Методы оптимальных решений реферат линейное программирование

Обновлено: 05.07.2024

Основной целью курсовой работы является изучение линейного программирования.

Достижение этой цели предопределяет постановку и решение следующих задач:

1. Рассмотреть сущность математического программирования.

2. Раскрыть понятие линейного программирования.

3. Ознакомиться с видами задач линейного программирования.

4. Показать применение симплексного и графического метода решения задач линейного программирования.

Содержание

Глава 1. Сущность Математического программирования 5

Глава 2. Линейное программирование. Постановка задач 10

2.1. Общие сведения о линейном программировании 10

2.2. Примеры задач линейного программирования 13

Глава 3. Методы решения задач линейного программирования 17

3.1. Симплексный метод решения задач линейного программирования 10

3.2. Графический метод решения задач линейного программирования 10

Список литературы 33

Вложенные файлы: 1 файл

курсач.doc


Факультет инноватики и управления

Кафедра управления качеством, техники и технологий

Отметка о допуске к защите

Оценка за защиту

по дисциплине Системный анализ

студент факультета управления и инноватики, 4 курс, группа УО-04

студент (факультет, курс, группа)

Ульянкин Кирилл Юрьевич____________

фамилия, имя, отчество

Профессор КУКТТ, д.т.н________

ученое звание, ученая степень, должность

_Антипова Татьяна Николаевна _______________

фамилия, имя, отчество

СОДЕРЖАНИЕ

Настоящая работа подготовлена в Королевском институте управления, экономики и социологии на кафедре Управление качеством и техники и технологий

Актуальность темы курсовой работы. Актуальность линейного программирования и обусловила выбор темы данной курсовой работы. Значимость выбранного вопроса определяется также тем, что использование метода линейного программирования представляет собой важность и ценность - оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов. Также все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов.

Тема "Линейное программирование" изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем тематики "Линейное программирование". Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы "Линейное программирование". Однако, требуется учет современных условий при исследовании проблематики обозначенной темы.

Высокая значимость и недостаточная практическая разработанность проблемы "Линейное программирование" определяют несомненную новизну данного исследования. Дальнейшее внимание к вопросу о проблеме "Линейное программирование" необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования.

Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме "Линейное программирование" в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.

Эволюция научных представлений и формирование направлений в области теории и практики системного подхода во многом определяется разработками ученых: Л. В. Канторовича, В. С. Немчинова, В. В. Новожилова, А. Л. Лурье, А. Брудно, А. Г. Аганбегяна, Д. Б. Юдина, Е. Г. Гольдштейна, Дж. Данцигом, Г. Куна, А. Таккера, Чарнеса и др.

Объектом исследования является раздел математического программирования – линейное программирование.

Предметом исследования выступают задачи линейного программирования и методы их решения.

Основной целью курсовой работы является изучение линейного программирования.

Достижение этой цели предопределяет постановку и решение следующих задач:

  1. Рассмотреть сущность математического программирования.
  2. Раскрыть понятие линейного программирования.
  3. Ознакомиться с видами задач линейного программирования.
  4. Показать применение симплексного и графического метода решения задач линейного программирования.

Структура курсовой работы. В соответствии с целью, задачами и логикой исследования работа состоит из введения, 3 глав, заключения, списка литературы.

Глава 1. Сущность математического программирования

Процессы принятия решений лежат в основе любой целенаправленной деятельности. В экономике они предшествуют созданию производственных и хозяйственных организаций, обеспечивают их оптимальное функционирование и взаимодействие”. В научных исследованиях – позволяют выделить важнейшие научные проблемы, найти способы их изучения, предопределяют развитие экспериментальной базы и теоретического аппарата. При создании новой техники – составляют важный этап в проектировании машин, устройств, приборов, комплексов, зданий, в разработке технологии их построения и эксплуатации; в социальной сфере – используются для организации функционирования и развития социальных процессов, их координации с хозяйственными и экономическими процессами. Оптимальные (эффективные) решения позволяют достигать цели при минимальных затратах трудовых, материальных и сырьевых ресурсов.

В классической математике методы поиска оптимальных решений рассматривают в разделах классической математики, связанных с изучением экстремумов функций, в математическом программировании. Математическое программирование является одним из разделов исследования операций – прикладного направления кибернетики, используемого для решения практических организационных задач. Задачи математического программирования находят применение в различных областях человеческой деятельности, где необходим выбор одного из возможных образов действий (программ действий).

Значительное число задач, возникающих в обществе, связано с управляемыми явлениями, т. е. с явлениями, регулируемыми на основе сознательно принимаемых решений. Притом ограниченном объеме информации, который был доступен на ранних этапах развития общества, принималось оптимальное в некотором смысле решение на основании интуиции и опыта, а затем, с возрастанием объема информации об изучаемом явлении, – с помощью ряда прямых расчетов. Так происходило, например, создание календарных планов работы промышленных предприятий.

Совершенно иная картина возникает на современном промышленном предприятии с многосерийным и многономеклатурным производством, когда объем входной информации столь велик, что его обработка с целью принятия определенного решения невозможна без применения современных электронных вычислительных машин. Еще большие трудности возникают в связи с задачей о принятии наилучшего решения.

Под принятием решений в исследовании операций понимают сложный процесс, в котором можно выделить следующие основные этапы:

1-й этап. Построение качественной модели рассматриваемой проблемы, т. е. выделение факторов, которые представляются наиболее важными, и установление закономерностей, которым они подчиняются. Обычно этот этап выходит за пределы математики.

2-й этап. Построение математической модели рассматриваемой проблемы, т. е. запись в математических терминах качественной модели. Таким образом, математическая модель – это записанная в математических символах абстракция реального явления, так конструируемая, чтобы анализ ее давал возможность проникнуть в сущность явления. Математическая модель устанавливает соотношения между совокупностью переменных – параметрами управления явлением. Этот этап включает также построение целевой функции переменных, т. е. такой числовой характеристики, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения. Итак, в результате этих двух этапов формируется соответствующая математическая задача. Причем, второй этап уже требует привлечения математических знаний.

3-й этап. Исследование влияния переменных на значение целевой функции. Этот этап предусматривает владение математическим аппаратом для решения математических, задач, возникающих на втором этапе процесса принятия, решения.

Широкий класс задач управления составляют такие экстремальные задачи, в математических моделях которых условия на переменные задаются равенствами и неравенствами. Теория и методы решения этих задач как раз и составляют содержание математического программирования. На третьем этапе, пользуясь математическим аппаратом, находят решение соответствующих экстремальных задач. Обратим внимание на то, что задачи математического программирования, связанные с решением практических вопросов, как правило, имеют большое число переменных и ограничений. Объем вычислительных работ для нахождения соответствующих решений столь велик, что весь процесс не мыслится без применения современных электронных вычислительных машин (ЭВМ), а значит, требует либо создания программ для ЭВМ, реализующих те или иные алгоритмы, либо использования уже имеющихся стандартных программ.

4-й этап. Сопоставление результатов вычислений, полученных на 3-м этапе, с моделируемым объектом, т. е. экспертная проверка результатов (критерий практики). Таким образом, на этом этапе устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации. Здесь возможны два случая:

1-й случай. Если результаты сопоставления неудовлетворительны (обычная ситуация на начальной стадии процесса моделирования), то переходят ко второму циклу процесса. При этом уточняется входная информация о моделируемом объекте и в случае необходимости уточняется постановка задачи (1-й этап), уточняется или строится заново математическая модель (2-й этап), решается соответствующая математическая задача (3-й этап) и, наконец, снова проводится сопоставление (4-й этап).

2-й случай. Если результаты сопоставления удовлетворительны, то модель принимается. Когда речь идет о неоднократном использовании на практике результатов вычислений, возникает задача подготовки модели к эксплуатации. Предположим, например, что целью моделирования является создание календарных планов производственной деятельности предприятия. Тогда эксплуатация модели включает в себя сбор и обработку информации, ввод обработанной информации в ЭВМ, расчеты на основе разработанных программ календарных планов и, наконец, выдачу результатов вычислений (в удобном для пользователей виде) для их использования в сфере производственной деятельности.

В математическом программировании можно выделить два направления.

К первому, уже вполне сложившемуся направлению – собственно математическому программированию – относятся детерминированные задачи, предполагающие, что вся исходная информация является полностью определенной.

Ко второму направлению – так называемому стохастическому программированию – относятся задачи, в которых исходная информация содержит элементы неопределенности, либо когда некоторые параметры задачи носят случайный характер с известными вероятностными характеристиками. Так, планирование производственной деятельности зачастую производится в условиях неполной информации о реальной ситуации, в которой будет выполняться план. Или, скажем, когда экстремальная задача моделирует работу автоматических устройств, которая сопровождается случайными помехами. Заметим, что одна из главных трудностей стохастического программирования состоит в самой постановке задач, главным образом из-за сложности анализа исходной информации.

Традиционно в математическом программировании выделяют следующие основные разделы.

Линейное программирование – целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств. В свою очередь в линейном программировании существуют классы задач, структура которых позволяет создать специальные методы их решения, выгодно отличающиеся от методов решения задач общего характера. Так, в линейном программировании появился раздел транспортных задач.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Линейное программирование: постановка задач и графическое решение

Общая задача линейного программирования.

Геометрическая интерпретация задачи линейного программирования.

Графический метод решения задачи линейного программирования.

Примеры задач, решаемых графическим методом.

Обобщение графического метода решения задач линейного программирования.

Линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. Казалось бы, что для исследования линейной функции многих переменных на условный экстремум достаточно применить хорошо разработанные методы математического анализа, однако невозможность их использования можно довольно просто проиллюстрировать.

Действительно, путь необходимо исследовать на экстремум линейную функцию Z = С1х12х2+. +СNxN

при линейных ограничениях

Так как Z - линейная функция, то = Сj (j = 1, 2, . n), то все коэффициенты линейной функции не могут быть равны нулю, следовательно, внутри области, образованной системой ограничений, экстремальные точки не существуют. Они могут быть на границе области, но исследовать точки границы невозможно, поскольку частные производные являются константами.

Для решения задач линейного программирования потребовалось создание специальных методов. Особенно широкое распространение линейное программирование получило в экономике, так как исследование зависимостей между величинами, встречающимися во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные.

Общая задача линейного программирования

Даны линейная функция

и система линейных ограничений

где аij, Ьj и Сj - заданные постоянные величины.

Найти такие неотрицательные значения х1, х2, . хn, которые удовлетворяют системе ограничений (1.2) и доставляют линейной функции (1.1)минимальное значение.

Общая задача имеет несколько форм записи.

Векторная форма записи. Минимизировать линейную функцию Z = СХ при ограничениях

состоят соответственно из коэффициентов при неизвестных и свободных членах.

Матричная форма записи. Минимизировать линейную функцию, Z = СХ при ограничениях АХ = А0, Х 0, где С = (с1, с2, . сN) - матрица-cтрока; А = (аij) - матрица системы;

Х - матрица-столбец, А0 - матрица-столбец

Запись с помощью знаков суммирования. Минимизировать линейную функцию Z = Сjхj при ограничениях

0пределение 1. Планом или допустимым решением задачи линейного программирования называется Х = (х1, х2, . хN), удовлетворяющий условиям (1.2) и (1.3).

0пределение 2. План Х = (х1, х2, . хN) называется опорным, если векторы А (i = 1, 2, . N), входящие в разложение (1.4) с положительными коэффициентами х , являются линейно независимыми.

Так как векторы А являются N-мерными, то из определения опорного плана следует, что число его положительных компонент не может превышать М.

0пределение 3. Опорный план называется невырожденным, если он содержит М положительных компонент, в противном случае опорный план называется вырожденным.

0пределение 4. Оптимальным планом или оптимальным решением задачи линейного программирования называется план, доставляющий наименьшее (наибольшее) значение линейной функции.

В дальнейшем рассмотрено решение задач линейного программирования, связанных с нахождением минимального значения линейной функции. Там, где необходимо найти максимальное значение линейной функции, достаточно заменить на противоположный знак линейной функции и найти минимальное значение последней функции. Заменяя на противоположный знак полученного минимального значения, определяем максимальное значение исходной линейной функции.

Геометрическая интерпретация задачи линейного программирования.

Рассмотрим задачу линейного программирования, система ограничений которой задана в виде неравенств.

Найти минимальное значение линейной функции

Совокупность чисел х1, х2, . хN, удовлетворяющих ограничениям (1.6) и (1.7), называется решением. Если система неравенств (1.6) при условии (1.7) имеет хотя бы одно решение, она называется совместной, в противном случае - несовместной.

Рассмотрим на плоскости х1Ох2 совместную систему линейных неравенств

Это все равно, что в системе (1.6) - (1.7) положить N=2. Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой

ai1x1 + ai2x2 = bi ,(i = 1, 2, . m). Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми х = 0, х = 0. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы (рис. 1.1).

Совокупность этих точек (решений) назовем многоугольником решений. Он может быть точкой, отрезком, лучом, много-угольником, неограничен-ной многоугольной облас-тью.

Если в системе ограничений (1.6) - (1.7) n = 3, то каждое нера-венство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого ai1x1 + ai2x2 + ai3x3 = bi ,(i = 1, 2, . n), а условия неотрицательности – полупрост-ранства с граничными плоскостями соответственно хj = 0 (j = 1, 2, 3). Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений. Многогранник решений может быть точкой, отрезком, лучом, многоугольником, многогранником, многогранной неограниченной областью. Пусть в системе ограничений (1.6) - (1.7) n 3; тогда каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью ai1x1 + ai2x2 + aiNxN = bi (i = 1, 2, . m), а условия неотрицательности – полупространства с граничными гиперплоскостями хj 0 (j = 1, 2, . n).

Если система ограничений совместна, то по аналогии с трехмерным пространством она образует общую часть n-мерного пространства, называемую многогранником решений, так как координаты каждой его точки являются решением.

Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.

Графический метод решения задачи линейного программирования.

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного простран6тва, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Найти минимальное значение функции

Допустим, что система (2.2) при условии (2.3) совместна и ее многоугольник решений ограничен. Каждое из неравенств (2.2) и (2.3), как отмечалось выше, определяет полуплоскость с граничными прямыми: ai1x1 + ai2x2 + ai3x3 = bi,(i = 1, 2, . n), х1=0, х2=0. Линейная функция (2.1) при фиксированных значениях Z является уравнением прямой линии: С1х1 + С2х2 = const. Построим многоугольник решений системы ограничений (2.2) и график линейной функции (2.1) при Z = 0 (рис. 2.1). Тогда поставленной задаче линейного прграммирования можно дать следующую интерпретацию. Найти точку многоугольника решений, в которой прямая С1х1 + С2х2 = const опорная и функция Z при этом достигает минимума.

Значения Z = С1х1 + С2х2 возрастают в направлении вектора N =(С1, С2), поэтому прямую Z = 0 передвигаем параллельно самой себе в направлении вектора Х. Из рис. 2.1 следует, что прямая дважды становится опорной по отношению к многоугольнику решений (в точках А и С), причем минимальное значение принимает в точке А. Координаты точки А (х1, х2) находим, решая систему уравнений прямых АВ и АЕ.

Если многоугольник решений представляет собой неограниченную многоуголь-ную область, то возможны два случая.

Случай 1. Прямая С1х1 + С2х2 = const, передвигаясь в направлении вектора N или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу (рис. 2.2).

Случай 2. Прямая, пере-двигаясь, все же становится опорной относительно многоу-гольника решений (рис. 2.2, а – 2.2, в). Тогда в зави-симости от вида области ли-нейная функция может быть ограниченной сверху и неограниченной снизу (рис. 2.2, а), ограниченной снизу и неограниченной сверху (рис. 2.2, б), либо ограниченной как снизу, так и сверху (рис. 2.2, в).

2.1. Примеры задач, решаемых графическим методом.

Решим графическим методом задачи использования сырья и составления рациона.

Задача использования сырья. Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукци, а так же величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.1.

Методы линейного программирования, двойственность в ЛП [24.04.13]

В нашей работе мы рассмотрим в теоретической части какие методы линейного программирования существуют, раскроем двойственность в линейном программировании, а также решим 4 задачи в практической части работы.

1. Теоретическая часть. Методы линейного программирования, двойственность в линейном программировании

Линейное программирование — это частный раздел оптимального программирования. В свою очередь оптимальное (математическое) программирование — раздел прикладной математики, изучающий задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении. Необходимым условием использования оптимального.

Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж. Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования (ЗЛП); направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.

2.Практическая часть. Решение задач

2.1. Задача №1

Решите графическим методом типовую задачу оптимизации. Осуществите проверку правильности решения с помощью средств MS Excel (надстройка Поиск решения).

Условие: Фирма выпускает два вида комплексных удобрений для газонов в упаковке – обычное и улучшенное. Обычное удобрение стоит 3 ден. ед./уп. и включает 3 кг азотных, 4 кг фосфорных и 1 кг калийных удобрений. Улучшенное удобрение стоит 4 ден. ед./уп. и включает 2 кг азотных, 6 кг фосфорных и 3 кг калийных удобрений. Для подкормки некоторого газона требуется по меньшей мере 10 кг азотных, 20 кг фосфорных и 7 кг калийных удобрений. Определите, сколько и каких удобрений нужно купить, чтобы обеспечить эффективное питание растений и минимизировать стоимость покупки. Постройте экономико-математическую модель задачи, дайте необходимые комментарии к ее элементам и получите решение графическим методом. Что произойдет, если решать задачу на максимум, и почему?

2.2. Задача №2

Рассчитайте параметры моделей экономически выгодных размеров заказываемых партий.

а) оптимальный объем заказа;

б) годовые расходы на хранение запасов;

в) период поставок;

М = 900 упаковок – годовой спрос

t = 3 дня – время поставки

К = 200 руб. – стоимость заказа (накладные расходы)

h = 2 руб. 60 коп. - затраты на хранение одной упаковки (удельные издержки хранения)

Т = 300 дней – количество рабочих дней в году

2.3. Задача №3

В бухгалтерии организации в определенные дни непосредственно с сотрудниками работают два бухгалтера. Если сотрудник заходит в бухгалтерию для оформления документов (доверенностей, авансовых отчетов и пр.) в тот момент, когда оба бухгалтера заняты обслуживанием ранее обратившихся коллег, то он уходит из бухгалтерии, не ожидая обслуживания. Статистический анализ показал, что среднее число сотрудников, обращающихся в бухгалтерию в течение часа, равно 16 , а среднее время, которое затрачивает бухгалтер на оформление документа, – 10 мин.

Оцените основные характеристики работы данной бухгалтерии как СМО с отказами (указание руководства не допускать непроизводительных потерь рабочего времени!). Определите, сколько бухгалтеров должно работать в бухгалтерии в отведенные дни с сотрудниками, чтобы вероятность обслуживания сотрудников была выше 85%.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Решение задачи линейного программирования.

Цель работы: Приобретение навыков построения математических моделей задач линейного программирования, получение навыков решения задач в Microsoft Excel.

Задание: Решить задачу графическим методом, и с использованием надстройки Поиск решения Microsoft Excel, сравнить полученные результаты.


Последовательность выполнения работы:

1 Решить задачу графическим методом

Построим область допустимых решений, для этого решим систему неравенств:


и вектор нормали опорной прямой 2х1+2х2=0

стр.jpg

АВС D – область допустимых решений. Перемещая опорную прямую в сторону вектора нормали, последняя точка, которая нам встречается из ABCD – это C , поэтому в точке C (3; 5) целевая функция достигаем максимума. Найдем значение целевой функции в этой точке:

F (С)=2∙3+2∙5=16.

Таким образом, F max =16 при X * =(3; 5) – решение данной задачи.


Рис. 1. Исходные данные и формулы задачи

Выберем команду Данные ® Анализ ® Поиск решения и заполним открывшееся диалоговое окно (см. рис. 2).


Нажмем на кнопку Параметры, откроется диалоговое окно Параметры поиска решения, в котором выберем Линейная модель и Неотрицательные значения (см. рис. 3).


Рис. 3. Параметры поиска решения


Нажав на ОК получим результаты, которые показаны на рис. 5.


Рис. 5. Результаты решения задачи

Таким образом, максимальное значение целевой функции равно 16 (ячейка С4) при х1=3 (ячейка А2) и х2=5 (ячейка В2).

Вывод: Данная задача решена графическим методом и с помощью программы MS Excel и в результате был получен один и тот же ответ F max =16 при X * =(3; 6).

Лабораторная работа 2 Решение задачи линейного программирования с использованием метода искусственных переменных.

Цель работы: Приобретение навыков решения задач линейного программирования с использованием метода искусственных переменных.

Задание: Построить математическую модель для задачи индивидуального варианта, решить задачу с использованием метода искусственных переменных, проверить полученные результаты с использованием надстройки Поиск решения Microsoft Excel, и дать экономическую интерпретацию полученных результатов.

Последовательность выполнения работы:

Для изготовления двух видов продукции x1 и x2 используют 4 вида ресурсов. Используя заданную модель задачи, определить план выпуска продукции, приносящий максимальную прибыль.

В индивидуальном варианте, целевая функция отражает прибыль от изготовления продукции, коэффициенты при переменных x1 и x2 – прибыль от производства соответствующего вида продукции. Неравенства задают ограничения по ресурсам.

Математическая модель задачи:


Приведем данную задачу к каноническому виду:


Чтобы найти начальное опорное решение с базисом из единичных векторов, водим в последнее уравнение-ограничение искусственную переменную, получаем расширенную задачу:

Читайте также: