Моделирование транспортных потоков реферат

Обновлено: 04.07.2024

Моделирование движения является важным инструментом для моделирования операций динамических систем дорожного движения. В то время как микроскопические имитационные модели обеспечивают детальное представление о процессе движения, макроскопические и мезоскопические модели захватывают динамику движения крупных сетей, менее подробно, но без проблем применения и калибровки микроскопических моделей. В данном реферате я представляю мезо- и микро-модели. Микро-моделирование применяется в районах, представляющих особый интерес, в то время как имитации большой прилегающей сети менее подробно с помощью мезоскопической модели.

Моделирование движения стало очень популярным для моделирования операций динамических систем дорожного движения. Имитационные модели бывают макроскопическими, мезоскопический или микроскопические. Макроскопические модели (макро) -, как правило, модели трафика в непрерывном потоке. Мезоскопические (мезо) модели - модели отдельных транспортных средств. Микроскопические (микро) модели – модели, которые захватывают поведение транспортных средств и водителей в деталях, в том числе взаимодействие среди автомобилей, смене полосы движения, реагирования на инциденты и поведения при слиянии пунктов. Микроскопические модели подходят для оценки ИТС на оперативный уровень, так как представление многих динамических систем управления дорожным движением требует такого мелкозернистого моделирования процесса движения.

Тем не менее, применение микро моделирования происходит не без проблем. Подготовка исходных данных может занять очень много времени. Кроме того, микро-модели очень чувствительны к ошибкам или изменениям в данных по требованию ввода. И из-за сложной структуры участвующих моделей калибровка не является тривиальной.

С другой стороны, макро и мезо модели обычно имеют меньшие параметры для калибровки и менее чувствительны к ошибкам в сети кодирования или вариаций спроса. Однако из-за их более совокупного характера, такие модели ограничены в своих возможностях, чтобы захватить подробную поведение, необходимое для изучения транспортные сети с функциями управления динамическим движением.

Основы транспортного моделирования

Цель транспортного планирования – оптимизация использования ресурсов с целью организации эффективного функционирования транспортной системы.

Задачи транспортного планирования:

1.Прогноз – получение информации о будущих транспортных процессах.

2. Организационно-управленческая задача.

3. Оценка последствий. Оценка применимости проектных решений.

4. Координационная задача – реализация плановых мероприятий.

Этап анализа проблем: сначала ставятся перед собой цели и выявляются проблемы, затем анализируется существующее положение;

Этап анализа альтернатив: идет так называемый цикл – разрабатываются мероприятия и сценарии, рассчитываются последствия, оценивается полученный результат;

Этап принятия решения.

Модель – это упрощенное представление реальности и/или протекающих в ней процессов.

Моделирование является по существу построением рабочей аналогии. Оно представляет собой построение рабочей модели, отражающей подобие свойств или соотношений с рассматриваемой реальной задачей. Моделирование позволяет изучать сложные задачи движения транспорта не в реальных условиях, а в лаборатории. В более общем смысле моделирование можно определить как динамическое отображение некоторой части реального мира путем построения модели на компьютере и продвижении ее во времени.

Транспортная модель – наглядное отображение комплексных транспортных процессов, с возможностью их прогнозирования в зависимости от различных условий.

Этапы исследования системы с помощью модели:

формулирование целей и задач;

создание транспортной модели;

анализ полученной модели;

проверка полученных итогов и результатов;

внедрение результатов моделирования.

Транспортная модель – это:

моделирование существующих и прогнозируемых пассажиропотоков и интенсивностей;

инструмент для оптимизации работы пассажирского транспорта, включая расчет рентабельности маршрутов;

анализ транспортных пассажиропотоков;

подготовка транспортных прогнозов.

Классификация транспортного моделирования:

Микроскопическое моделирование. При этом виде моделирования детально моделируется каждый участок движения отдельного перекрестка или двух, трех. Моделирование нескольких пересечений на уровне транспортного средства.

Мезоскопическое моделирование. Анализируются макропоказатели на микромодели. Моделируется район города. Моделирование сети на уровне транспортного средства.

Макроскопическое моделирование. Моделирование целого города, региона, страны. Моделирование сети на уровне транспортных потоков.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Моделирование движения является важным инструментом для моделирования операций динамических систем дорожного движения. В то время как микроскопические имитационные модели обеспечивают детальное представление о процессе движения, макроскопические и мезоскопические модели захватывают динамику движения крупных сетей, менее подробно, но без проблем применения и калибровки микроскопических моделей. В данном реферате я представляю мезо- и микро-модели. Микро-моделирование применяется в районах, представляющих особый интерес, в то время как имитации большой прилегающей сети менее подробно с помощью мезоскопической модели.

Моделирование движения стало очень популярным для моделирования операций динамических систем дорожного движения. Имитационные модели бывают макроскопическими, мезоскопический или микроскопические. Макроскопические модели (макро) -, как правило, модели трафика в непрерывном потоке. Мезоскопические (мезо) модели - модели отдельных транспортных средств. Микроскопические (микро) модели – модели, которые захватывают поведение транспортных средств и водителей в деталях, в том числе взаимодействие среди автомобилей, смене полосы движения, реагирования на инциденты и поведения при слиянии пунктов. Микроскопические модели подходят для оценки ИТС на оперативный уровень, так как представление многих динамических систем управления дорожным движением требует такого мелкозернистого моделирования процесса движения.

Тем не менее, применение микро моделирования происходит не без проблем. Подготовка исходных данных может занять очень много времени. Кроме того, микро-модели очень чувствительны к ошибкам или изменениям в данных по требованию ввода. И из-за сложной структуры участвующих моделей калибровка не является тривиальной.

С другой стороны, макро и мезо модели обычно имеют меньшие параметры для калибровки и менее чувствительны к ошибкам в сети кодирования или вариаций спроса. Однако из-за их более совокупного характера, такие модели ограничены в своих возможностях, чтобы захватить подробную поведение, необходимое для изучения транспортные сети с функциями управления динамическим движением.

Основы транспортного моделирования

Цель транспортного планирования – оптимизация использования ресурсов с целью организации эффективного функционирования транспортной системы.

Задачи транспортного планирования:

1.Прогноз – получение информации о будущих транспортных процессах.

2. Организационно-управленческая задача.

3. Оценка последствий. Оценка применимости проектных решений.

4. Координационная задача – реализация плановых мероприятий.

1. Этап анализа проблем: сначала ставятся перед собой цели и выявляются проблемы, затем анализируется существующее положение;

2. Этап анализа альтернатив: идет так называемый цикл – разрабатываются мероприятия и сценарии, рассчитываются последствия, оценивается полученный результат;

3. Этап принятия решения.

Модель – это упрощенное представление реальности и/или протекающих в ней процессов.

Моделирование является по существу построением рабочей аналогии. Оно представляет собой построение рабочей модели, отражающей подобие свойств или соотношений с рассматриваемой реальной задачей. Моделирование позволяет изучать сложные задачи движения транспорта не в реальных условиях, а в лаборатории. В более общем смысле моделирование можно определить как динамическое отображение некоторой части реального мира путем построения модели на компьютере и продвижении ее во времени.

Транспортная модель – наглядное отображение комплексных транспортных процессов, с возможностью их прогнозирования в зависимости от различных условий.

Этапы исследования системы с помощью модели:

· формулирование целей и задач;

· создание транспортной модели;

· анализ полученной модели;

· проверка полученных итогов и результатов;

· внедрение результатов моделирования.

Транспортная модель – это:

· моделирование существующих и прогнозируемых пассажиропотоков и интенсивностей;

· инструмент для оптимизации работы пассажирского транспорта, включая расчет рентабельности маршрутов;

· анализ транспортных пассажиропотоков;

· подготовка транспортных прогнозов.

Классификация транспортного моделирования:

1. Микроскопическое моделирование. При этом виде моделирования детально моделируется каждый участок движения отдельного перекрестка или двух, трех. Моделирование нескольких пересечений на уровне транспортного средства.

2. Мезоскопическое моделирование. Анализируются макропоказатели на микромодели. Моделируется район города. Моделирование сети на уровне транспортного средства.

3. Макроскопическое моделирование. Моделирование целого города, региона, страны. Моделирование сети на уровне транспортных потоков.

Микромоделирование


Имитационное моделирование (микромоделирование) – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе.

Микромоделирование – моделирование транспортных и пешеходных потоков на уровне отдельных объектов, отдельных транспортных средств, пешеходов.


В данном виде моделирования все участники движения рассматриваются в виде отдельных частей.

С помощью имитационного моделирования можно решать различные задачи, а именно:

· оценивается транспортная ситуация конкретного проекта, оценка основывается на количественных показателях, которые характеризуют условия движения;

· оценивается пропускная способность для каждого варианта движения и выбирается оптимальная схема организации движения на перекрестке;

· анализируется пропускная способность и движение в зоне остановок общественного транспорта;

· прогнозируются транспортные заторы;

· моделируется и анализируется пешеходное движение;

· моделирование помогает применить какие-то новые введения на транспортном участке;

· можно понять, где в данной транспортной сети возникают различные заторы.

Этапы выполнения микромодели:

· построение улично-дорожной сети;

· введение транспортных потоков;

· регулирование дорожного движения;

· ввод пешеходных потоков;

· анализ полученной модели.

Для того чтобы создать модель интересующего нас участка улично-дорожной сети, необходимо собрать данные:

· данные о геометрии улично-дорожной сети;

· технические и геометрические особенности различных типов транспортных средств;

· состав транспортного потока, т.е. какое количество видов транспортных средств присутствует на данном участке;

· интенсивность движения транспортных средств;

· расположение светофорных объектов и их циклы;

· данные о движении общественного транспорта (маршруты, расположение остановок, расписание, вместимость подвижного состава и т.д.);

· данные о пешеходном движении (интенсивность, направление движения, параметры пешеходных зон и т.д.).

После сбора полученных данных, можно приступать к созданию имитационной модели по этапам, оговоренных ранее.

Построение улично-дорожной сети:

· определяем на основе, какой подложки мы будем создавать модель (чертеж, выполненный в AutoCAD, спутниковый снимок, онлайн-карты и т.д.);

· на полученную подоснову наносим улично-дорожную сеть, представленную отрезками и соединения между этими отрезками;

· для каждой дороги определяем количество и ширину полос движения;

· определяем разрешенные маневры (повороты, обгоны, перестроения).

Введение транспортного потока:

· определяем, какие типы и классы транспортных потоков мы будем использовать;

· определяем динамические характеристики транспортной сети;

· определяем состав данного потока (количество легкого, грузового транспорта и т.д.);

· определяем параметры манеры поведения водителя;

· вводим интенсивность движения на входящих отрезках;

· вводим данные по общественному транспорту (расписание, остановки, вместимость подвижного состава и т.д.);

· указываем маршруты движения транспортных средств.

Регулирование дорожного движения:

· определяем конфликтные зоны, вводим правила приоритета;

· вводим светофорное регулирование:

o определяем длительность цикла;

o указываем время для красного/зеленого сигналов;

o определяем фазовые переходы;

Ввод пешеходных потоков:

· определяем типы пешеходов и их динамических характеристик;

· настраиваем параметры модели поведения;

· вводим интенсивность движения пешеходных потоков;

· указываем маршруты движения.

Основные результаты и виды анализа:

o время задержки;

o пройденное расстояние;

o количество ТС в сети.

o время задержки ТС, людей;

o длина заторов;

o количество остановок.

o анализ отрезков в реальном времени.

o стандартное отклонение;

o время в пути для пассажиров.

o средняя продолжительность цикла;

o среднее время зеленого сигнала.

o время в пути и скорость;

Мезомоделирование


Мезомоделирование – моделирование пассажирских перемещений на уровне города и агломерации.

Данный вид моделирования транспортных потоков решает важные задачи, а именно:

· анализ транспортного и пассажирского потоков;

· оптимизация маршрутов городского пассажирского транспорта;

· разработка и внедрение транспортных развязок.

Отличия мезомоделирования от микромоделирования:

· небольшое время вычислений, необходимых для создания модели;

· использование упрощенной модели следования за впереди идущим транспортным средством;

· менее точное отображение поведения транспортного средства;

· более низкий уровень детализации, что допускает имитацию крупных сетей.

При мезомоделировании данные транспортного средства обновляются не как в микроскопической имитации в каждый временной шаг, а только в определенные моменты времени, в которые что-то меняется в сети и/или в поведении ТС. Эти так называемые события могут возникать в силу различных ситуаций (при переключении ССУ, выезду транспортного средства на перекресток (узел) и т.д.).

Мезомоделирование используется исключительно в рамках динамического распределения. Это означает, что имитация транспортных средств в сети выполняется мезоскопически, а поиск маршрутов и выбор маршрутов выполняются привычным способом с помощью алгоритмов динамического распределения.

Применение

На сегодняшний день транспортные модели широко применяются для помощи органам государственной власти и местного самоуправления для обоснования принятых решений в области транспортного и градостроительного планирования. Задачи, решаемые на транспортных моделях множество, например:

· прогноз транспортных и пассажирских потоков по улично-дорожной сети города, региона, области или страны в целом;

· детальный анализ изменения транспортных/пассажирских потоков при реализации решений по изменению транспортной или градостроительной инфраструктуры;

· формирование предложений по оптимальным режимам светофорного регулирования на объектах улично-дорожной сети;

· формирование предложений по очередности строительства объектов транспортной и градостроительной инфраструктуры;

· оптимизация работы общественного транспорта;

· экономическое обоснование принятых решений и многое другое.

Так же, в последнее время очень актуальным становится вопрос использования транспортных моделей, как основного ядра для интеллектуальных транспортных систем.

Предлагаемая статья представляет аналитический обзор существующих в настоящее время методов моделирования транспортных потоков. В работе рассмотрены различные способы систематизации моделей и предпринята попытка создания двухуровневой классификации. В качестве первого уровня выступает степень детализации, принятая в модели. Второй уровень отражает метод моделирования. Представлены примеры моделей, наиболее точно отражающих свойства своего класса в соответствии с разработанной классификацией. Рассмотрены три основных класса моделей по уровню детализации: макроскопические модели, мезоскопические и микроскопические модели. Макроскопические модели отражают движение автомобилей как физического потока. Мезоскопические модели представляют переходную форму между микро- и макро-подходами. Микроскопические модели описывают движение каждого автомобиля в транспортном потоке. Приведен анализ описанных моделей, их достоинства и недостатки.


1. Буслаев А.П., Новиков А.В., Приходько В.М., Таташев А.Г., Яшина М.В. Вероятностные и имитационные подходы к оптимизации автодорожного движения. – М.: Мир, 2003. – 368 с.

2. Гасанов, Г.М. Управление транспортно-эксплуатационным состоянием автомобильных дорог. – М.: МАДИ (ГТУ), 2004. – 172 с.

3. Гасников А.В., Кленов С.Л., Нурминский Е.А., Холодов Я.А., Шамрай Н.Б. Введение в математическое моделирование транспортных потоков: учеб. пособие / gод ред. Гасникова А.В. – М.: МФТИ, 2010. – 362 с.

5. Зырянов В.В. Применение микромоделирования для прогнозирования развития транспортной инфраструктуры и управления дорожным движением // Дороги России XXI века. – М., 2009. – № 3. – С. 37–40.

6. Кисляков В.М. Математическое моделирование и оценка условий движения автомобилей и пешеходов / В.М. Кисляков, В.В. Филиппов, И.А. Школяренко. – М.: Транспорт, 1979. – 200 с.

7. Клинковштейн Г.И. Методы оценки качества организации дорожного движения: учеб. пособие. – М.: Издание МАДИ, 1987. – 78 с.

8. Кузин М.В. Имитационное моделирование транспортных потоков при координированном режиме управления: дис. … канд. техн. наук. – Омск, 2011. – 143 с.

9. Куржанский А.А., Куржанский А.Б., Варайя П. Роль макромоделирования в активном управлении транспортной сетью // Труды МФТИ.– 2010. – № 4. – С. 100–118.

10. Лившиц В.В. Математическая модель случайно-детерминированного выбора и ее применение для расчета трудовых корреспонденций // Автоматизация процессов градостроительного проектирования. – М.: ЦНИИП градостроительства, 1973. – С. 39–57.

11. Михеева Т.И., Михеев С.В., Богданова И.Г. Модели транспортных потоков в интеллектуальных транспортных системах // Научное обозрение. Технические науки. – 2014. – № 2. – С. 63–64.

12. Наумова Н.А. Теоретические основы и методы автоматизированного управления транспортными потоками средствами мезоскопического моделирования: дис. … д-ра тех. наук. – Волгоград, 2015. – 36 с.

13. Попков Ю.С., Посохин М.В., Гутнов А.Э., Шмульян Б.Л. Системный анализ и проблемы развития городов. – М.: 1983– 512 с.

14. Попков Ю.С. Теория макросистем. Равновесные модели : монография. – 2-е изд. – М.: ЛИБРОКОМ, 2013. – 320 с.

15. Семенов В.В. Математическое моделирование транспортных потоков мегаполиса. M.: препринт № 34 Инст. Прикл. математики им. М.В. Келдыша РАН, 2004. – 44 c.

16. Швецов В.И. Математическое моделирование транспортных потоков // Автоматика и Телемеханика. – 2003. – № 11. – С. 3–46.

17. Gazis D.C., Herman R., Potts R. B. Car-Following Theory of Steady-State Traffic Flow // Operations Research. – 1959. – Vol. 7, № 4. – P. 499–505.

19. Ligthill M.J., Whitham F.R.S. On kinetic waves II. A theory of traffic flow on crowded roads // Proc.of the Royal Society Ser.A. – 1995. – Vol. 229. – № 1178. – P. 317–345.

20. Newell G.F. Nonlinear effects in the dynamics of car – following // Oper. Res. – 1961. – Vol. 9. – P. 209–229.

21. Philips W.F. A kinetic model for traffic flow with continuum implications // Transp. Plan. Technol. – 1979. – Vol. 5. – P. 131–138.

22. Savrasov M. Development of new approach for simulation and analysis of traffic flows on mesoscopic level: doctoral thesis. – Riga, 2013. – 161 p.

23. Wardrop J.G. Some theoretical aspects of road traffic research // Proc. Institution of Civil Engineers II. – 1952. – Vol. 1. – P. 325–378.

24. Wilson A.G. A statistical theory of spatial distribution models // Transpn. Res. – 1967. – Vol. 1. – P. 253–270.

Классификации моделей транспортного потока

Модели, применяемые для анализа транспортных сетей, весьма разнообразны. При этом на данный момент не существует исчерпывающей классификации методов моделирования. Систематизации в зависимости от решаемых задач осуществлялись по разным признакам. К примеру, в зависимости от метода решения – на аналитические и имитационные [2, 6]; по методам представления данных – на динамические модели, работающие в реальном времени, и статические, в которых параметры усредняются за определенный интервал времени [16]. По временной шкале различают непрерывные и дискретные модели [17]. По типу представления процесса модели делят на стохастические, в основе которых лежит зависимость от случайного сочетания параметров, и детерминированные, в которых следующее состояние транспортного потока однозначно определяется на основе предыдущего [15]. Основываясь на функциональной роли моделей, можно условно выделить три основных класса [16]: прогнозные модели, имитационные модели, оптимизационные модели. Подобная классификация не отражает метод решения, а также допущения, положенные в основу модели.

Наиболее популярной является классификация по уровню детализации транспортного потока [22], где выделяют макроскопические модели, мезоскопические модели, микроскопические модели, субмикроскопические модели. Однако такая классификация не дает представления ни об области применения, ни о методе моделирования.

На взгляд авторов настоящей работы, возможна следующая классификация моделей транспортного потока по двум основным признакам: уровню детализации и методу моделирования.

  • модели – аналоги (модель Лайтхилла и Уизема, модель Гриншилдса);
  • модели расчета матрицы межрайонных корреспонденций (гравитационная, энтропийная модели);
  • модели распределения потоков (модель равновесного распределения потоков и оптимальных стратегий);

Данная классификация учитывает как методы моделирования, так и степень детализации. Рассмотрим более подробно некоторые из вышеперечисленных моделей.

Аналоговое моделирование описывает движение транспортных средств как движение специфической жидкости [9]. В процессе моделирования изучаются усредненные характеристики потока, такие как плотность, средняя скорость, интенсивность, но отдельные транспортные средства не рассматриваются. Макроскопические модели могут быть непрерывными, описываемыми дифференциальными уравнениями в частных производных, или дискретными. Гидродинамические модели могут учитывать или не учитывать инерцию. Модели, не учитывающие инерцию, нередко получают из уравнения неразрывности и рассматривают скорость как функцию плотности. Данное обстоятельство позволяет описывать движение локально равновесного потока [14]. Модели, представленные уравнениями Навье – Стокса, учитывают эффект инерции и описывают тенденцию автомобилистов ехать с желаемой скоростью.

В результате применения макроскопических моделей обычно определяются время движения, средняя скорость, уровень загрузки сети, интенсивность движения. Моделирование на макроуровне имеет определенные достоинства [12]: невысокие требования к ЭВМ, высокая скорость расчетов. Однако обладает и недостатками: полученные результаты являются статичными и недостаточно точными; для решения задач сложно определять исходные данные.

Мезомоделирование описывает автотранспортные средства (АТС) достаточно точно, но при этом рассматривает их взаимодействие и поведение так же, как на макроуровне [10, 16, 13]. Одной из первых моделей, отражающих взаимодействие пары районов, которые порождают транспортные потоки (корреспонденции), считается гравитационная модель. Основой для ее создания послужил закон всемирного тяготения. К ее недостаткам можно отнести то, что суммарное количество корреспонденций связывается только с одной парой районов. Однако посещения могут зависеть от расположения района прибытия среди других районов. Этот недостаток учтен в моделях семейства конкурирующих центров. Использование концепции энтропии для решения транспортных задач было предложено Вильсоном [4, 24]. В основе этой модели лежит второй закон термодинамики [3]. Транспортная система схожа с физической тем, что в них имеется большое число неуправляемых элементов. Поэтому проблему определения корреспонденций предложено заменить максимизацией энтропии в транспортной системе [15].

Основным достоинством перечисленных моделей является их сравнительная компактность. Однако эти модели имеют ряд недостатков: они охватывают лишь ограниченный набор параметров (скорость, задержки, очереди), слабо учитывают динамику транспортного потока.

Модели следования за лидером некорректно описывают динамику отдельного транспортного средства, что позволяет нам отнести их к мезоскопическим моделям. Также в моделях есть парадокс – если отсутствует лидер, то ускорение становится равным нулю.

Очень удобным аппаратом для реализации микроскопических моделей оказались клеточные автоматы [9]. Предложил такую модель Дж. Фон Нейман в начале 1950-х г. [3]. В моделях клеточных автоматов дорога разбивается на клетки, время считается дискретным. Каждая ячейка может находиться в каком-либо состоянии, которое определяется набором правил, зависящих от состояний соседних ячеек. Случайные возмущения вносят элемент стохастичности. Достоинством такого подхода является высокая эффективность при компьютерном моделировании. Недостатком же является относительно низкая точность в микроскопических масштабах, из-за дискретной природы клеточного автомата.

В результате работы микроскопических моделей, как правило, получают следующие данные: длина очереди, время задержки транспортных средств, средняя скорость, максимальная или минимальная скорость, время движения автомобилей. Основным достоинством микроскопических моделей является возможность получения оценок с высокой точностью. Однако высокая степень детализации в микромоделях влечет за собой следующие недостатки: требуется много ресурсов для сбора исходных данных; для получения достоверных результатов нужно большое число прогонов модели; необходима калибровка параметров; высокая чувствительность к ошибкам в исходных данных; сложности в получении аналитических зависимостей [15].

Обобщая представленные классификацию и обзор моделей, стоит отметить большое разнообразие методов и моделей, разработанных для решения задач, связанных с проблемами автомобильного движения. Однако до сих пор не существует идеальной модели, позволяющей решить все проблемы, связанные с транспортными потоками, как не существует и всеохватывающей классификации этих моделей, учитывающей все их аспекты. Выбор метода моделирования определяется как поставленной задачей, так и техническими возможностями и предпочтениями исполнителей.


Предисловие ……………………………………………………………………3
Введение ………………………………………………………………………..4
Понятие транспортного процесса …………………………………………….6
Определение понятия моделирования. Моделирование в логистике……….9
Общая Классификация моделей………………………………………………11
Методы моделирования логистических процессов………………………….14
Экономико-математические модели………………………………………….16
Решениеоптимизационной задачи на основе экономико-математической модели…………………………………………………………………………..17
Необходимость применения моделирования………………………………. 19
Заключение …………………………………………………………………….21
Список использованных источников ………………………………………. 22


Предисловие
Целью данной работы я ставлю рассмотрение различных методов моделированияприменительно к транспортному процессу.
В начале я рассмотрю сами понятия транспортного процесса и моделирования. В дальнейшем остановлюсь на классификации, видах и методах моделирования. Также, в завершении работы, отмечу те проблемы и задачи, которые ставит перед собой специалист, создавая модель того или иного процесса. А также опишу перспективы развития данных методов.
При написании я использовалкак лекции докторов наук. Так и электронные материалы сайтов, посвящённых тематике в области логистики.
Безусловно, подробно охватить столь широкую тему невозможно в рамках одной работы. Моделирование постоянно развивается, находятся новые методы, дополняются старые. Именно перспективность данной области меня и привлекла к написанию реферата.Введение


При нынешнем развитии рыночной экономики одной из важнейших и первоочередных проблем управления предприятием является возможность принятия правильных решений, ориентированных на постоянно меняющуюся экономическую ситуацию. Отсутствие оптимизации при осуществлении транспортной деятельности, безусловно, ведёт к снижению рентабельности перевозки,повышению её себестоимости. Для выхода из данной ситуации и решения сложившейся проблемы используются методы экономико-математического моделирования всех процессов предприятия, в первую очередь, транспортного.
Таким образом, построение математических моделей является необходимым для современной экономической науки, независимо, макро- или микроуровень мы рассматриваем. Изучению данной области экономикипосвящены разделы математической экономики и эконометрики.
Эконометрика является разделом экономики, посвящённым изучению количественных закономерностей с использованием корреляционно-регрессивного анализа. В область её применения входят планирование а также прогнозирование экономических процессов в условиях рынка.[1]
В область же изучения математической экономики входят разработка ианализ, решение различных математических моделей экономических процессов, включая их микро- и макроэкономические классы.[2]
Исследуя экономику в целом, макроэкономические модели опираются на такие масштабные показатели как ВВП, уровень безработицы и занятость населения, потребление, инвестиции. Особое место в моделировании уделяется моделям равновесия и экономического роста.
Процессам,происходящим на уровне отдельных компаний, их стратегическим и оперативным вопросам, оптимизации в рыночных условиях, уделяется внимание при построении микроэкономических моделей. Кстати, именно оптимизационным моделям выделено особо важное место среди микроэкономических моделей. Именно они решают задачи максимизации прибыли, распределения ресурсов и оптимизации транспортного процесса.
В дальнейшем япопытаюсь описать роль, состояние и перспективы развития экономико-математических методов при организации транспортных потоков в рыночных условиях с учетом трудовых, материальных, технико-эксплуатационных и организационных ограничений. Для этого необходимо в начале разобраться в понятиях транспортного процесса и экономико-математической модели.

Читайте также: