Метрологическое обеспечение экспериментальных исследований реферат

Обновлено: 05.07.2024

Рекомендовано научно-методическим советом академии в качестве учебника при обучении студентов с использованием элементов дистанционных образовательных технологий.

Кафедра метрологии и систем качества Пензенского государственного университета.

В.А.Чулков, канд. техн. наук, доцент, декан факультета вечернего и заочного обучения ПГТА

Издательство Пензенской государственной технологической академии

В.П. Каршаков, 2008

1. Теоретические основы метрологии. Определяющие признаки, элементы и этапы измерений. Основные понятия, связанные с объектами и средствами измерений.

2. Классификация измерений. Методы и средства измерений.

3. Метрологические характеристики средств измерений.

4. Погрешности и классы точности средств измерений. Погрешности технических измерений.

5. Методики выполнения измерений. Выбор средств измерений.

6. Обработка результатов многократных и косвенных измерений.

Приложение. Моделирующая программа Electronics Workbench

1. Теоретические основы метрологии. Определяющие признаки, элементы и этапы процесса измерений. Основные понятия, связанные с объектами и средствами измерений

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности (РМГ 29-99).

Измерение - совокупность операций, выполняемых для определения количественного значения величины (ФЗ от 26.06.2008 № 102-ФЗ).

Единство измерений – состояние измерений, при котором их результаты выражены в допущенных к применению в Российской Федерации единицах величин, а показатели точности измерений не выходят за установленные пределы (ФЗ от 26.06.2008 № 102-ФЗ).

В современной практике принято различать три раздела метрологии: теоретическая метрология, прикладная метрология, законодательная метрология. Из наименований этих разделов ясно, что теоретическую основу метрологии составляет теоретическая метрология, имеющая в свою очередь сложную структуру, включающую ряд взаимосвязанных направлений и областей исследований.

К числу важнейших принципов метрологии следует отнести:

- принцип измеримости – не существует таких материальных процессов и объектов, которые не могли бы стать объектом измерений;

- принцип относительности результатов измерений – проявляется в двух аспектах: 1) необходимо учитывать возмущающее воздействие средства измерений на объект, 2) главенствующая роль априорной информации в процессе измерений;

- принцип неопределенности измерительной информации – история измерений не знает результатов, которые можно было бы принять за абсолютную истину и которые не могли бы в последующем быть уточнены.

На базе приведенных принципов сформулированы два постулата метрологии:

α – истинное значение измеряемой величины существует.

β - истинное значение измеряемой величины отыскать невозможно.

В философском аспекте измерения – один из способов познания окружающего нас мира. Процесс познания может осуществляться на теоретическом и экспериментальном уровнях. Измерения обязательно связаны с экспериментом, обеспечивают связь теоретического и экспериментального знания, теоретических расчетов с практикой.

В производственной практике в основном присутствуют три вида экспериментов: измерения, контроль и испытания. Измерения являются преобладающим видом экспериментальных работ. Если в эксперименте выявляется количественная определенность какого-либо свойства явления или объекта, имеет место измерительный эксперимент. Например, если информация, получаемая при контроле, имеет четко выраженное числовое значение, следует говорить об измерительном контроле, включающем в себя измерение и последующее сравнение с нормой. Измерения могут составлять основное содержание и цель эксперимента, и могут быть основой или составной частью других видов экспериментальных работ.

Для отличия измерений от других способов получения информации выделим характерные признаки и особенности измерений, которые позволяют объединить этим термином технические операции разной степени сложности – от простого прикладывания линейки до определения скорости движения элементарной частицы или параметров орбиты небесного тела.

1.Единство функционального назначения и цели – получение количественной информации (числового значения) о свойствах объекта измерений.

Объект измерений - тело (физическая система, процесс, явление и т.д.), которое характеризуется одной или несколькими измеряемыми физическими величинами.

Измеряемая величина – физическая величина, подлежащая измерению.

Измерительная информация – информация о значениях измеряемых величин.

1.Для измерения должна быть выделена физическая величина (ФВ) – характерный признак (свойство) явления, тела или вещества, который может выделяться качественно и определяться количественно. 2.Установление единиц измерения физических величин для количественной градации измеряемой величины.

3. Основное уравнение измерений:

/размер ФВ/=/число/*/единица ФВ/

3. Общность структуры и основных этапов процесса измерений

Основные этапы измерений:

1) постановка задачи и построение модели объекта (установление измеряемых величин)

2) планирование измерений, выбор методов и средств измерений

3) выполнение экспериментальных операций получения измерительной информации

4) математическая обработка данных, оценка погрешностей измерений.

В перечне этапов только этап 3) является экспериментальным, остальные этапы – теоретические, но очень важные для правильной организации и проведения измерительного эксперимента, определяющие качество процесса измерений.

1. Что измерить? Отвечая на этот вопрос, мы создаем в своем сознании модель объекта, то есть упрощенное и приближенное отображение реального объекта. На основе априорной информации мы конкретизируем объект до определенной физической величины, подлежащей измерению, ограничиваем возможный диапазон реальных значений ФВ, то есть задаемся исходной степенью неопределенности информации об объекте. При полном отсутствии априорной информации измерение в принципе невозможно.

2. Как измерить? Выбирается метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей, принцип измерений – физическое явление или эффект, положенное в основу измерений, другие параметры измерительного эксперимента – число измерений, моменты времени и пространственные точки выполнения измерений.

3. Чем измерить? Выбирается средство измерений (СИ) – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным в пределах установленной погрешности в течение известного интервала времени.

4. Кто измерит? Определяется субъект измерений, его ответственность и квалификация.

5. Как обработать данные измерений? На этапе планирования измерений закладывается метод обработки полученных данных и оценки степени достижения цели измерений.

Похожие рефераты:

Классификация автомобильных и мотоциклетных спидометров, их основные метрологические характеристики. Зависимость скорости, измеряемой спидометром от частоты вращения. Поверка спидометров, определение основной и относительной погрешности по скорости.

Классификация методов поверки. Метод непосредственного сличения, при помощи компаратора (прибора сравнения), прямых и косвенных измерений, независимой поверки. Система передачи размеров единиц физических величин. Эталонная база Республики Беларусь.

Стандарты по проверке систем качества. Стандарты по категории продукции. Стандарт ИСО 9000 в России. Виды эталонов, их роль в обеспечение единства и точности измерений. Национальный и международный первичный эталон. Основное назначение эталонов.

Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

Однократное и многократное измерение физической величины. Определение среднего арифметического и среднеквадратического отклонения результатов серии измерений, их функциональные преобразования. Обработка экспериментальных данных при изучении зависимостей.

Измерение гладким микрометром диаметра элемента вала и отклонения формы его поверхности. Выбор микрометра с необходимой точностью измерения. Расчет величины каждого отклонения поверхности вала, вычисление числового значения седлообразности и допуска.

Каждый электронный электросчетчик имеет свой класс точности, который производители указывают в паспортных данных. Но какая реальность стоит за этим?

Средство измерения и его метрологические характеристики (диапазон и погрешность измерений). Расчет и выбор посадки с натягом. Выбор стандартной посадки. Проверка выбора посадки. Расчёт усилия запрессовки при сборке деталей и запасов прочности соединения.

Определение и классификация погрешностей. Оценка погрешностей результатов измерений. Требования, которым отвечают стандарты, входящие в ЕСТД (Единая Система Технологической Документации). Классификационные группы государственных стандартов ЕСТД.

Метрология как наука, история ее становления и значение в контроле качества продукции. Измерение как экспериментальные процедуры, их классификация по различным признакам и назначение, этапы и принципы проведения. Точность и погрешность измерений.

Характеристика средства измерения, предназначенного для измерения, имеющего нормированные метрологические характеристики, воспроизводящего и хранящего единицу физической величины, размер которой принимают неизменным в течение известного интервала времени.

Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.

Регламентация и контроль со стороны государства ряда положений метрологии. Государственная система обеспечения единства измерений. Субъекты метрологии. Управление тремя государственными справочными службами. Добровольная и обязательная сертификация.

Метрологические характеристики измерительных средств. Нормирование метрологических характеристик. Основная и дополнительная погрешность измерительного средства (инструментальная). Методы и средства электрических измерений неэлектрических величин.

Метрологические характеристики и погрешности измерений и измерительных приборов. Технические данные, назначение, устройство и принцип работы логометров. Основные виды, принципы действия и области применения механических и гидростатических уровнемеров.

Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

Понятие, сущность, цели, задачи и законодательная регламентация государственной системы обеспечения единства измерений в России, особенности ее развития. Общая характеристика основных принципов законодательной метрологии и государственной стандартизации.

Сущность калибровки и ее отличие от поверки. Понятие и оценка неопределенности. Общие положения и порядок проведения калибровки. Оформление и содержание свидетельства о калибровке. Российская система калибровки. Государственный метрологический надзор.

Определение значений измеряемых величин. Выборочные совокупности результатов измерений. Статистические характеристики погрешностей результатов прямых многократных наблюдений. Наличие аномальных значений (выбросов). Среднее квадратичное отклонение.

Классификация погрешностей измерений: по форме представления, по условиям возникновения, в зависимости от условий и режимов измерения, от причин и места возникновения. Характерные грубые погрешности и промахи. Измерения и их погрешности в строительстве.

Важное место в экспериментальных исследованиях занимают измерения.

Измерение - это нахождение физической величины опытным путем с помощью специальных технических средств.

Суть измерения составляет сравнение измеряемой величины с известной величиной, принятой за единицу (эталон).

Теорией и практикой измерения занимается метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

К основным проблемам метрологии относятся:

- общая теория измерений;

- единицы физических величин (величины, которым по определению присвоено числовое значение, равное единице) и их системы (совокупность основных и производных единиц, образованная в соответствии с некоторыми принципами, например, Международная система единиц - СИ);

- методы и средства измерений (к методам относят совокупность приемов использования принципов и технических средств, применяемых при измерениях и имеющих нормирование метрологических свойств);

- методы определения точности измерений;

- основы обеспечения единства измерений, при которых результаты измерения выражены в узаконенных единицах, а погрешности измерений известны с заданной вероятностью, что возможно при единообразии средств измерения (средства измерения должны быть проградуированы в узаконенных единицах и их метрологические свойства соответствуют нормам).

Важнейшие значения в метрологии отводятся эталонам и образцовым средствам измерений.

К эталонам относятся средства измерений (или комплекс средств измерений), обеспечивающих воспроизведение и хранение единицы с целью передачи ее размера нижестоящим средствам измерения.

Образцовые средства измерений служат для проверки по ним рабочих (технических) средств измерения, постоянно используемых непосредственно в исследованиях.

Передача размеров единиц от эталонов или образцовых средств измерений рабочим средствам осуществляется государственными и ведомственными метрологическими органами, составляющими метрологическую службу, их деятельность обеспечивает единство измерений и единообразие средств измерений в стране.

Метрологическая служба связана со всей системой стандартизации в стране, поскольку метрология сама является по существу стандартизацией измерений и одной из основ стандартизации, так как обеспечивает достоверность, сопоставимость показателей качества, закладываемых в стандарты, дает методы определения и контроля таких показателей.

Методы измерения можно подразделить на прямые и косвенные.

При прямых измерениях искомую величину устанавливают непосредственно из опыта.

При косвенных - искомую величину определяют функционально от других величин, определенных прямыми измерениями, например , где - величина, найденная с помощью косвенных измерений.

Различают также абсолютные и относительные измерения.

Абсолютные - это прямые измерения в единицах измеряемой величины.

Относительные измерения представляют собой отношение измеряемой величины к одноименной величине, играющей роль единицы или измерения этой величины по отношению к одноименной, принимаемой за исходную.

Выделяется несколько основных методов измерения.

Метод непосредственной оценки соответствует определению значения величины непосредственно по отсчетному устройству измерительного прибора прямого действия (например, измерение массы на циферблатных весах).

При использовании метода сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (например, измерение массы на рычажных весах с уравновешиванием гирями).

При дифференциальном методе на измерительный прибор воздействует разность измеряемой и известной величины, воспроизводимой мерой (например, измерения, выполняемые при проверке мер длины сравнением с образцовой мерой на компараторе).

При нулевом методе результирующий эффект воздействия величины на прибор доводят до нуля (например, измерение электрического сопротивления мостом с полным его уравновешиванием).

При методе замещения измеренную величину замещают известной величиной, воспроизводимой мерой (например, взвешивание с поочередным помещением измеряемой массы и гири на одну и ту же чашку весов).

При методе совпадений разность между измеряемой величиной и величиной воспроизводимой мерой измеряется с использованием совпадения отметок шкал или периодических сигналов.

Неотъемлемой частью экспериментальных исследований являются средства измерений, т.е. совокупность технических средств, имеющих нормированные погрешности, которые дают необходимую информацию для экспериментатора.

К средствам измерений относят меры, измерительные приборы, установки и системы.

Простейшим средством измерения является мера, предназначенная для воспроизведения физической величины заданного размера (например, гиря - мера массы).

Измерительным прибором называют средство измерения, предназначенное для получения определенной информации об изучаемой величине в удобной для экспериментатора форме. В этих приборах измеряемая величина преобразуется в показание или сигнал. Они состоят из двух основных узлов: воспринимающего сигнал и преобразующего в показание.

Приборы классифицируют, например, по способу отсчета значения измеряемой величины на показывающие и регистрирующие. Приборы также классифицируют по точности измерении, стабильности показаний, чувствительности, пределам измерения и др.

Измерительная установка (стенд) представляет собой систему, состоящую из основных и вспомогательных средств измерений, предназначенных для измерения одной или нескольких величин. Установки включают в себя различные средства измерений и преобразователи, предназначенные для одно- или многоступенчатого преобразования сигнала до такого уровня, чтобы можно было зафиксировать его измерительным механизмом.

Измерительные установки могут вырабатывать также сигналы, удобные для автоматической обработки результатов измерений.

Измерительные приборы (отсчетные устройства) характеризуются:

Погрешности приборов бывают абсолютными и относительными.

Под абсолютной погрешностью измерительного прибора принимается величина


,


где - показания прибора (номинальное значение измеряемой величины);


- действительное значение измеренной величины, полученное более точным методом.

Погрешность средства измерения - одна из важнейших его характеристик. Она возникает вследствие недоброкачественных материалов, комплектующих изделий, применяемых для приготовления приборов; плохого качества изготовления приборов; неудовлетворительной эксплуатации и др.

Относительная погрешность определяется отношением


.

Диапазоном измерений называют ту часть диапазона показаний прибора, для которой установлены погрешности прибора (если известны погрешности прибора, то диапазон измерений и показаний прибора совпадает).


Размахом называют разность между максимальным и минимальным показаниями прибора. Если эта величина непостоянная, т.е. если при обратном ходе имеется увеличение или уменьшение хода, то эту разность называют вариацией показаний .


Величина - это простейшая характеристика погрешности прибора.

Другой характеристикой прибора является его чувствительность, т.е. способность отсчитывающего устройства реагировать на изменения измеряемой величины.

Под порогом чувствительности прибора понимают наименьшее значение измеренной величины, вызывающее изменение показания прибора, которое можно зафиксировать.

Основной характеристикой прибора является его точность. Она характеризуется суммарной погрешностью.

Измерение – процесс нахождения какой-либо физической величины опытным путем с помощью специальных технических средств. Это процесс сравнения величины чего-либо с известной величиной, принятой за единицу (эталон).

Измерения являются основной составной частью любого эксперимента. От их тщательности зависят результаты эксперимента.

Точность измерения – это степень приближения измерения к действительному значению измеряемой величины.

Погрешность измерения – это алгебраическая разность между действительным значением измеряемой величины и полученным при измерении.

Погрешности при измерениях возникают вследствие ряда причин: несовершенство методов и средств измерений, недостаточно тщательного проведения опыта, влияния различных внешних факторов, субъективных особенностей экспериментатора и др. Погрешности бывают систематическими и случайными.

Систематические – такие погрешности измерений, которые при повторных опытах остаются постоянными (или изменяются по известному закону). Если численные значения этих погрешностей известны, их можно учесть их во время повторных измерений.

Случайные – возникают чисто случайно при повторном измерении. Их нельзя учесть и исключить.

Средства измерений

Средства измерений – совокупность технических средств, используемых при измерениях и имеющих нормированные метрологические характеристики. Измерительные средства делят на образцовые и технические.

Рекомендуемые материалы

Образцовые – являются эталонами и предназначены для проверки технических (рабочих) средств.

Измерительные приборы характеризуются величиной погрешности и точности, стабильности измерений и чувствительностью.

Погрешность одна из важнейших характеристик прибора. Различают абсолютную и относительную погрешность.


,

относительная:


,

где – показание прибора; – действительное значение измеряемой величины, полученное более точным методом.

Точность – основная характеристика прибора. Характеризуется суммарной погрешностью. В зависимости от допускаемой погрешности приборы делят на классы. Часто класс точности обозначают допускаемой погрешностью в % (1, 2 и т.п.).

В начале результаты измерений сводят в таблицы, тщательно изучают сомнительные данные, устанавливают причины их резкого отличия от статистического ряда наблюдений, от средних величин.

При анализе величин необходимо установить точность, с которой нужно производить обработку опытных данных. Точность обработки не должна быть выше точности измерений.

Графическое изображение результатов

При обработке результатов измерений широко используют методы графического изображения, которые дают более наглядное представление о результатах эксперимента, чем табличные данные. Для графического изображения используют обычно прямоугольную систему координат.

Если при построении графика появляются точки (одна-две), которые резко удаляются от плавной кривой, то необходимо проанализировать причину этого отклонения (грубая ошибка измерения или естественный ход процесса), а также повторить измерения в диапазоне резкого отклонения точки. Повторные измерения подтвердят иди отвергнут (в случае грубой ошибки) наличие указанного отклонения. Если измеряемая величина является функцией двух переменных параметров, то в одних координатах можно построить несколько графиков, разбив диапазон изменения одного из параметров на несколько отрезков.

При построении графиков большое значение имеет выбор масштаба. Масштаб по координатным осям обычно применяют различный, что позволяет избежать слишком узких (высоких) или широких (низких) графиков. Графики с минимумом или максимумом необходимо особенно тщательно вычерчивать в области экстремума, поэтому здесь экспериментальные точки должны быть чаще.



Подбор эмпирических формул (аппроксимация)

По полученным во время опытов экспериментальным данным можно подобрать эмпирические формулы, к которым предъявляются два основных требования: они должны быть по возможности простыми и достаточно точными в пределах изменения аргумента.

Процесс подбора эмпирических формул состоит из двух этапов:

1) построение графика по экспериментальным точкам;

2) вычисление параметров (коэффициентов) для выбранных эмпирических формул.


Подбор начинают с самых простых выражений, начиная с линейной зависимости типа . Такого типа зависимость можно использовать и для явно выраженной плавной кривой, если применить при этом метод выравнивания.

Например, вместо эмпирической формулы (после замены и ) получим – линейную зависимость на логарифмической сетке.


, (5.1)

где ∆x – погрешность измерений.

Точно определить величину погрешности невозможно, так как она носит случайный характер. Иначе можно было бы найденную погрешность ввести в результат измерения и получить истинное значение xист. Задачей математической статистики является наилучшая оценка результата xист и нахождение пределов интервала (5.1) по результатам измерений.

Если проведено n измерений величины x, то среднее арифметическое значение принимается за лучшую оценку истинного результата измерений


(5.2)

где xi – результат i-го измерения.

Средняя квадратичная погрешность определяется по формуле


(5.3)

где n – число измерений.

Важно знать, насколько может отличаться от истинного значения x среднее арифметическое, полученное по формуле (5.2) для n повторных равноточных измерений. Из теории видно, что средняя квадратичная погрешность среднего арифметического S равна средней квадратичной погрешности каждого результата измерений Sn, деленного на корень из числа измерений n


(5.4)

Вероятность того, что результат измерений отличается от истинного на величину, не большую, чем ∆x обозначим через α. Вероятность α называется доверительной вероятностью, а интервал значений измеряемой величины от -∆x до +∆x называется доверительным интервалом.

Определим доверительный интервал. Чем большим он будет установлен, тем более вероятно, что xист окажется в этом интервале. Но широкий интервал дает меньшее представление относительно величины xист. При учете только случайных погрешностей и при небольшом числе измерений n для уровня доверительной вероятности α полуширина доверительного интервала равна


, (5.5)

где tα,n – коэффициент Стьюдента (таблица 5.1).

Таблица 5.1 – Коэффициент Стьюдента

Для окончательной установки границы доверительного интервала необходимо расширить его с учетом систематической погрешности ∆xсист. Систематическая погрешность, как правило, указана в паспорте или на шкале прибора, а в некоторых случаях может быть принята равной половине цены деления младшего разряда шкалы. Суммарная погрешность (абсолютная) определяется как корень квадратный из суммы квадратов случайной и систематической погрешностей


(5.6)

Относительная погрешность определяется как


(5.7)

Выражение (5.6) позволяет оценить величину погрешности по отношению к самой измеряемой величине, измеряется в процентах.

При обработке результатов прямых измерений предлагается следующий порядок операций.

1 Вычисляется среднее значение из n измерений по формуле 5.2.

2 По формуле 5.3 определяется среднеквадратичная погрешность среднего арифметического значения.

3 Задается доверительная вероятность α и определяется коэффициент Стьюдента tα,n для заданного α и числа произведенных измерений n по

4 По формуле 5.5 находится полуширина доверительного интервала (абсолютная погрешность результата измерений).

5 Оценивается относительная погрешность результата измерений по формуле 5.7.

6 Окончательный результат записывается в виде


. (5.8)

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Читайте также: