Методы синхронизации синхронных генераторов реферат

Обновлено: 05.07.2024

Изучение процесса включения синхронных генераторов на параллельную работу. Характеристика принципа функционирования лампового синхроноскопа. Рассмотрение особенностей электромагнитного момента синхронного генератора. Расчет электромагнитного момента.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 15.02.2015
Размер файла 1,3 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Параллельная работа синхронных генераторов

На электрических станциях обычно устанавливают несколько синхронных генераторов, включаемых параллельно для совместной работы (рис. 1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объясняемые теми же соображениями, которые были изложены применительно к параллельной работе трансформаторов.

При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и противоположна по фазе напряжению сети (), частота ЭДС генератора должна быть равна частоте переменного напряжения в сети ; порядок следования фаз на выводах генератора должен быть таким же, что и на зажимах сети.

Приведение генератора в состояние, удовлетворяющее всем указанным условиям, называют синхронизацией. Несоблюдение любого из условий синхронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии. синхроноскоп ламповый электромагнитный

Включить генератор в сеть с параллельно работающими генераторами можно или способом точной синхронизации, или способом самосинхронизации

Способ точной синхронизации. Сущность этого способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовлетворяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент синхронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равностороннего треугольника.

вращения звезды напряжений сети . В этом случае напряжение на лампах определяется геометрической суммой +;+;+ (рис. 2, б).

Рис. 1. Включение синхронных генераторов на параллельную работу: Г1 - Г4 - синхронные генераторы, ПД1 -ПД4 - приводные двигатели

В момент совпадения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лампы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряжений, и напряжение на лампах уменьшается. В момент синхронизации векторы ЭДС и напряжений занимают положение, при котором , т.е. = 0, и все три лампы одновременно гаснут (рис. 2, в). При большой разности угловых частот и лампы вспыхивают часто. Изменяя частоту вращения первичного двигателя, добиваются равенства , о чем будет свидетельствовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключенным к сети.

Рис. 2. Ламповый синхроноскоп

Способ самосинхронизации. Ротор невозбужденного генератора приводят во вращение первичным двигателем до частоты вращения, отличающейся от синхронной не более чем на 2--5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генератор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается.

При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значительные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздействий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.

2. Нагрузка генератора, включенного на параллельную работу

Обычно совместно на одну сеть работают несколько синхронных генераторов и мощность любого из них намного меньше суммарной мощности всех остальных генераторов. Будем считать, что синхронный генератор подключают на параллельную работу с другими генераторами, суммарная мощность которых настолько велика по сравнению с мощностью подключаемого генератора, что при любых изменениях параметров этого генератора напряжение сети и ее частота остаются неизменными.

Рис. 3. Векторные диаграммы синхронного генератора, включённого на параллельную работу в сеть большой мощности: а - при работе без нагрузки; б - при работе с нагрузкой

После подключения генератора в сеть при соблюдении всех условий синхронизации его ЭДС равна по значению и противоположна по фазе напряжению сети (рис. 3, а), поэтому ток в цепи генератора равен нулю, т. е. генератор работает без нагрузки. Механическая мощность приводного двигателя P1 в этом случае полностью затрачивается на покрытие потерь х. х.: .

Отсутствие тока в обмотке статора синхронного генератора 0) приводит к тому, что обмотка статора не создает вращающегося магнитного поля и в генераторе действует лишь магнитное поле возбуждения, вращающееся вместе с ротором с угловой частотой , но не создающее электромагнитного момента.

Рис. 3. К понятию об электромагнитном моменте синхронного генератора.

Если же увеличить вращающий момент приводного двигателя , то ротор машины, получив некоторое ускорение, сместится относительно своего первоначального положения на угол в направлении вращения. На такой же угол окажется сдвинутым вектор ЭДС генератора относительно своего положения, соответствующего режиму х. х. генератора (рис. 3, б). В результате в цепи статора появится результирующая ЭДС , которая создаст в цепи обмотки статора генератора ток I1. Если пренебречь активным сопротивлением обмотки статора и считать сопротивление этой обмотки чисто индуктивным, то ток , отстает по фазе от на угол 90° (рис. 3, б) и отстает по фазе от ЭДС на угол .

Ток I1 создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора результирующее магнитное поле синхронной машины. Ось этого результирующего поля d'--d' не совпадает с продольной осью полюсов ротора d - d: в синхронном генераторе ось полюсов ротора d - d опережает ось результирующего поля машины d'-d' на угол (рис. 4, а).

Известно, что разноименные магнитные полюсы взаимно притягиваются, поэтому между намагниченными полюсами ротора и неявно выраженными полюсами вращающегося поля статора возникают силы магнитного притяжения (рис. 4, б). Вектор это и силы на каждом полюсе ротора, направленный под углом к оси полюса, имеет две составляющие: - нормальная составляющая, направленная по оси полюсов, и -- тангенциальная составляющая, направленная перпендикулярно оси полюсов ротора. Совокупность тангенциальных составляющих F1 на всех полюсах ротора создает на роторе синхронного генератора электромагнитный момент, направленный встречно вращающемуся магнитному полю:

где D2 -- диаметр ротора.

Из полученного выражения следует, что электромагнитный момент синхронной машины является синусоидальной функцией угла и может быть представлен выражением

где Мmax -- максимальное значение электромагнитного момента, соответствующее значению угла = 90 эл. град.

Электромагнитный момент М, возникающий на роторе генератора направлен встречно вращающему моменту приводного двигателя , т. е. он является тормозящим моментом. На преодоление этого момента затрачивается часть мощности приводного двигателя, которая представляет собой электромагнитную мощность

где -- угловая частота вращения ротора.

Таким образом, с появлением тока I1 в обмотке статора синхронного генератора, работающего параллельно с сетью, генератор получает электрическую нагрузку, а приводной двигатель (турбина, дизельный двигатель и т. п.) получает дополнительную механическую нагрузку. При этом механическая мощность приводного двигателя расходуется не только на покрытие потерь х. х. генератора , но и частично преобразуется в электромагнитную мощность генератора Рэм, т. е.

Следовательно, электромагнитная мощность синхронного ч тора представляет собой электрическую активную мощность, преобразованную из части механической мощности приводного двигателя:

Что же касается активной мощности на выходе синхронного генератора , отдаваемой генератором в сеть, т. е.

то она меньше электромагнитной мощности Рэм на значение, равное сумме электрических потерь в обмотке статора и добавочных потерь при нагрузке

Следовательно, мощность на выходе синхронного генератора, (активная нагрузка) при его параллельной работе с сетью регулируется изменением вращающего момента приводного двигателя:

где -- угловая синхронная скорость вращения ротора синхронной машины, рад/с.

Если все слагаемые уравнения (4) разделить на угловую частоту , то получим уравнение моментов

Из этого уравнения следует, что вращающий момент , развиваемый приводным двигателем на валу генератора, равен сумме противодействующих моментов: момента х. х. , обусловленного потерями х. х. и электромагнитного момента М, обусловленного нагрузкой генератора.

Момент х. х. для данного генератора постоянен (= соnst), поэтому нагрузка синхронного генератора возможна лишь за счет вращающего момента приводного двигателя, когда его значение превышает момент х. х., т. е. при .

3. Угловые характеристики синхронного генератора

Электромагнитная мощность неявнополюсного синхронного генератора при его параллельной работе с сетью

где - угол, на который продольная ось ротора смещена относительно продольной оси результирующего поля машины (рис. 4).

Электромагнитная мощность явнополюсного синхронного генератора

где и -- синхронные индуктивные сопротивления явнополюсной синхронной машины по продольно и поперечной осям соответственно, Ом.

Разделив выражения (7) и (8) на синхронную угловую скорость вращения , получим выражения электромагнитных моментов:

неявнополюсной синхронной машины

явнополюсной синхронной машины

где М -- электромагнитный момент, Нм.

Анализ выражения (10) показывает, что электромагнитный момент явнополюсной машины имеет две составляющие: одна из них представляет собой основную составляющую электромагнитного момента

другая -- реактивную составляющую момента

Основная составляющая электромагнитного момента явнополюсной синхронной машины зависит не только от напряжения сети (U1), но и от ЭДС , наведенной магнитным потоком вращающегося ротора в обмотке статора:

Это свидетельствует о том, что основная составляющая электромагнитного момента зависит от магнитного потока ротора: ? . Отсюда следует, что в машине с невозбужденным ротором (= 0) основная составляющая момента = 0.

Реактивная составляющая электромагнитного момента не зависит от магнитного потока полюсов ротора. Для возникновения этой составляющей достаточно двух условий: во-первых, чтобы ротор машины имел явновыраженные полюсы () и, во-вторых, чтобы к обмотке статора было подведено напряжение сети ( ? ). Подробнее физическая сущность реактивного момента будет изложена в § 23.2.

При увеличении нагрузки синхронного генератора, т. е. с ростом тока I1 происходит увеличение угла , что ведет к изменению электромагнитной мощности генератора и его электромагнитного момента. Зависимости и , представленные графически, называются угловыми характеристиками синхронной машины.

Рассмотрим угловые характеристики электромагнитной мощности и электромагнитного момента явнополюсного синхронного генератора (рис. 5). Эти характеристики построены при условии постоянства напряжения сети () и магнитного потока возбуждения, т. е. = const. Из выражений (8) и (11) видим, что основная составляющая электромагнитного момента и соответствующая ей составляющая электромагнитной мощности изменяются пропорционально синусу угла (график 1), а реактивная составляющая момента (12) и соответствующая ей составляющая электромагнитной мощности изменяется пропорционально синусу угла 2 (график 2). Зависимость результирующего момента и электромагнитной мощности от угла определяется графиком 3, полученным сложением значений моментов и и соответствующих им мощностей по ординатам.

Рис. 5. Угловая характеристика синхронного генератора.

Максимальное значение электромагнитного момента соответствует критическому значению угла .

Как видно из результирующей угловой характеристики (график 3), при увеличении нагрузки синхронной машины до значений, соответствующих углу ?, синхронная машина работает устойчиво. Объясняется это тем, что при ? , рост нагрузки генератора (увеличение ) сопровождается увеличением электромагнитного момента. В этом случае любой установившейся нагрузке соответствует равенство вращающего момента первичного двигателя сумме противодействующих моментов, т. е. . В результате частота вращения ротора остается неизменной, равной синхронной частоте вращения.

При нагрузке, соответствующей углу >, электромагнитный момент Mя, уменьшается, что ведет к нарушению равенства вращающего и противодействующих моментов. При этом избыточная (неуравновешенная) часть вращающего момента первичного двигателя вызывает увеличение частоты вращения ротора, что ведет к нарушению условий синхронизации (машина выходит из синхронизма).

Электромагнитный момент, соответствующий критическому значению угла (), является максимальным Мmах.

Для явнополюсных синхронных машин = 60ч80 эл. град. Угол можно определить из формулы

У неявнополюсных синхронных машин = 0, а поэтому угловая характеристика представляет собой синусоиду и угол = 90°.

Отношение максимального электромагнитного момента Мmax к номинальному называется перегрузочной способностью синхронной машины или коэффициентом статической перегружаемости:

Пренебрегая реактивной составляющей момента, можно записать

т.е. чем меньше угол , соответствующий номинальной нагрузке синхронной машины, тем больше ее перегрузочная способность. Например, у турбогенератора = 25 ч 30°, что соответствует = 2,35ч2,0.

Трехфазный синхронный генератор с явно выраженными полюсами на роторе ( =10) включен на параллельную работу с сетью напряжением 6000 В частотой 50 Гц. Обмотка статора соединена звездой и содержит в каждой фазе = 310 последовательных витков, обмоточный коэффициент = 0,92, индуктивное сопротивление рассеяния обмотки = 10 Ом. Диаметр расточки D1 = 0,8 м, расчетная длина сердечника статора li = 0,28 м, воздушный зазор равномерный д = 2 мм, коэффициент полюсного перекрытия =0,7, коэффициент воздушного зазора kд = 1,3, коэффициент магнитного насыщения = 1,1. Магнитный поток ротора Ф = 0,058 Вб.

Требуется рассчитать значения электромагнитных моментов и построить графики , и М = f().

Решение. Полное индуктивное сопротивление реакции якоря по (20.19)

При = 0,7 и равномерном зазоре коэффициенты формы поля по (20.7) и (20.8):

На рис. 1 показаны внешние естественные характеристики трехфазного синхронного генератора, иллюстрирующие зависимость напряжения U г на его зажимах от тока обмотки статора Ir при заданном коэффициенте мощности приемников соs φ = const, неизменном токе возбуждения в обмотке ротора IB = const и постоянной частоте вращения ротора, чему отвечает неизменная частота переменного тока f=const. Эти характеристики могут исходить как из общей точки (0, Егx ), отвечающей режиму холостого хода, так и пересекаться в точке (Iг ном , U г ном ), соответствующей номинальной нагрузке. Первые характеристики


Рис. 1.1. Внешние характеристики трехфазного синхронного генератора при изменении нагрузки с заданным коэффициентом мощности нагрузки: а - от режима холостого хода до номинальной; б - от номинальной до режима холостого хода

позволяют определить изменение напряжения генератора при увеличении нагрузки от режима холостого хода до номинального тока, а вторые - при снижении нагрузки от номинальной до режима холостого хода.

Основной естественной внешней характеристикой синхронного генератора считают кривую Uг (Iг), полученную при симметричном режиме, коэффициенте мощности приемников cos φ = 0,8 и φ > 0.

Для поддержания напряжения синхронного генератора неизменным при переменной нагрузке приходится регулировать ток возбуждения IB в обмотке ротора по закону, определяемому регулировочными характеристиками, крутизна которых зависит от характера нагрузки и ее коэффициента мощности (рис. 6.6). Так, при увеличивающемся токе нагрузки, отстающем по фазе от напряжения на угол φ > 0, возникает размагничивающее действие реакции якоря и соответствующая регулировочная характеристика поднимается, а при возрастающем токе нагрузки, опережающем по фазе напряжение на угол φ Iв.гр (P)] ток синхронного генератора имеет емкостную IрС (индуктивную IpL) реактивную составляющую φ 0) (см. рис. 3.2). Следовательно, при недовозбуждении (перевозбуждении) реактивная мощность генератора имеет емкостный (Qc = - 3UIр L) [индуктивный (QL = 3UIp L)] характер.

Если синхронный генератор подключен к электрической системе большой мощности U = const, то его эквивалентную схему замещения можно представить в виде параллельного соединения двух источников тока: источника активной составляющей тока генератора, зависящей от вращающего момента первичного двигателя, Iавр ), и источника реактивной составляющей тока генератора, зависящей от момента вращения первичного двигателя и тока возбуждения, Ip (Iв , Mвр )



Зависимость тока статора от тока возбуждения I(Iв ) при постоянном вращающем моменте первичного двигателя Мвр = const называется U-образной характеристикой синхронного генератора (рис. 3.2). При некотором малом значении тока возбуждения угол |θ| (рис. 3.1) может превысить значение π/2 и устойчивость работы синхронного генератора нарушится. Чем больше значение активной мощности синхронного генератора, тем при больших значениях тока возбуждения наступит потеря устойчивости. На рис. 3.2 граница устойчивости синхронного генератора показана штриховой линией.

Если вращающий момент первичного двигателя равен нулю (Мвр = 0), то, пренебрегая всеми видами потерь, можно считать, что ток синхронного генератора реактивный (рис. 3.2, Р = 0):


(3.2)

Ток генератора в этом случае зависит линейно от тока возбуждения. Линейность зависимости I(Iв) нарушается лишь при больших значениях тока возбуждения вследствие насыщения магнитопровода машины.

1. Электромагнитный момент и угловая характеристика синхронного Характеристики генераторов переменного тока // Основы электрооборудования летательных

2. Характеристики и уравнения приводов синхронных генераторов Характеристики и уравнения приводов синхронных генераторов

Подготовка СГ к включению на парал­лельную работу и сам процесс включения называются синхронизацией.

Эти способы рассмотрены ниже.

Для безударного включения СГ на параллельную работу необходимо выполнить следующие условия синхронизации:

1. равенство напряжения Uсети и ЭДС Еподключаемого генера­тора, т. е.

2. равенство частот сети fи подключаемого генератора f , т. е. f= f .

3. совпадение по фазе одноименных векторов фазных напряжений обоих генераторов, или, иначе, равенство нулю угла сдвига по фазе указанных векторов, т. е. φ = 0°.

4. одинаковый порядок чередования фаз 3-фазных генераторов, т.е. А- В -Си

А-В- С. На практике это означает, что выводы А, В и С каждого генератора должны при включении на шины, подключаться к шинам соответственно А, В и С ГЭРЩ.

Объясним, как проверяется выполнение этих условий и что надо делать при их нарушении.

Для проверки выполнения первого условия используют вольтметр с переключателем, позволяющим поочередно измерить напряжение на шинах (сети) и на зажимах генератора, включаемого на шины.

Если напряжение подключаемого генератора больше (меньше) напряжения на шинах, то поступают так:

1. при ручном регулировании вручную уменьшают (увеличивают) ток возбуждения подключаемого генератора при помощи реостата возбуждения, рукоятка которого выведена на лицевую часть генераторной панели каждого генератора;

2. при автоматическом управлении уменьшают (увеличивают) ток возбуждения воздействием на регулятор уставки напряжения автоматического регулятора напряжения (АРН) генератора, рукоятка которого выведена на лицевую часть генераторной панели каждого генератора.

Для проверки выполнения второго условия используют частотомер с переключателем, позволяющим поочередно измерить частоту напряжения на шинах (сети) и на зажимах генератора, включаемого на шины.

Эта рукоятка выведена выведена на лицевую часть генераторной панели каждого генератора.

Проверка выполнения четвертого условия в процессе эксплуатации судна не делается. Это объясняется тем, что необходимый порядок подключения генераторов к шинам обеспечивают специалисты-электромонтажники судоверфи.

Поэтому судовым электромеханикам нет надобности проверять выполнение этого условия.

Однако после выполнения ремонтно-профилактических работ, в ходе которых генератор отсоединялся от шин ГЭРЩ, проверка выполнения этого условия обязательна.

Если все условия синхронизации выполнены, то включение гене­ратора на шины ГРЩ будет безударным, а сам генератор после включе­ния останется работать в режиме холостого хода.

10.3. Последствия нарушений условий синхронизации.

От того, какое именно условие не выполнено, зависят последствия нарушения усло­вий синхронизации. Рассмотрим поочередно нарушение каждого из перечисленных условий.

1. При нарушении первого условия | U| ≠ | E|.

В этом случае в замкнутой цепи, образованной последовательно включенными через шины ГЭРЩ обмотками статоров СГ, возникнет т.н. уравнительный ток.

Этот ток, протекая через обмотки статоров обоих генераторов, подмагничивает генератор с меньшим напряжением и размагничивает генератор с большим напряжением.

В результате напряжения параллельно включенных генераторов выравняются.

Вместе с тем уравнительный ток нагружает обмотки статоров обоих генераторов, нагревая их и линии электропередачи между генераторами и не позволяя использовать генераторы по току полностью.

2. При нарушении второго условия синхронизации f ≠ f .

Сразу после включения генератора на шины возникнет переходный процесс, харак­тер которого зависит от значения разности частот обоих генераторов.

Если разность частот менее 0,75 Гц, то после подключения генератора его ротор совершит несколько колебательных движений (качаний) с постепенно убывающей амплитудой и затем под действием собственной синхрони­зирующей мощности втянется в синхронизм.

После этого роторы обоих генера­торов станут вращаться с одинаковой скоростью.

Если эта разность составляет несколько герц, ротор подключен­ного генератора может не войти в синхронизм и будет перемещаться относительно ротора другого генератора.

Возникающие при этом механические толчки на валу могут привести к тому, что не только подключенный генератор не войдет в синхронизм, но могут выпасть из синхронизма другие параллельно работающие генераторы.

3. Последствия нарушения третьего условия (φ ≠ 0°) зависят от взаимного положения роторов в момент включения генератора на параллельную работу.

Рассмотрим 3 характерных случая:

В этом случае он сразу же перейдет в генераторный режим и снимет часть нагрузки с работающего генератора.

При этом на валах обоих генераторов возникнут динамические моменты: тормозного характера у подключенного генератора и подкручивающего у работающего.

После этого надо постепенно подачу топлива увеличивать у подключенного генератора и одновременно уменьшать у работающего. В момент времени, когда показания кило ваттметров обоих генераторов станут одинаковыми, надо перестать изменять подачу топ-лива.

В этом случае он сразу же перейдет в двигательный режим и добавит нагрузку на работающий генератор.

При этом на валах обоих генераторов возникнут динамические моменты: подкручивающий у подключенного и тормозной у работающего генератора.

Если защита не сработала, что может быть при небольшом, неопасном значении обратной мощности подключенного генератора, надо сразу после включения начать увеличивать подачу топлива у подключенного генератора и уменьшать у работающего.

В момент времени, когда показания киловаттметров обоих генераторов станут одинаковыми, надо перестать изменять подачу топлива.

При этом в замкнутой цепи, образованной последовательно включенными через шины ГЭРЩ обмотками статоров СГ, напряжение работающего генератора и ЭДС подключенного суммируются (совпадают по фазе).

Поскольку обмотки статоров имеют незначительное сопротивление, под действием двойного напряжения U+ E= 220 + 220 = 440 В цепи возникнет ток короткого замыкания.

В результате отключится один или оба автоматических выключателя (в последнем случае судно обесточится).

Из сказанного следует, что процесс синхронизации генераторов - достаточно ответственный.

В соответствии с Правилами технической эксплуатации электрооборудования судов, именно вахтенный механик должен выполнять все действия, связанные с синхронизацией, переводом и распределением нагрузки при параллельной работе генераторов.

Судовой электромеханик включает на параллельную работу генераторы только в двух случаях – при использовании методов грубой синхронизации или самосинхронизации.

Синхронизация генераторов: способы и их преимущества

Электростанции средней и высокой мощности состоят из нескольких синхронных генераторов с параллельным подключением к сети переменного тока. Это предотвращает полное отключение потребителей при неисправностях оборудования. Для запуска машин необходима процедура безопасного включения. От ее продолжительности и условий протекания во многом зависит работоспособность оборудования станции.

Синхронные генераторы

Особенность работы синхронных ГУ состоит в том, что при запуске из состояния покоя ротор не может начать самостоятельное движение и нуждается в принудительном раскручивании до скорости вращения электромагнитного поля статора. При включении электромашин возникают пусковые токи, которые нередко сравнимы с показателями короткого замыкания, что может привести к снижению сетевого напряжения. При затяжном пуске резко возрастает риск перегрева рабочих узлов. Все эти нюансы учитывают при разгоне ротора до подсинхронной скорости, после чего генераторная установка включается в сеть с соблюдением ряда условий. Этот процесс и называется синхронизацией генератора с сетью.

Для чего нужна синхронизация генераторов и что это такое?

В перечень условий входят:

  • соблюдение идентичности чередования фаз электрической сети и машины;
  • равенство напряжений и частот:
  • совпадение по фазе векторов напряжений.

Перечисленные операции проводятся вручную или специальными автоматическими устройствами. Промежуточный вариант: часть операций выполняет персонал, а часть — автоматически. В современных системах электроснабжения предпочтение отдается автоматике. Для выполнения этой сложной и ответственной процедуры электростанции оборудуются автосинхронизаторами.

Способы синхронизации

Синхронизация генераторов

Применение одного из перечисленных методов позволяет предотвратить обесточивание шин, повреждение коммутационного оборудования и электрогенератора.

Синхронизация генераторов на параллельную работу осуществляется тремя способами:

  • точной синхронизации с выравниванием напряжения и частоты машины и сети с включением в момент совпадения фаз;
  • самосинхронизацией с замыканием обмотки возбуждения ГУ, приблизительно равных частотах и включении с последующим возбуждением;
  • синхронизацией через индуктивное сопротивление с включением при близких значениях напряжения и частоты (применяется в автономных электростанциях).

Перечисленные методы имеют достоинства и недостатки. Их выбор зависит от вида и назначения ГУ, ее мощности, требований к параметрам напряжения и частоты.

Точная синхронизация электростанций

Для выполнения всех ее условий требуется несколько минут времени и наличие особого навыка у персонала. Операция не опасна для оборудования, так как номинальное значение тока не превышается. Она используется на генераторных установках большой мощности, где время опережения задается автоматикой. Это позволяет предотвратить возникновение сверхтоков при включении.

При выполнении соблюдаются следующие критерии:

  • различие напряжений сети и генераторной установки не более 1 % при наличии АВР с функцией автоматической подгонки, а при его отсутствии или ручном регулировании — 5 %;
  • угол напряжений не более 10 градусов;
  • отклонение частот не более 0,1 %.




Соблюдение условий достигается с помощью регулировки тока возбуждения машины и изменения вращающего момента вала. Контроль параметров производится по расположенным на пульте управления вольтметрам, частотометрам и синхроноскопу, которые подключают к трансформатору.

Недостатки точной синхронизации:

  • сложность подгонки всех параметров;
  • большой временной интервал, поскольку при авариях в системе может занимать несколько десятков минут, а важно обеспечить быстрое включение;
  • высокая вероятность механических повреждений при большом угле напряжений;
  • возможность использования только на высокомощных электростанциях с турбинами.

Преимущества способа заключаются в том, что при избежании ошибок переходные процессы при параллельном соединении генераторов очень незначительны и кратковременны.




Способ самосинхронизации

Этот метод позволяет значительно сократить продолжительность подготовительных процедур и имеет единственное условие включения: разница скорости вращения генераторов должна быть не более 2-3 Гц. Точная подгонка остальных величин на производится.

При включении ГУ этим способом стремятся минимизировать время входа в синхронизм и изменения напряжения и тока. Для этого подключаемой машине дается перевозбуждение. Разность скоростей агрегатов должна быть не более 3-5 % их синхронной скорости вращения, а ускорение составляет не более 1 Гц/с. Лучше всего производить параллельное подключение генераторов при уменьшении разности их скоростей вращения. Сокращение процесса происходит при более высокой скорости подключаемой ГУ. В этом случае агрегат сразу берет на себя нагрузку и производит генерирование.

Недостаток самосинхронизации — снижение напряжения на шинах станции и броски тока в цепи генератора. Если мощность подключаемого дизельного агрегата равна общей мощности станции падение напряжения порой достигает 40 %, а броски тока в 2-4 раза превышают номинал.

Синхронизация дизель-генераторов и газовых электростанций через индуктивное сопротивление

Синхронизация генераторов

Метод через сопротивление часто называют грубой синхронизацией. Его достоинства заключаются в простоте операций и высокой вероятности безаварийного включения.

Его используют в автономных системах энергоснабжения.

Последовательность действий состоит в приведении Гу во вращение, возбуждении и последующем подключении на шины при достижении околосинхронных значений напряжения и частоты. Окончательная синхронизация происходит через сопротивление после возникновения электрической связи с сетью.

Недостаток способа — большие толки и качания. По этой причине он применяется в автономных системах, мощность которых значительно уступает станциям централизованного энергоснабжения.




Особенности автоматических синхронизаторов (АС)

Современные АС выполняют точную автоматическую синхронизацию с помощью микропроцессора. Они имеют соответствующее климатическое исполнение и выполняют:

  • регулирование частоты ГУ импульсами противоположных знаков для достижения оптимального значения;
  • регулирование напряжения с заданной точностью;
  • выбор установки времени опережения;
  • индикацию состояния АС и ГУ;
  • контроль и диагностику отказов с распознаванием неисправностей и недостоверности данных;
  • передачу информации по сети;
  • сохранение данных.

Устройства оснащаются программным обеспечением с моделью объекта регулирования для выбора предварительных настроек и обучения персонала. В них предусмотрены режимы ручного и автоматического тестирования. Оборудование выпускается в виде отдельного модуля, устанавливается в шкаф автоматики или предлагается как панель синхронизации. При этом функции у всех разновидностей одинаковые.

Основные положения правил технической эксплуатации

Синхронизация генераторов производится в соответствии с правилами технической эксплуатации и устройства электроустановок. Согласно стандартам РФ способ точной автоматической синхронизации предусматривается для турбогенераторов мощностью более 3 МВт и гидрогенераторов от 50 МВт. В аварийных ситуациях используется самосинхронизация без учета системы охлаждения и технических характеристик агрегатов.

Самосинхронизация допустима для турбогенераторов мощностью до 3 МВт и для установок этого типа с косвенным охлаждением, оснащенных трансформаторами. А также для гидрогенераторов мощностью до 50 МВт.

Ручные настройки применяются для генераторов до 15 МВт, а при работе двух и более параллельно подключенных ГУ используется автоматическое и полуавтоматическое оборудование. При ручном методе обязательна блокировка от несинхронного включения.

Соответствующие устройства размещаются на центральном или местном пульте управления, главном или блочном щите. Помимо автоматики все ГУ должны быть оборудованы ручными настройками с блокировкой от несинхронного включения.

При введении в сеть двух генераторов с общим выключателем их необходимо синхронизировать между собой самосинхронизацией, а затем с сетью точной настройкой.

Самосинхронизация обязательна при ликвидации аварий. При этом соблюдается правило, что сверхпереходный ток не превышает номинальный в 3 раза.

Процесс синхронизации может осуществляться только специально обученным персоналом. Для точной ручной настройки параметров необходимы специалисты высокой квалификации. Алгоритмы этого процесса постоянно совершенствуются, внедряются новые цифровые технологии, устройства управления. Важно выбрать правильный вариант оборудования.

Читайте также: