Минералогический состав почв реферат

Обновлено: 25.06.2024

Почва состоит из двух частей; органической и минеральной.
Минеральная часть почвы — это разного размера частицы разрушившихся каменных горных пород (разрыхленная горная порода, на которой образуется почва, называется материнской породой).
Органическая часть почвы образуется при разложении отмерших корней, стеблей, листьев, навоза, трупов насекомых, червей и животных. К органической части почвы принадлежит и вещество многочисленных, населяющих почву мельчайших организмов — бактерий.

Содержание

Введение . 3
Минеральная часть почвы . 4
Минералогический состав почв . 4
Первичные минералы . 5
Вторичные минералы . 6
Гранулометрический (механический) состав почвы . 11
Классификация почв по гранулометрическому составу . 13
Влияние механического состава на свойства почв . 14
Органическая часть почвы . 18
Природа органического вещества почвы . 18
Органические вещества почвы индивидуальной природы . 18
Гумусовые вещества почвы . 19
Источники органического вещества почвы . 21
Биомасса растительного, микробного
и животного происхождения, поступающая в почву. 21
Химический состав органических остатков . 24
Процессы превращения органических остатков в почве . 27
Общая схема процессов трансформации . 27
Процессы разложения-минерализации
органических остатков в почве . 28
Процессы гумификации органических остатков . 29
Условия накопления органического вещества в почвах . 30
Роль органического вещества
в образовании почвы и создании ее плодородия. 33
Участие органических веществ в процессе выветривания и
начальных стадиях почвообразования . 33
Роль органического вещества в формировании почвенного профиля. 36
2.5.3. Органическое вещество и структура почвы . 39
2.5.4. Органическое вещество почвы
как источник углекислоты для растений . 42
2.5.5. Органическое вещество почвы
как источник элементов питания для растений . 43
2.5.6. Физиологически активные вещества
в составе органической части почвы. 44
Заключение. 47
Список использованной литературы и Интернет-ресурсов . 49
Приложения №№ 1 – 13 . 50 – 62

Строение кристаллической решетки минералов в почве. Вершины тетраэдров в кремнекислородном слое. Особенности схемы превращения монтмориллонита в гиббсит. Деятельность органических веществ в процессе выветривания и начальных стадиях почвообразования.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 24.04.2014
Размер файла 118,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Почва - особое природное образование, обладающие рядом свойств, присущих живой и неживой природе, сформировавшееся в результате длительного преобразования поверхностных слоев литосферы под совместным взаимообусловленным взаимодействием гидросферы, атмосферы, живых и мертвых организмов. Почвенный покров - важнейшее природное образование. Его роль в жизни общества определяется тем, что почва представляет собой источник продовольствия, обеспечивающий 95-97 % продовольственных ресурсов для населения планеты.

Особое свойство почвенного покрова - его плодородие, под которым понимается совокупность свойств почвы, обеспечивающих урожай сельскохозяйственных культур. Естественное плодородие почвы связано с запасом питательных веществ в ней и ее водным, воздушным и тепловым режимами. Почва обеспечивает потребность растений в водном и азотном питании, являясь важнейшим агентом их фотосинтезирующей деятельности.

Почвенный покров принадлежит к саморегулирующейся биологической системе, являющейся важнейшей частью биосферы в целом. Живые организмы, растения и животные, населяющие Землю, фиксируют солнечную энергию в форме фито- и зоомассы. Продуктивность наземных экосистем зависит от теплового и водного балансов земной поверхности, которые определяют многообразие форм обмена энергией и веществом в пределах географической оболочки планеты.

В данной работе предметом изучения является твердая фаза почвы. Объект изучения - минеральная и органическая части почвы.

Целью данной работы является глубокое изучение состава почвы. Для достижения поставленной цели в данной работе были поставлены следующие задачи:

· Раскрыть и изучить минералогический и гранулометрический составы почвы;

· Уточнить какое влияние оказывает механический состав на свойства почвы;

· Изучить природу органического вещества почвы;

· Выявить источники органического состава почвы и их состав;

· Рассмотреть процессы превращения органических остатков в почве;

· Выяснить роль органического вещества в образовании почвы и создании ее плодородия.

1. Минеральная часть почв

Минеральная часть почвы -- это разного размера частицы разрушившихся каменных горных пород (разрыхленная горная порода, на которой образуется почва, называется материнской породой).

1.1 Минералогический состав почвы

Почвообразующие породы представляют собой смесь продуктов химического и физического выветривания, т.е. смесь первичных и вторичных минералов.

Минерал - это однородное в химическом отношении тело, обладающее постоянством химического состава и определенными физическими свойствами.

По физическому состоянию минералы бывают твердые, жидкие и газообразные. Многие минералы имеют определенную форму и являются кристаллическими. Большинство минералов аморфны. Кристаллы ряда минералов анизотропны, т.е. различаются по своим свойствам в различных направлениях (твердость, теплопроводность и электропроводность и др.). В горных породах минералы встречаются в определенных сочетаниях различными группами, образовавшимися в однородных условиях. Количество первичных минералов, встречающихся в изверженных породах, достигает более 3000. Содержание того или иного минерала в рыхлой породе зависит от их физических и химических свойств.

Таким образом, 92 % общей массы изверженных пород состоит из 4-х групп минералов: полевых шпатов, роговых обманок и пироксенов, кварца и слюды. Из них наибольшей механической прочностью обладает кварц, затем следуют полевые шпаты, роговые обманки и пироксены, слюды. В связи с этим при физическом выветривании они дробятся с различной скоростью. Более прочные будут разрушаться медленнее, и сохраняться в виде более крупных частиц. Менее прочные минералы будут дробиться сильнее и быстрее переходить в более мелкие гранулометрические фракции.

По мере перехода к более мелким фракциям содержание кварца и полевых шпатов уменьшается, и увеличивается содержание менее прочных минералов.

Кварц - считается минералом, вполне устойчивым к химическому выветриванию. Сравнительно медленно подвергаются химическому выветриванию полевые шпаты. Средние и основные полевые шпаты отличаются меньшей устойчивостью, чем кислые.

Слюды - (мусковит и биотит) легче, чем предыдущие подвергаются химическому выветриванию.

Роговые обманки и пироксены представляют собой минералы, которые легко изменяются вследствие воздействия на них химических агентов.

Минералы, входящие в состав почв, делятся на две группы: 1) первичные и 2) вторичные. Первичные минералы образуются вследствие выветривания магматических и метаморфических пород, вторичные - из первичных.

Из первичных минералов наиболее распространенными являются минералы, включающие кислородные соединения кремния (кварц, полевые шпаты, пироксены и слюды).

Первичные минералы различаются между собой химическим составом и строением кристаллической решетки, что и предопределяет их неодинаковую устойчивость против выветривания.

Строение кристаллической решетки минералов в значительной степени зависит от объема составляющих ее ионов, или если считать, что форма ионов шарообразная, то от величины их радиусов. В элементарных ячейках, из которых состоят кристаллы, объем катионов и анионов определяет их взаимное расположение. Образование устойчивой структуры происходит при условии, что каждый катион соприкасается с окружающими его анионами. Число ионов противоположного знака, окружающих данный ион называется координационным числом. Величина координационного числа зависит от соотношения радиуса ионов.

Минералы, в которых ион Si4+ замещается ионом Fe3+ , называются феррисиликатами. Изоморфные замещения происходят в кристаллической решетке в период ее образования, качество и количество замещающих ионов зависит от состава и концентрации окружающего раствора.

Как отмечалось раньше, в результате химического выветривания первичные минералы изменяют свой состав и внутреннюю структуру. Выветривание в первую очередь затрагивает поверхность минералов, поэтому с их измельчением возрастает суммарная поверхность, и процессы разрушения ускоряются.

Важнейшим фактором химического выветривания является вода, а также присутствующие в почве кислород и углекислота. Основными типами реакций, происходящими в почве, являются: гидратация, гидролиз, растворение, окисление-восстановление.

Гидратация - это притяжение молекул воды к поверхности минералов. Вследствие полярности молекул воды она представляет собой диполь. При измельчении минералов часть зарядов ионов кристаллической решетки высвобождаются, к ним притягиваются молекулы воды тем конусом, который имеет противоположный заряд. Диполи воды стремятся “выдернуть” ионы из кристаллической решетки минерала, вследствие чего происходит ее расшатывание и разрыхление.

Реакции гидролиза приводят к замене катионов кристаллической решетки на Н+ - ионы воды. Схематически данная химическая реакция для полевого шпата описывается следующим образом:

Присутствие в минералах Fe2+ также способствует выветриванию, так как окисление Fe2+ до Fe3+приводит к изменению объемов, занимаемых ионами в кристаллической решетке, что вызывает в конечном итоге ее разрушение.

Наибольшей устойчивостью обладает кварц, на состояние которого большинство описанных реакций заметного влияния не оказывают, однако и он в некоторой степени подвергается гидратации.

При полном разрушении силикатов образуются простые продукты выветривания: гидрата окислов Fe, Al, одно- и двухвалентных оснований, гидрат окиси кремния (кремниевая кислота) и некоторые другие кислоты - угольная, серная, соляная, фосфорная и другие, образующиеся при окислении элементов, содержащихся в горных породах.

Высвободившаяся при выветривании кремниевая кислота при слабокислой реакции частично переходит в состояние геля (SiO2nH2O), при слабощелочной - золя. В дальнейшем аморфный кремнегель может терять воду и закристаллизоваться, образуя вторичный кварц. Кроме этого, часть кремниевой кислоты может образовывать с основаниями растворимые в воде соли, которые впоследствии могут быть вымыты. В коллоидном и растворенном состоянии кремниевая кислота может вступать в реакцию с полуторными окислами, образуя при этом сложные соединения. Аморфные соединения, содержащие SiO2 и R2O3 в разных соотношениях называются аллофонами.Теряя воду, гидраты полуторных окислов могут постепенно кристаллизоваться, образуя вторичные минералы: лимонит - 2Fe2O3 · 3H2O, гетит - Fe2O3 · H2O, гематит - Fe2O3, гиббсит - Al2O3 · 3H2O, бемит - Al2O3 · H2O.

Освобождающиеся при выветривании основания, реагируя с кислотами, образуют простые соли. Являющиеся вторичными минералами: карбонаты, сульфаты, нитраты, хлориды, фосфаты, силикаты. В разной степени растворяясь в воде, они могут накапливаться в условиях засушливого климата.

Помимо простых вторичных минералов, при выветривании могут образовываться вторичные алюмосиликаты и феррисиликаты. Эти минералы входят в состав различных глин и поэтому носят название глинных. Являясь частью почв, они определяют очень важные для развития растений почвенные свойства (поглотительная и обменная способность, кислотность, буферность, водоудерживающая способность и др.). Из большого числа глинных минералов, для почв наибольшее значение имеют группы: каолинита, мантмориллонита и гидрослюд.

Минералы группы каолинита имеют двухслойную кристаллическую решетку, которая состоит из двух слоев: слоя кремнекислородных тетраэдров и слоя алюмо-кислородно-гидроксильных октаэдров.

В кремнекислородном слое вершины тетраэдров повернуты в одну сторону и являются “кислородными мостиками”, связывающими тетраэдрический и октаэдрический слои: О2Ї одновременно связан с атомами Si4+ и Al3+.

В целом, элементарная ячейка каолинита электронейтральна и соответствует формуле Al4Si4O10(OH)8 или Al2Si2O5(OH)4. При разламывании пакетов боковые поверхности кристаллов имеют ненасыщенные валентности, что может вызывать адсорбцию ионов из окружающего раствора. Расстояние между пакетами каолинита равна 7,2 А0 и не изменяется. Он не впитывает воду в межпакетные пространства и поэтому не набухает. К этой группе минералов относятся, кроме каолита, галлузит (структурная формула Al2Si2O5(OH4) · 2Н2О), метагаллузит (Al2Si2O5(OH)4 · 4Н2О), диккит и накрит.

Монтмориллонит состоит из трехслойных пакетов: октаэдрический слой заключен между двумя тетраэдрическими. Межпакетные расстояния монтмориллонита изменяются от 9,4 до 21,4 А0 и варьируют в зависимости от количества поглощенной воды. Способность монтмориллонита к набуханию значительна. Структура монтмориллонита отвечает химической формуле Al4Si8O20(OH)4 ·nН2О. В этой формуле nН2О - вода, разделяющая пакеты. Кристаллическая решетка электрически нейтральна и содержит по 44 положительных и отрицательных заряда. Минералам группы монтмориллонита характерны разнообразные изоморфные замещения: Si в тетраэдрических слоях может быть частично замещен на Al3+, а аллюминий в октаэдрическом слое замещается Fe2+ и Fe3+, Mg2+ и другими металлами. Например, у минерала бейделлита в отличие от монтмориллонита один из четырех ионов Si4+ тетраэдрического слоя замещен Al3+, появившийся избыточный отрицательный заряд компенсируется ионом гидроксила (Al3Si3O9(OH)3 · nH2O. К этой же группе принадлежит минерал нонтронит с формулой Fe2Si4O10(OH)3 · nH2O, где в октаэдрах ион Al3+замещен на Fe3+.

Из глинных минералов в почвах большое место принадлежит группе гидрослюд, в которую входят гидромусковит (иллит), гидробиотит и другие гидротизированные слюды. Кристаллическая решетка иллита построена так же, как и у монтмориллонита. Разница состоит в том, что в тетраэдрах часть Si4+ (до 1/4) защищена Al3+. При этом образовавшийся отрицательный электрический заряд компенсируется ионом К+, который прочно связывает пакеты между собой. Поэтому межпакетная вода в иллите отсутствует. Гидробиотит образуется из биотита - слюды темного цвета, в которой все октаэдрические места заняты Mg2+ и Fe2+.

Кроме распространенных индивидуальных глинистых минералов, в природе существуют так называемые смешанно-слоистые минералы, пластинки которых состоят из чередующихся пакетов различных минералов, например, иллита, монтмориллонита и т.д.

Существует так же еще группа вторичных минералов: аллофоны. Они состоят из тетраэдров и октаэдров, но расположены беспорядочно, поэтому вследствие отсутствия кристаллического строения они обладают аморфными свойствами.

Глинистые минералы в природе образуются двумя путями. Первый путь представляет собой постепенное изменение первичных минералов, что приводит к образованию новых форм кристаллических решеток.

Вторичные минералы могут возникать также путем синтеза из простых продуктов распада первичных минералов: полевых шпатов, амфиболов, вулканических стекол и т.д. Образующиеся при распаде вещества вступают между собой в реакции взаимодействия, продукты которых выпадают в осадок.

Известно, что химическое выветривание выражается следующими стадиями:

1) гидратации силиката;

2) окисление закиси железа;

3) постепенного гидролиза - уменьшения содержания щелочей и замене Н+;

4) переход Al из четверной комбинации в шестерную;

5) частичный вынос кремнезема.

Образование слюдоподобных минералов из полевых шпатов происходит вследствие выноса части SiO2, K2O, CaO. Гидратация способствует замещению некоторого количества ионов К+ ионами Н+, что приводит к образованию слюд. Этот процесс можно проиллюстрировать на примере превращения монтмориллонита в гиббсит.

При отслоении одного тетраэдрического слоя у монтмориллонита приводит к образованию каолинита, при этом ионы кислорода “кислородных мостиков” замещаются гидроксилами. В дальнейшем при присоединении воды каолинитом из него образуется гиббcит и SiO2.

Скорость разрушения первичных и механизм образования вторичных минералов зависят от ряда факторов:

1) особенности первичного минерала (кристаллическая структура, степень дисперсности, химический состав и т.д.),

2) сочетание первичных минералов,

5) реакции среды,

6) условий выноса продуктов выветривания,

7) жизнедеятельности организмов.

Основные породы разрушаются быстрее кислых и поэтому продукты их выветривания в большей мере обогащены каолинитом. Поэтому более древние почвы, подвергавшиеся процессам выветривания и почвообразования, содержат относительно много минералов группы каолинита, гибсита и гетита, которые являются конечными продуктами выветривания.

Сухой и холодный климат замедляет разрушение минералов, а теплый и влажный - ускоряет. В условиях промывного режима происходит вымывание щелочей, щелочноземельных оснований, кремнезема, и, как следствие, из гидрослюд и монтмориллонита образовывается каолинит и галлузит.

Растения, которые в процессе жизни взаимодействуют с почвой (поглощение воды, элементов питания, кислорода, а так же выделение продуктов жизнедеятельности), вносят существенные изменения в состав и свойства почвенного раствора, реакцию среды, значение окислительно-восстановительного потенциала, что в значительной мере оказывает влияние на условия разрушения и синтеза минералов.

Как отмечалось выше, число первичных минералов в природе невелико, поэтому и количество вторичных минералов не отличается большим разнообразием. Наиболее часто встречающимися минералами являются группы гидрослюд (гидробиотит) и монтмориллонита (монтмориллонит, белделлит, нотронит), далее следуют каолинит, галлузит, вермикулит, гиббсит.

Основная масса рыхлых пород состоит из относительно небольшого числа минералов. Из группы первичных минералов в их состав входят кварц, полевые шпаты, слюды и роговые обманки. Из вторичных - слоистые алюмосиликаты, окиси и гидроокиси железа и алюминия.

Так как в различных гранулометрических фракциях преобладают различные минералы, поэтому рыхлые породы, подвергаясь сортировке по фракциям, сортируются также по минералогическому составу. Например, в песках содержатся в основном, первичные минералы (кварц, полевые шпаты), в глинах - вторичные, в суглинках - смесь первичных и вторичных.


1. Первичные минералы – минералы, образованные выделением из раствора, расплавленной массы или парообразного состояния, образующиеся при испарении морской воды (гипс, галлит, сильвин), при остывании лав (оливин, санидин, апортит), при возгонке по трещинам и в кратерах вулканов (сера, хлорид натрия), а также входящие в состав магматических пород. Первичные минералы составляют 90–98 % массы мелкозема песков, 50–80 - суглинков и 1–12 - глин (Вальков и др., 2006).

2. Вторичные глинистые минералы и окислы – образованы в результате биохимической и геохимической трансформации, выветривания и почвообразования из первичных минералов и продуктов их разрушения.

3. Растворимые минералы – соли, которые могут быть в почвенном растворе и в сухих условиях переходить в твердую фазу почвы.

Первичные минералы почв – основная группа веществ почв и пород выветривания, исходный материал для образования тонкодисперсных вторичных минералов. Они встречаются во всех породах в виде обломков (зерен) и в отдельном разобщенном состоянии. Их обломки приурочены к крупным песчаным и гравелистым фракциям, а индивидуальные минералы входят в состав тонкого песка и пыли.

Вторичные минералы – глинистые минералы, минералы оксидов железа, алюминия, марганца, простых солей.

Наиболее распространенные группы первичных минералов

Полевые шпаты (алюмосиликаты) широко распространены, устойчивы к выветриванию, составляют 60 % массы земной коры, в почвах – 10–15 %. Типичные представители: ортоклаз КАlSi3О8, альбит NaАlSi3О8, анортит СаАlSi2О8, плагиоклазы как изоморфные смеси альбита и анортита.

Силикатов в литосфере около 20 %: оливин (Mg, Fе) SiО4. авгит Са(Mg,Fе)Si2О5, роговая обманка MgSiО3.

Кварц (SiО2) – наиболее распространенный минерал среди магматических пород, осадочных отложений и почв. Его преобладание снижает плодородие почв.

Слюды – 3 % от общего объема пород – источники питания растений калием. Типичные представители: мусковит КН2Аl3(SiО4)3.и биотит КН2(Mg,Fе) 3Аl3(SiО4)3

Апатит – прочный минерал изверженных пород, основной первоисточник фосфора (Р), в его составе Р, Са, F, Сl – 3Са3Р2О8 и Са (F, Сl) 2.

Преобразование первичных минералов сопровождается образованием растворов, золей и гелей кремнезема, силикатов, окислов железа, алюминия, формированием вторичных минералов, поступлением в почвенные растворы простых солей.

Основные группы вторичных минералов

Глинистые минералы – основная часть вторичных минералов, определяют минералогический состав почв, обладают поглотительной способностью. Также как и гумус, они – источник поступления минеральных элементов в растения. Это вторичные алюмосиликаты с общей формулой n SiО2 Аl2О3•mН2О и характерным молярным отношением SiО2 к Аl2О3 в пределах 2:5.

Наиболее распространены минералы группы монтмориллонита, каолинита, гидрослюд, хлоритов, смешанослоистых минералов. Они имеют слоистое кристаллическое строение, высоко дисперсны, обладают поглотительной способностью, содержат химически связанную воду.

Монтмориллонит, бейделит, нонтронит – группа 3-хслойных минералов с набухающей решеткой. Их отличает высокая поглотительная способность в отношении обменных катионов и поллютантов. С гуминовыми кислотами (ГК) эти минералы образуют прочные темноокрашенные комплексы.

монтмориллонит (Аl, Mg)2 (ОН)2 [Si4О10]•mН2О;

бейделит (Ка, Na, Н3О) Аl2(ОН) 2 [АlSi3О10]•mН2О;

нонтронит Fе2 (ОН)2[Si8О10]•mН2О.

Для монтмориллонита характерно набухание с увеличением объема в 1,5–3 раза, с этим связаны такие свойства как жирность, липкость, вязкость, пластичность и гигроскопичность.

Вермикулиты (лат. Vermiciular – червеобразный) – магниевые алюмосиликаты, сходны с монтмориллонитом и гидрослюдами. Вермикулит (Mg, Fе2+,Fе3+)3 (ОН) 2 [(Аl, Si) 4О10]•4Н2О. Цвет бурый, желтовато-бурый, золотисто-желтый, реже зеленоватый. Способны к набуханию, ЕКО около 100 мг-экв. Так его назвали, потому что при нагревании он увеличивается в объеме в 20–30 раз, его частички удлиняются, червеобразно изгибаются и скручиваются.

В группу каолинита входит сам каолинит (наиболее распространен), диккит, накрит: Аl2(ОН)4[Si2О5]. Их структура состоит из двухслойных пакетов, Отдельные чешуйки каолинита бесцветны, сплошные массы белые. Он не набухает, доступ воды в межпактеное пространство затруднен из-за сильной связи между пакетами. Он не содержит щелочных и щелочноземельных оснований. Очень дисперсен, свободно мигрирует в суспензиях. Набухает слабо, у него невысокие плотность, липкость, связность и гидрофильность.

Галлуазит встречается в виде гелеподобных масс, белый, по свойствам близок к каолиниту, но более гидратирован, имеет расширяющуюся кристаллическую решетку.

Гидрослюды (иллит) – гидратированные формы слоистых минералов с морфологическим чешуйчатым строением. Но в отличие от монтмориллонита, связь между пакетами прочная и вода в них не проникает. Гидрослюды – важный источник калия. Они гидрофильны, липки, связны, набухают меньше монтмориллонита.

Гидробиотит (К, Н3О) (Mg Fе)3(ОН) 2[(Аl,Si) 4О10]•mН2О.

Гидромусковит (К, НзО)Аl (ОН)2 [(Аl,Si) 4О10]•mН2О.

Глауконит К(Fе3+ Аl, Fе2+, Mg) 2(ОН) 2 [Аl, Si3О10]•mН2О.

Хлориты – минералы близкие к слюдам. Кристаллическая решетка – из четырех слоев. Это смешаннослойные минералы с правильным чередованием слоев. Решетка их не набухает, стабильна.

Минералы гидроокисей и окисей кремния, алюминия, железа, марганца образуются в аморфной форме при выветривании первичных минералов. Гидроокись кремния SiО2 •mН2О по мере старения переходит в твердый гель опал с той же формулой и с содержанием воды 2–30 %, затем, теряя воду, в кристаллические формы халцедона и кварца SiО2. Гидроокись Mn кристаллизуется в виде пиролюзита МnО2, псиломелана mМnО и МnО2•mН2О.

Гидраты полутораокисей Аl2О3•mН2О, Fе2О3•mН2О кристаллизуясь, образуют вторичные минералы: бемит Аl2О3•Н2О, гидраргилит (гиббсит) Аl2О3•3Н2О или Аl (ОН)3 гематит Fе2О3, гетит Fе2О3•mН2О, гидрогетит Fе2О3 •m 3Н2О. Эти минералы обволакивают пленками агрегатное скопление глинистых минералов, встречаются в виде конкреций. Они не обладают поглотительной способностью, липкостью, не набухают (Вальков и др., 2006).

Цеолиты – щелочные и щелочноземельные алюмосиликаты. Они образуются в пресноводных и соленых озерах, лагунах. При подъеме дна водоема на поверхность они остаются в почве как унаследованные от породы.

Минералы простых солей образуются при выветривании первичных минералов. Кальцит СаСО3, магнезит MgСО3 , доломит [Са, Mg](СО3)2, сода Na2СО3•10Н2О, гипс СаSО4•2Н2О, мирабилит Na2SО4•10Н2О, галит NaС1, фосфаты, нитраты. Их качество и количество определяет степень засоления почв.

Твердая фаза почвы состоит из механических элементов различного происхождения.

Растворимые минералы – компоненты почвенного раствора. Формы соединений – истинно молекулярные и ионные растворы, ассоциации ионов и коллоидные золи. Важнейшие катионы: Ca2+, Mg2+, Na+, K+, NH4,+ H+, Al3+, Fe2+. Среди анионов преобладают: HCO3-, CO32-, NO3-, NO2-, Cl-, SO42-, H2PO4-, HPO42-.

Механические элементы – разнообразные по величине обломки минералов и горных пород, органические и органо-минеральные соединения. К ним не относят кристаллы льда и биоту.

Их почвы наследуют от породы, в процессе почвообразования они изменяются, так как в почве постоянно происходят следующие явления: дробление, растворение, гидролиз, осаждение, гумификация, перемещение тонких механических элементов вниз по профилю. В России принята классификация механических элементов почв, разработанная Н. А. Качинским (табл. 8).

Классификация механических элементов почв по размеру

Диаметр элементов, мм

Скелет почвы, камни

Скелет почвы, гравий

Мелкозем почвы: песок

Генетическое и экологическое значение скелетности почв

Скелетные почвы представлены зональными неполноразвитыми подтипами черноземов, серых и бурых лесных, коричневых почв, желтоземов.

Скелет почвы может быть различного происхождения: известняковый, мергелистый, гранитный, сланцевый, кварцитовый, галечниковый. Это придает почвам особую экологическую специфику. Рост доли скелета приводит к снижению мелкозема в почве, запасов питательных веществ и продуктивной влаги, в итоге – к истончению мощности корнеобитаемого слоя и снижению плодородия.

Генетическое и экологическое значение структуры почв Структура почвы – взаимное расположение структурных отдельностей (агрегатов) определенной формы и размеров. В значительной степени экологическая оценка почв определяется структурным состоянием, в первую очередь, количеством и качеством зернистой и мелкокомковатой структуры. Наличие подобных агрегатов – залог оптимальных условий развития корневых систем растений и существования почвообитающих животных. Аэробные микроорганизмы успешно развиваются в межагрегатной среде, анаэробные – в массе самих агрегатов.

Почвенные горизонты состоят из агрегатов, структурных отдельностей определенной формы и размеров. Структурные агрегаты сформированы из механических элементов фракций пыли и ила. Они удерживаются в сцепленном виде в результате коагуляции коллоидов, склеивания, слипания, остаточных валентностей и водородных связей, адсорбционных и капиллярных явлений в жидкой фазе, а также с помощью корневых тяжей, грибов и слизи микроорганизмов. Одним из основных качественных признаков почв является размер агрегатов

По размерам выделяют три группы:

• макроагрегаты, размер части более 10 мм,

• микроагрегаты (меньше 0,25).

В агрономическом смысле почва считается структурной, если комковато-зернистые водопрочные агрегаты размером от 10 до 0,25 мм составляют более 55 %. Их называют агрономически ценными. Они обладают водопрочностью, противостоят размывающему действию воды, обеспечивают оптимальный водно-воздушный режим почв.

Структурные почвы отличаются хорошей аэрацией (газообмен с атмосферным воздухом), быстро впитывают осадки, медленно испаряют влагу. Им свойственна высокая микробиологическая активность, они легко поддаются обработке.

При бесструктурном состоянии механические элементы почвы существуют раздельно или залегают в виде сплошной массы. У таких почв низкая водопроницаемость, воздухопроницаемость. Разрушение структуры почвы происходит под влиянием механического воздействия (машинная деградация, пастбищная нагрузка), изменения физико-химической обстановки (осолонцевание, содовое засоление).

Экологическое значение гранулометрического состава почв

Гранулометрический состав – относительное содержание в мелкоземе почвы твердых частиц (механических элементов, фракций) разной величины. В основу классификации почв по гранулометрическому составу положено соотношение физического песка (частицы размером крупнее 0,01 мм) и физической глины (менее 0,01 мм). Более детальное разделение фракций: песок (1–0,25 мм), пыль (0,25–0,001 мм), ил (меньше 0,001 мм).

Гранулометрический состав – важнейшая характеристика почвы. От нее зависят многие ее свойства и плодородие. Он оказывает существенное влияние на воздушные и тепловые свойства, окислительно-восстановительные условия, поглотительную способность, накопление в почве гумуса, элементов питания. Размеры частиц отражают различия в свойствах гранулометрических фракций.

Песчаная фракция (1–0,25 мм) состоит из обломков разных горных пород и минералов, в ней преобладают кварц и полевые шпаты. Пески имеют высокую водопроницаемость, свободно фильтруют воду, не набухают, не пластичны. Эти свойства используют при заполнении выемок, канав, траншей, где недопустима усадка грунта.

Фракция крупной пыли (0,25–0,001 мм) по минералогическому составу мало отличается от песчаной, не пластична, слабо набухает.

Средняя пыль (0,01–0,005мм) содержит много слюды, которая придает ей пластичность и связанность. Средняя пыль дисперсная, лучше удерживает влагу, чем предыдущие фракции, слабо водопроницаема. Для частиц этой фракции характерна неспособность к коагуляции и структурообразованию. Почвы, в которых эта фракция преобладает, легко распыляются, склонны к уплотнению и образованию сплошной корки.

Тонкая пыль (0,005–0,001 мм) отличается высокой дисперсностью. Кусочки горной породы отсутствуют, характерно наличие минералов. Заметно резкое уменьшение кварца. Появляются свойства, не присущие крупным фракциям: способность к коагуляции и структурообразованию. Фракция может содержать органические вещества.


Вы здесь: ЧАСТЬ 1. ОБЩЕЕ ПОЧВОВЕДЕНИЕ Глава 3. МИНЕРАЛЬНАЯ ФАЗА ПОЧВЫ И ЕЁ СОСТАВ

Глава 3. МИНЕРАЛЬНАЯ ФАЗА ПОЧВЫ И ЕЁ СОСТАВ

§1. Химический и минералогический состав почвы

Почва состоит из четырех фаз: твердой, жидкой, газообразной и живой (рис. 3). Твердая часть в свою очередь подразделяется на минеральную и органическую часть и составляет 50 % от общего объема почвы. В гумусовых горизонтах на долю минеральной части приходится 87 – 98 %, органической – только 2 – 13 %, в более глубоких доля минеральной части возрастает до 99 –100 %.


Поскольку почва есть продукт изменения горной породы, то она наследует в общих чертах химический и минералогический состав этой породы. В состав почвы входят все химические элементы периодической таблицы. Основу твердой части составляют: О (47,0 %), Si (33,0 %), Al (7,13 %), Fe (3,8 %), Ca (1,37 %), K (1,36 %), Н (1 %), Na и Mg (по 0,63 %), на остальные элементы приходится около 4 %, из них на С приходится 0,023 %, на N2 – 0,002 %, на Р – 0,081 %, на S – 0,085 %.

Химические элементы и их соединения образуют минералы, а они в свою очередь объединяются в горные породы. Минералы – однородные по химическим свойствам природные тела с определенными физическими свойствами, образовавшиеся в земной коре при различных физико-химических процессах. Известно около 4000 минералов, но из них в состав горных пород входит около 50.

Минералы горных пород по химическому составу делятся на следующие классы:

1. Самородные элементы: минералы, находящиеся в свободном состоянии: золото, платина, серебро, из металлоидов – сера, графит, алмаз, составляющие менее0,1% массы земной коры, преимущественно редкие.

2. Сульфиды – соли сероводородной кислоты, составляющие 0,25% массы земной коры, в основном руды (пирит FeS2 или железный или серный колчедан, халькопирит CuFeS2, или медный колчедан, галенит PbS, или свинцовый блеск, киноварь HgS).

3. Галогениды – соли галоидноводородных кислот (HCl, HF), относятся к вторичным минералам, образующимся при осаждении из растворов (галит NaCl или каменная соль, сильвин KCl, флюорит CaF2, или плавиковыйшпат).

4. Оксиды и гидроксиды – широко распространенные породообразующие минералы, играющие важную роль в геологических процессах (кварц SiO2 – самый распространенный породообразующий минерал 65 % в земной коре, халцедон SiO2, опал SiO2•nH2O, илигидроксид кремния, магнетит F3O4, или магнитный железняк, гематит Fe2O3 – красный железняк, лимонит 2Fe2O3•3H2O, или бурый железняк, корунд Al2O3, боксит Al2O3•2H2O, пиролюзит MnO2, или марганцевая руда).

5. Карбонаты – соли угольной кислоты (кальцит CaCO3, или известковый шпат, магнезит MgCO3, доломит CaMg(CO3)2, сидерит FeCO3, или железный шпат).

6. Сульфаты – соли серной кислоты (гипс CaSO4•2H2O, мирабилит Na2SO4•10H2O, или глауберова соль).

8. Нитраты – соли азотной кислоты (натриевая селитра NaNO3, калиевая селитра KNO3).

9. Силикаты и алюмосиликаты – самые распространенные в природе минералы, они составляют 95 % массы земной коры (полевые шпаты – ортоклаз K(AlSi3O8), слюды – мусковит KАl2[AlSi3О10], или бесцветная слюда, биотитK(Mg,Fe)3[Si3Al10](OH)2),или черная слюда).

10. Органические соединения – это углеводородные соединения, образовавшиеся из отмерших остатков биоты (нефть, ископаемые угли, янтарь).

По происхождению минералы делятся на первичные, или магматические, образовавшиеся в недрах Земли при затвердевании магмы в определенных температурах и давлении, и вторичные, или экзогенные, претерпевшие химические изменения, из которых формируются рыхлые осадочные породы. Наиболее распространенными первичными минералами являются кварц, полевые шпаты, слюды, преобладающие в крупных фракциях почвы. От количества первичных минералов зависят физические свойства почв, и они являются резервным источником зольных элементов питания растений, в результате их видоизменения образуются вторичные минералы. Вторичными минералами являются минералы простых солей, минералы оксидов и гидроксидов, глинистые минералы. Минералы простых солей (кальцит, магнезит, доломит, гипс и др.) определяют качественный и количественный состав засоления почв. Минералы оксидов и гидроксидов благодаря своей огромной поверхности поглощают много фосфора, делают его малодоступным растениям. Глинистые минералы (монтмориллонит, каолинит, гидрослюды и др.) преобладают в тонкодисперсных фракциях, в сочетании с гумусовыми кислотами способствуют улучшению водно-физических свойств почв, являются источниками элементов минерального питания для растений, обусловливают поглотительную способность почв.

§2. Гранулометрический состав почвы

Твердая фаза почвы состоит из частиц различной величины, которые называются механическими элементами и могут быть органическими, минеральными и органо-минеральными. Соотношение частиц разного диаметра, выраженное в процентах, называется гранулометрическим (механическим) составом почвы. В почве соотношение частиц разного диаметра зависит в значительной мере от того, на какой материнской породе она формируется и очень мало меняется в процессе почвообразования. Так, кислые, богатые кварцем породы дают много крупного песчаного материала, элювий основных, богатых легко выветривающимися минералами пород (известняк) дает много тонкодисперсных частиц.

Свойства механических элементов зависят от их размеров. Близкие по размерам элементарные частицы объединяются во фракции. Группировка частиц по размерам во фракции называется классификацией гранулометрических элементов. Наиболее широко применяется классификация, разработанная Н.А.Качинским (табл.1).

Несмотря на некоторую условность границ фракций, в целом данная классификация отражает реально существующие различия в свойствах частиц разного диаметра, что в свою очередь определяет свойства почвы в зависимости от преобладания той или иной фракции в составе почвы.


Камни и гравий представлены обломками горных пород и минералов, большое содержание этих фракций придает почвам неблагоприятные физические свойства – провальную водопроницаемость, отсутствие водоподъемной способности и низкую влагоёмкость, затрудняет использование сельскохозяйственных машин и орудий, является механическим препятствием для роста и развития растений. В малом количестве рыхлят почву.

Песчаные фракции состоят из обломков первичных минералов с преобладанием кварца, имеют высокую водопроницаемость, слабое набухание, непластичны. Однако в отличие от гравия обладают некоторой влагоемкостью и капиллярностью, поэтому на природных песках возможно выращивание сельскохозяйственных растений.

Пыль крупная по минералогическому составу и некоторым физическим свойствам мало отличается от песка, непластична, слабо набухает и обладает невысокой влагоемкостью.

Пыль средняя и мелкая состоит из первичных и вторичных минералов. В связи с этим она способна к коагуляции и структурообразоваиию, обладает поглотительной способностью, обогащена гумусовыми веществами, имеет повышенную пластичность, связность и водоудерживающую способность. Однако почвы с высоким содержанием этих фракций имеют такие неблагоприятные свойства, как низкая водопроницаемость, липкость, высокая набухаемость. Такие почвы содержат много недоступной для растений воды.

Илистая фракция состоит преимущественно из высокодисперсных вторичных минералов, имеет большое значение в плодородии почв, обладает высокой поглотительной способностью, содержит много гумусовых веществ, элементов минерального питания, активно участвует в структурообразовании.

На практике часто упрощают классификацию Н.А.Качинского и подразделяют все элементы на крупнозем (скелет или каменистая часть почвы > 1 мм) и мелкозем ( 80 %.

В Республике Беларусь, где преобладают песчаные и супесчаные почвы (рис.4), учитывают каждый процент глины, классификация почв по механическому составу несколько иная (табл. 2).


Различные по гранулометрическому составу почвы значительно отличаются по содержанию элементов питания, водным, воздушным и тепловым свойствам и по сопротивляемости обработке делятся на легкие и тяжелые.

Легкие почвы – песчаные и супесчаные – легко обрабатываются, весной быстрее прогреваются, полевые работы на них можно проводить раньше. К отрицательным свойствам песчаных и супесчаных почв относятся невысокое содержание гумуса и элементов питания, низкая влагоемкость и поглотительная способность. Эти почвы считают бедными и сухими.

Классификация почв Беларуси по гранулометрическому составу

Содержание физической глины (в % от веса почвы)

Для повышения плодородия легких почв необходимо применять органические и минеральные удобрения, возделывание бобовых для запахивания в качестве удобрений – эффективная мера повышения их плодородия. Иногда применяют глинование. Тяжелые почвы – глинистые и тяжелосуглинистые – содержат много элементов питания, но отдают их с трудом, имеют плохие водно-физические свойства. Во влажном состоянии они вязкие, липкие, при высыхании становятся твердыми, тяжело обрабатываются. Для повышения плодородия тяжелых почв необходимо улучшать их структуру путем систематического внесения органических удобрений. Среднесуглинистые и легкосуглинистые почвы сочетают достоинства легких и тяжелых почв и обладают наиболее благоприятными водно-воздушными, питательными, тепловыми свойствами.

Вместе с тем следует учитывать, что в различных климатических условиях значение одного и того же гранулометрического состава проявляется по-разному. В северных областях, где короткое лето и недостаток тепла, легкие почвы ценятся за способность быстро прогреваться, что позволяет раньше провести посев и увеличить продолжительность вегетационного периода. В районах засушливого климата предпочтительнее почвы тяжелые при условии их оструктуривания. Различные сельскохозяйственные культуры также неодинаково относятся к гранулометрическому составу почв. Так, люпин, сераделла, сорго, картофель, кукуруза, гречиха, просо – предпочитают легкие почвы. Пшеница, ячмень, свекла капуста дают устойчивые урожаи на среднесуглинистых почвах, а овес – даже на тяжелосуглинистых и глинистых.

Механический состав почв можно определить и непосредственно в поле. Перед собственно определением механического состава небольшой образец почвы смачивается водой и размешивается до консистенции густого теста – вода из почвы не отжимается, но почва блестит и мажется. Раскатывается на ладони в шнур и сворачивается в колечко. Толщина шнура около 3 мм, а диаметр кольца около 3 см. По признакам, приведенным на рис. 5, определяется гранулометрический состав.


Рис. 5. Мокрый способ определения механического состава почв в поле

Гранулометрический состав имеет большое значение для почвообразовательного процесса и влияет на следующие свойства почв: 1) водопроницаемость и скорость фильтрации воды; 2) водоподъемную силу; 3) влагоёмкость; 4) аэрацию (воздухообеспеченность); 5) набухание и усадку; 6) тепловые свойства; 7) структурность; 8) способность накопления гумуса; 9) запасы питательных элементов и их доступность растениям; 10) затраты энергии на обработку.

Знание гранулометрического состава почв позволяет определить оптимальные сроки сельскохозяйственных работ, дозы и сроки внесения удобрений и весь комплекс мероприятий по рациональному использованию и охране почв.

Читайте также: