти знания ученых существенно расширились. Явилось ли расширение представлений о том, как передается наследственная информация, в данном случае ударом по эволюционным представлениям?

Александр Марков: Нет, конечно, ни в коем случае, это просто детальная модель того, что происходит в живой клетке, вот и все. То есть основа осталась, никто не опроверг транскрипцию, трансляцию и так далее.

Ольга Орлова: Давайте как раз поговорим о второй догме, которая связана непосредственно с первой. Мы уж говорили о том, что пока не удается передавать информацию от белков к РНК и, соответственно, приобретенные признаки поэтому никогда не наследуются, как утверждалось. Как возникла эта вторая догма?

Александр Марков: Это представление о ненаследовании приобретенных признаков, сразу скажу, в своей основе абсолютно правильное, сформировалось еще раньше, до расшифровки структуры ДНК, в основном благодаря работам Августа Вейсмана, который, в частности, отрубал крысам хвосты из поколения в поколение и убедился, что это не приводит к рождению бесхвостых крысят, крысята все равно рождаются с хвостами. Так же ряд других экспериментов в таком же духе проводился. И стало ясно, что действительно такого рода приобретенные признаки, как травмы или натренированные мышцы, они не передаются по наследству. Когда была сформулирована предыдущая догма молекулярной биологии об однонаправленной передаче наследственной информации, это представление о ненаследуемости приобретенных признаков укрепилось. Потому что подумали, что и на молекулярном механизме нет способа переносить информацию от строения организма в ДНК, не существует.

Ольга Орлова: То есть если у нас есть один индивид, живой организм, то мы не можем сделать так, чтобы все его признаки были зафиксированы в ДНК и дальше транслировались в следующее поколение.

Александр Марков: Признаки, приобретенные в течение жизни. Он передаст своим потомкам только те признаки, которые сам получил от своих родителей, плюс мутации, которые возникнут. Но потом оказалось, что все-таки есть кое-какие способы менять геном даже в половых клетках. Высшие организмы, такие как животные, например, они выработали ряд приспособлений, чтобы оградить свои половые клетки от каких бы то ни было несанкционированных изменений, чтобы туда не проникали вирусы, бактерии, зародышевая линия так называемая, те клетки, которые становятся потом половыми, чтобы туда ничего не проникло, никакой гадости генетической. Но эти барьеры иногда не срабатывают. Простейший пример – вирусная инфекция. Что будет, если мать заболеет какой-нибудь вирусной инфекцией? Вирусы встраиваются в бином, обычно они, к счастью, не проникают в яйцеклетки, но иногда все-таки проникают или зародыш может заразиться этим вирусом от матери на более поздней стадии, когда не яйцеклетка, уже зародыш маленький, и вирус проникнет в будущие половые клетки этого зародыша. Вирусная инфекция унаследует. Вот вам, пожалуйста, разве это не наследование приобретенного признака?

Ольга Орлова: Но ВИЧ-инфицированные дети так и появляются.

Александр Марков: Совершенно верно. Вирусная инфекция, встроенный в геном вирус – это признак приобретенный, и он может наследоваться. Один пример. Помимо вирусов существует еще другие способы горизонтального генетического обмена, то есть обмена генами между взрослыми организмами, это очень широко распространено у бактерий, у одноклеточных, у простейших так называемых одноклеточных, имеющих одно ядро, эукариотов, это встречается реже, но тоже встречается. И понятно, что у одноклеточных нет разделения на зародышевую линию и соматические клетки. У них единственная клетка, она же соматическая, она же и половая, поэтому все мутации или все вирусы, которые выстроятся в этот геном, все это передается потомству без всяких оговорок. То есть одноклеточные все приобретенные генетические изменения передают потомству. А у многоклеточных могут ли мутации, возникающие в клетках тела, передаться потомству, соматические мутации? У животных нет, а у растений - пожалуйста, потому что у них есть вегетативное размножение. Произошла мутация в какой-то части растений, возникает участок измененной ткани. Если вегетативное размножение, возьмем веточку от мутантной части растения, посадим, пожалуйста, соматическая мутация передалась потомству. Хорошие возможности для наследования приобретенных признаков дает обратная транскрипция, то есть переписывание информации с РНК на ДНК. Дело в том, что РНК после того, как она считывается с молекулы ДНК, она может подвергаться редактированию, различным модификациям. Много есть вариантов, как редактируется РНК, и некоторые элементы этого редактирования зависят от внешних условий. РНК редактируется в зависимости от условий по-разному. И если есть обратная транскрипция, то эти отредактированные молекулы РНК могут быть переписаны обратно в ДНК.

Ольга Орлова: И таким образом в следующем поколении, которое появляется, которое наследуется от следующего ДНК, они уже получают измененный геном от предыдущего РНК.

Александр Марков: Да, совершенно верно. Таким образом возникают ретро-гены, обратная транскрипция. Ретро-гены – это с нормального гена считалась ДНК, отредактирована была каким-то образом, а потом отредактированная версия была переписана в форму ДНК и вставлена в геном. Возникает новый ген. Скорее всего по функции будет как старый, но с какими-то вариациями. И таких генов на самом деле полно в нашем геноме, которые возникли таким путем. То есть это иногда происходит. Таким образом открывается некоторая возможность для наследования некоторых приобретенных признаков. Теперь приобретенные признаки никогда не наследуются. Есть еще такая вещь, как эпигенетическая наследственность, особенно развита у млекопитающих и цветковых растений. Это фактически разметка генома при помощи особых знаков пунктуации, можно сказать, в половых клетках гены проявляются таким образом, что они потом не работают или проявляют меньшую активность.

Ольга Орлова: Их маркируют, чтобы они не включились.

Александр Марков: Причем самки одни гены в своих яйцеклетках могут отключить, самцы в сперматозоидах другие гены могут исключать.

Ольга Орлова: В чем цель подобных исключений, почему так в организме устроено?

Александр Марков: Вот это явление связано с тем, что у млекопитающих большой родительский вклад в потомство. Самка вынашивает детеныша страшно долго, отдавая ему кучу энергии. И здесь возникает масса проблем в связи с этим. Самка заинтересована поменьше отдать своих соков детенышу, чтобы родить других, а самец заинтересован в обратном, чтобы самка отдала как можно больше соков этому зародышу, потому что этот зародыш – это его ребенок, а следующий, кого она родит и от кого - большой вопрос. Поэтому самцы в своих сперматозоидах отключают те гены, которые играют в пользу самки в этой игре, а самки отключают те гены, которые играют в пользу самца или в пользу зародыша. То есть если гены, регулирующие, управляющее развитием плаценты, они отключены в яйцеклетке, но они на полную катушку включены в сперматозоидах. Поэтому млекопитающие, в отличие от других животных, принципиально не могут размножаться без оплодотворения, из неоплодотворенных яиц, плацента не разовьется.

Ольга Орлова: Плацента - это как раз источник для эмбриона.

Александр Марков: Плацента - это тот орган, с помощью которого эмбрион сосет соки из матери.

Ольга Орлова: То есть это источник всех жизненных сил для эмбриона и поэтому, соответственно, самец заинтересован в том, чтобы плацента была как можно лучшего качества, а самка наоборот хотела бы ее оптимизировать, чтобы для остальных, для следующего потомства что-то осталось.

Александр Марков: Совершенно верно. Это явление, оно в принципе теоретически открывает некоторые возможности для наследственности приобретенных признаков, но эта возможность не очень используется. По-видимому, дело в том, что ламарковского наследования почти нет в природе не потому, что это технически невозможно, а потому что это оказывается невыгодно в большинстве случаев.

Ольга Орлова: Почему невыгодно наследование приобретенных признаков? Почему чаще всего все-таки они не наследуются?

Александр Марков: Два примера можно взять. Вот тренировка мышц, например. Хорошо бы у теннисистов рождались дети с большой правой рукой, у бегунов рождались бы дети с переразвитыми ногами сразу. Какой в этом смысл, если ребенок может сам тренировкой любую мышцу развить. Понимаете, в одном случае есть универсальная способность тренировать те или иные мышцы и гармонично развиваться в зависимости от рода занятий. А в другом случае мы фиксируем какой-то один вариант. То есть так у нас есть свобода выбора и возможность приспосабливаться к условиям жизни.

Ольга Орлова: Рожденный бегать, играть в хоккей не сможет.

Александр Марков: Или с иммунитетом. Нам приходится к большинству заразы приобретать иммунитет в течение жизни. Его можно было бы унаследовать технически, сделать врожденным. Но зачем? Гораздо эффективнее универсальная система адоптивного иммунитета, которая позволяет нам выработать устойчивость к новым инфекциям, которых раньше не было. Хотя в некоторых случаях, конечно, против особо тяжелых болезней, наверное, было бы полезно иметь врожденный иммунитет. Но в общем случае универсальная способность к адаптивной модификационной изменчивости, то есть приспосабливаться в течение жизни, она лучше, она эффективнее, чем какое-то одно фиксированное раз и навсегда приспособление, то есть это упрощение, специализация - это не хорошо.

Ольга Орлова: Конечно, организму и поколениям организмам, разным видам выгоднее быть универсальными в этом смысле. И если следующее поколение попадает в другие условия обитания, то хорошо бы, если бы оно умело приспосабливаться в течение жизни.

Александр Марков: Обычно естественный отбор сделает то же самое, но он сделает медленнее и только в том случае, если из поколения в поколение повторяется типичная ситуация. Например, все время одна и та же болезнь уносит значительную часть популяции, может выработаться врожденный иммунитет. Или все время приходится быстро бегать, за сто тысяч лет могут зафиксироваться изменения в мышцах, стать наследственными.

Читайте также: