Методы измерения интервалов времени реферат

Обновлено: 02.07.2024

Содержание работы
Файлы: 1 файл

РЕФЕРАТ.docx

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………..14

введение

Тайна времени увлекала человеческий разум не одно тысячелетие. Самые глубокие умы человечества стремились проникнуть в нее. До сих пор не преодолены многие тупики, в которые заводила эта проблема. А когда удавалось освободиться от одних, настигали другие. Искусство и литература, наука, философия и теология вовлечены в этот нескончаемый процесс. Последние столетия бурно развивающаяся наука пролила некоторый свет на природу времени, изучив специфические для соответствующей области науки проявления временного. В итоге, оптимистические ожидания переросли в осознание того, что ускользает опять целостное проникновение в сущность времени [1, c. 172].

Время многолико. Это и явление Мира, обнаруживающее себя изменениями внутри и вне нас, и способ измерения изменений, именуемый часами, и конструктор человеческого разума, позволяющий описывать и сопоставлять изменения друг с другом. Почему проблемы времени оказываются столь важными для всего человечества? Представления о времени пронизывают и науку, и культуру, и быт, и технологическое окружение человека [1, c. 172; 6].

В своей работе я расскажу, что же такое время, дам понятие времени. А также опишу методы измерения времени, которые весьма разнообразны. Проблемой измерения времени, независимо от способа и системы его отсчёта, занимаются различные разделы науки и техники. Технические средства – счетчики времени (часы и другие приборы) для счёта время и воссоздания его единиц и их долей разрабатываются в хронометрии. Астрономия даёт возможность с помощью специальных наблюдений небесных светил контролировать работу счётчиков времени и определять поправки к шкалам времени.

СОВРЕМЕННЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ВРЕМЕНИ

Уже в глубокой древности в основу измерения больших и малых промежутков времени легли астрономические явления, обусловленные движением небесных светил, прежде всего, Земли и Луны. На современном уровне развития науки представляется, что счет времени Вселенной начат с события, произошедшего почти 15 миллиардов лет назад, после которого Вселенная расширяется. Время измеряют путем наблюдения за периодически повторяющимися процессами. В качестве единицы для измерения больших интервалов времени стал применяться год, определяемый периодом обращения Земли вокруг Солнца; с этой единицей время связан цикл изменений в природе. Более мелкой единицей стал служить цикл смены лунных фаз (синодический месяц), который, несколько изменившись, превратился в существующий поныне месяц [3, c. 280].

Сутки связаны с циклом смены светлого и тёмного времени и обусловлены вращением Земли. Для отсчёта ещё более мелких интервалов времени сутки делились на часы, причём первоначально светлое время суток делилось на 12 дневных часов, а тёмное – на 12 ночных часов, различных по длине и не имеющих постоянной продолжительности в течение года. Позже было введено деление суток на 24 равных часа. Сутки были первой естественной единицей меры времени, регулировавшей труд и отдых. Сейчас понятно, что периодическая смена дня и ночи происходит из-за вращения Земли вокруг своей оси. Есть два вида солнечного времени – истинное и среднее солнечное [3, c. 281].

Промежуток времени между двумя последовательными кульминациями центра Солнца на одном и том же меридиане, равный периоду вращения Земли, называют истинными солнечными сутками. Но измерять ими время тоже неудобно, они в июне короче на 51 с, чем в январе. Дело в том, что Земля движется по орбите вокруг Солнца неравномерно: вблизи перигелия (в январе) ее скорость наибольшая, а вблизи афелия (в июне) — наименьшая (второй закон Кеплера). Потому и истинные солнечные сутки непостоянны, и вместо них используют сутки, равные средней длине истинных солнечных суток за год. Кроме того, из-за движения Солнца по эклиптике происходит видимое годичное движение Солнца с запада на восток, т.е. в направлении против вращения. Ввели понятие среднего Солнца, звездных суток и звездного времени [5].

Звездные сутки определяются периодом вращения Земли вокруг своей оси относительно любой звезды. Но звезды тоже имеют собственные движения. Условились определять длительность звездных суток как промежуток времени между двумя последовательными кульминациями точки весеннего равноденствия, находящейся на одном и том же меридиане. Оказалось, что из-за прецессии средние звездные сутки уменьшаются на 0,0084 секунды, и они на 3 минуты 56 секунд короче средних солнечных. Звездное время очень важно в астрономии, оно определяет положение светил, а в обыденной жизни используется солнечное время. И за среднюю единицу солнечных суток приняли 24 часа 3 минуты 56,5554 секунды звездного времени. Измерение солнечного времени основано на видимом суточном движении Солнца [3, c. 281; 5].
Истинный полдень наступает на разных меридианах Земли в разное время, и для удобства принято соглашение (по идее канадского ученого С.Флешинга) о делении земного шара на часовые пояса, которые проходят через 15 градусов по долготе, начиная с меридиана Гринвича. Это – Лондонский меридиан нулевой долготы, и пояс назван нулевым (западноевропейским). Время 1-го часового пояса (Рим, Берлин, Осло) названо среднеевропейским, а 2-го – восточноевропейским. Всего часовых поясов – 24, внутри каждого пояса время принимается одинаковым – среднепоясным. Но территориальное деление не совпадает с делением на часовые пояса, и часто их проводят приблизительно по рекам или административным границам. Примерно на 180-градусном меридиане происходит по договору линия перемены дат, т. е. день начинается в Японии и на Камчатке, потом в Сибири, Китае и Австралии, затем в Европе и Африке, потом – в Америке и заканчивается на Аляске. При пересечении линии изменения дат на самолете в восточном направлении одно и то же число приписывается двум дням, а в западном — один день теряется. Кроме того, в ряде стран указами вводят часовой сдвиг – переход на зимнее или летнее время. Согласованное решение о введении поясного времени приняли на Международной конференции в 1883 г. В нашей стране, простирающейся на 11 часовых поясов, поясное время ввели в 1919 г., взяв за основу международную систему часовых поясов и существовавшие тогда административные границы [5].

С развитием хозяйственной деятельности человека к проблеме измерения времени стали предъявлять более высокие требования. Совершенствовались приборы для измерения времени – часы, что позволяло вводить всё более точные системы счёта времени применительно к практическим и научным требованиям. В современных часах система счёта времени задаётся тем или иным искусственным периодическим процессом: качанием балансира (морские хронометры, часы в быту и др.), маятника (астрономические часы и др.), колебанием кварцевой пластинки (кварцевые часы). В наиболее точных кварцевых часах стабильность колебаний кварца контролируется квантовыми генераторами, действие которых основано на периодических процессах, происходящих в атомах и молекулах (атомные часы).
Секунда – общепринятая единица времени, примерно с периодом 1 секунды бьется пульс человека. Исторически эта единица связана с делением суток на 24 часа, 1 часа – на 60 минут, 1 минуты – на 60 секунд. До 1964 г. международная единица времени была основана на суточном вращении Земли. Но продолжительность суток оказалась подверженной разным вариациям и зависящей от положения Земли на орбите при ее движении вокруг Солнца. Изменения скорости вращения на протяжении года составляют около 10-8 секунд. Поэтому за стандарт были выбраны средние солнечные сутки 1900 г. Но солнечные сутки примерно на 4 минуты длиннее звездных, т. е. времени поворота на 360° [3, c. 282].

Основные приборы и средства измерений частоты, периода и других временных параметров электрических сигналов. Методы переноса частоты СВЧ-колебания. Цифровой способ измерения частоты гармонического сигнала. Составляющие погрешности измерения частоты.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 20.02.2014
Размер файла 217,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ИЗМЕРЕНИЕ ЧАСТОТЫ И ИНТЕРВАЛОВ ВРЕМЕНИ

С измерением частоты и интервалов времени связано решение многих научных и технических проблем.

Измерение частоты, периода и других временных параметров электрических сигналов является одной из важнейших задач в радиотехнике и телекоммуникационных системах.

Аппаратура для частотно-временных измерений образует единый комплекс приборов, обеспечивающий возможность проведения измерений с непосредственной их привязкой к Государственному эталону частоты и времени. Это фактически гарантирует возможность принципиально высокой точности измерений.

Основными измерительными приборами и средствами данных измерений являются:

- приемники сигналов эталонных частот и компараторы;

- преобразователи частоты сигналов;

- измерители интервалов времени цифровые.

Базой для частотно-временных измерений служит группа Государственных стандартов частоты - высокоточных мер частоты и времени, объединяющая рубидиевый, цезиевый, водородный и кварцевый стандарты. Привязка к ним практических измерений осуществляется приемниками сигналов эталонных частот, передаваемых радиостанциями Государственной службы частот и времени, а также компараторами и преобразователями частоты сигнала. Последние применяются для переноса частоты или спектра измеряемого сигнала в тот диапазон частот, где наиболее целесообразно производить необходимое измерение. Измерение частоты чаще всего выполняется цифровым (дискретного счета) методом, на основе которого создаются цифровые (электронно-счетные) частотомеры.

К достоинствам этого метода относится высокая точность измерений, широкий диапазон измеряемых частот, возможность обработки результатов наблюдений с помощью вычислительных устройств (микропроцессоров, персональных компьютеров).

Цифровые частотомеры позволяют измерять не только частоту колебаний, но и интервалы времени.

Для измерения частоты используются и методы сравнения с частотой источника образцовых колебаний (резонансный, гетеродинный и с помощью осциллографа).

Однако гетеродинные частотомеры используются редко, а гетеродинное преобразование частоты обычно применяется для переноса частоты СВЧ колебания в область, удобную для измерения цифровыми приборами.

Методы сравнения используются в основном для градуировки генераторов различных измерительных приборов. Для их реализации необходим образцовый генератор более высокой точности и устройство сравнения (сличения) частот.

Перечислим методы, основанные на использовании осциллографа в качестве устройства сравнения:

- определение частоты методом интерференционных фигур (фигур Лиссажу);

- определение интервалов времени (периода, длительности импульса и т. д.) с использованием калиброванной развертки осциллографа;

- определение частоты с помощью яркостных меток на круговой развертке.

Погрешность измерения интервала времени с помощью осциллографа вызвана нелинейностью его развертки и погрешностями отсчета начала и конца интервала.

Все три перечисленных метода имеют невысокую точность (относительная погрешность измерений порядка).

Верхняя граница диапазона измеряемых частот определяется параметрами осциллографа и для большинства из них не превышает 250 Мгц.

Цифровой метод измерения частоты.

Цифровой (дискретного счета) метод измерения частоты реализован в цифровых (электронно-счетных - ЭСЧ) частотомерах.

Данные приборы удобны в эксплуатации, имеют широкий диапазон измеряемых частот (от нескольких герц до сотен мегагерц), позволяют получить результат измерения с высокой точностью - относительная погрешность измерения частоты.

Цифровые частотомеры являются многофункциональными приборами. В зависимости от режима их работы можно проводить измерение не только частоты и отношения двух частот, но и интервалов времени (периода следования периодических сигналов и интервала, заданного временным положением двух импульсов).

Принцип измерения частоты гармонического сигнала цифровым методом поясняет рис. 1, где приведены структурная схема цифрового частотомера в режиме измерения частоты и временные диаграммы к его работе. Исследуемый гармонический сигнал, имеющий частоту, подается на входное устройство (ВУ), усиливающее или ослабляющее его до значения, требуемого для работы последующего устройства частотомера (рис. 1, а).

Снимаемый с выхода ВУ гармонический сигнал (рис. 1, б) поступает на первый формирователь импульсов (Ф1), преобразующий его в последовательность коротких однополярных импульсов u2, следующих с периодом и называемых счетными.

Причем передние фронты этих импульсов практически совпадают с моментами перехода сигнала через нулевое значение на оси времени при его возрастании.

Формирователь Ф1 состоит из усилителя-ограничителя и компаратора (триггера Шмитта).

Рис. 1. - Цифровой частотомер в режиме измерения частоты:

а - структурная схема;

б - временные диаграммы.

Счетные импульсы u2 поступают на один из входов временного селектора (ВС).

На второй вход которого от устройства формирования и управления (УФУ) подается строб-импульс U3 прямоугольной формы и калиброванной длительности:

Интервал времени Т0 называется временем счета.

Временной селектор открывается строб импульсом u3, и в течение его длительности пропускает группу (пакет) импульсов u2 на вход счетчика (СЧ). В результате на счетчик поступает пакет из Nx импульсов u4.

Из рис. 1б следует, что:

u - погрешности дискретизации начала и конца интервала T0, вызванные случайным положением строб импульса относительно счетных импульсов;

u2 - общая погрешность дискретизации.

Пренебрегая в (1) погрешностью, получаем, что число импульсов в пакете:

Измеряемая частота пропорциональна числу счетных импульсов, поступающих на счетчик:

Для формирования строб импульса на устройство УФУ поступают короткие импульсы с периодом Т0 (на рисунке для упрощения не показаны) от схемы, включающей генератор образцовой частоты (ГОЧ) и второй формирователь импульсов (Ф2), аналогичный формирователю импульсов для показателя Ф1.

В составе ГОЧ имеются кварцевый генератор образцовой частоты и декадный делитель частоты с коэффициентом деления (каждая декада уменьшает частоту ?кв в десять раз).

Период импульсов на выходе формирователя Ф2 и длительность строб импульса равны периоду сигнала на выходе делителя частоты, т. е.:

Поэтому выражение (2) можно представить в виде:

Можно дискретно изменять вариацией Кд, т. е., за счет изменения числа декад делителя Д.

Счетчик подсчитывает Nx импульсов и выдает соответствующий код в цифровое отсчетное устройство ЦОУ.

ЦОУ отображает число Nx, соответствующее измеряемой частоте fx в выбранных единицах.

Например, если за счет изменения КД выбрано n = 6, то число Nx, отображаемое на ЦОУ, соответствует частоте выраженной в МГц.

Перед началом измерений УФУ сбрасывает показания счетчика в нуль.

Погрешность измерения частоты.

Погрешность измерения частоты fx имеет систематическую и случайную составляющие.

Систематическая составляющая вызывается в основном долговременной нестабильностью частоты кварцевого генератора fкв. Ее уменьшают путем термостатирования кварца или за счет применения в кварцевом генераторе элементов с термокомпенсацией.

При этом относительное изменение частоты fкв за сутки обычно не выше дкв = 5 * 10 -9 .

Погрешность за счет неточности установки номинального значения частоты fкв уменьшается калибровкой кварцевого генератора по сигналам эталонных значений частоты, передаваемых по радио, или с помощью перевозимых квантовых стандартов частоты.

Относительная погрешность калибровки кварцевого генератора не превосходит (1…5)10 -10 .

Очень часто требуемая стабильность частоты достигается введением в схему кварцевого генератора системы фазовой автоподстройки (ФАПЧ).

Случайная составляющая определяется погрешностью дискретизации:

Поскольку взаимная синхронизация строб импульса и счетных импульсов отсутствует, погрешности, определяющие на рис. 1, б положение начала и конца строб импульса между соседними двумя счетными импульсами, могут принимать во времени с одинаковой вероятностью значения от нуля до Тx.

Поэтому погрешности и являются случайными и распределены по равномерному закону.

Вследствие независимости этих погрешностей общая погрешность дискретизации распределена по треугольному закону с предельными значениями ±Тx.

Максимальную погрешность ±Тx удобно учитывать через эквивалентное случайное изменение числа счетных импульсов на ±1 импульс. При этом максимальная абсолютная погрешность дискретизации может быть определена разностью значений частоты fx получаемых по формулам (2) или (3) при:

Соответствующая максимальная относительная погрешность:

С учетом изложенного суммарная относительная погрешность измерения частоты цифрового частотомера нормируется в процентах величиной:

Отсюда следует, что суммарная погрешность измерения из-за погрешности дискретизации увеличивается по мере уменьшения измеряемой частоты fx. При достаточно малой частоте fx она может превзойти допустимое значение даже при максимальном времени счета Т0, которое в цифровых частотомерах обычно не превышает 1 с или 10 с. В этом случае целесообразно измерить период:

А затем вычислить искомую частоту fx. Для уменьшения влияния погрешности дискретизации на результат измерения частоты fx можно провести ее многократные наблюдения, а затем выполнить их статистическую обработку.

Обычно диапазон измеряемых частот цифровых частотомеров ограничивается снизу погрешностью дискретизации, а сверху - конечным быстродействием используемых счетчиков-делителей.

Верхний предел измерения частоты обычно не превосходит 200 МГц, и его расширяют способом гетеродинного преобразования (переноса) измеряемой частоты в область более низких частот.

Необходимо отметить, что в структурную и принципиальную схемы частотомера обязательно включается схема автоматической регулировки усиления (АРУ) и подавления внешних помех. При малом уровне входного сигнала (ниже милливольта) измерения прекращаются и показания счетчика сбрасываются на нуль. В устройстве предусмотрены также меры защиты от перегрузок. В современных схемах цифровых частотомеров широко применяются синтезаторы частот, создающие сигналы с дискретной сеткой частот. Цифровые частотомеры с программно-управляемыми синтезаторами частот и встроенными микропроцессорами являются перспективными измерительными приборами благодаря высокой точности, широкому диапазону измеряемых частот и удобству включения в автоматизированные измерительные системы.

Цифровой метод измерения интервалов времени.

Принцип измерения периода гармонического сигнала цифровым методом с помощью цифрового частотомера поясняется рис. 2, где приведены структурная схема устройства в режиме измерения периода гармонического колебания и соответствующие его работе временные диаграммы. Измерение интервала времени Тх цифровым методом основано на заполнении его импульсами, следующими с образцовым периодом T0, и подсчете числа Мх этих импульсов.

Рис. 2. - Цифровой частотомер в режиме измерения периода:

а - структурная схема;

б - временные диаграммы.

Гармонический сигнал, период Тх которого требуется измерить, после прохождения входного устройства ВУ (выходной сигнал ВУ) и формирователя импульсов Ф2 преобразуется в последовательность коротких импульсов с аналогичным периодом.

В устройстве формирования и управления УФУ из них формируется строб-импульс прямоугольной формы и длительностью, поступающий на один из входов временного селектора ВС.

На второй вход этого селектора подаются короткие импульсы с образцовым периодом следования, созданные формирователем Ф1 из колебаний генератора опорной частоты ГОЧ.

Временной селектор ВС пропускает на счетчик СЧ Мх счетных импульсов в течение времени Тх, равном длительности строб импульса. Измеряемый период, как следует из рис. 2 б:

- общая погрешность дискретизации.

Без учета в формуле (5) погрешности число импульсов, поступившее на счетчик:

- а измеряемый период пропорционален:

Выходной код счетчика СЧ, выдаваемый на цифровое отсчетное устройство ЦОУ, соответствует числу подсчитанных им счетных импульсов Мх, а показания ЦОУ - периоду Тх, поскольку период следования счетных импульсов u5 выбирается из соотношения To = 10 -n , где n - целое число. Так, например, при n = 6 ЦОУ отображает число Мх, соответствующее периоду Тх, выраженному в мкс.

Погрешность измерения периода Тх, как и при измерении частоты, имеет систематическую и случайную составляющие.

Систематическая составляющая зависит от стабильности дкв образцовой частоты ГОЧ (его кварцевого генератора), а случайная определяется в основном погрешностью дискретизации ?tд. Максимальное значение этой погрешности удобно учитывать через эквивалентное изменение числа счетных импульсов Мх на ±1. При этом максимальная абсолютная погрешность дискретизации может быть определена разностью двух значений периода Тх, получаемых по формуле (6) при:

На погрешность измерения влияют также шумы в каналах формирования строб импульса и счетных импульсов (рис. 2, а), вносящие в их положение временную модуляцию по случайному закону. Однако в реальных приборах с большим отношением сигнал/шум погрешность измерения за счет влияния шума пренебрежимо мала по сравнению с погрешностью дискретизации. электрический сигнал цифровой

Суммарная относительная погрешность измерения периода определяется в процентах по формуле:

Из выражения (7) следует, что из-за погрешности дискретизации погрешность измерения периода Тх резко увеличивается при его уменьшении. Повышения точности измерений можно добиться за счет увеличения частоты генератора ГОЧ (путем умножения частоты его кварцевого генератора в Ку раз), т. е., за счет увеличения числа счетных импульсов Мх. С этой же целью в схему после входного устройства вводят делитель частоты исследуемого сигнала с коэффициентом деления K (на рис. 2, а не показан). При этом выполняется измерение К периодов Тх и в К раз уменьшается относительная погрешность дискретизации.

Погрешность дискретизации можно уменьшить и способом измерений с многократными наблюдениями. Однако при этом значительно увеличивается время измерений. В связи с этим разработаны методы, уменьшающие погрешность дискретизации с существенно меньшим увеличением времени измерения. К их числу относится нониусный метод, а также метод интерполяции.

Подобные документы

Цифровые приборы частотно-временной группы. Основа построения цифровых частотометров. Структурная схема ЦЧ, измерение частоты. Погрешности измерения частоты и периода. Повышение эффективности обработки сигналов при оценке частотно-временных параметров.

контрольная работа [843,7 K], добавлен 12.02.2010

лабораторная работа [21,8 K], добавлен 19.12.2014

Структурная схема и принцип работы средства измерений прямого и уравновешивающего преобразования. Назначение и сферы применения время-импульсного цифрового вольтметра. Нахождение результата и погрешности косвенного измерения частоты по данным измерения.

контрольная работа [1,3 M], добавлен 17.01.2010

Способы и принципы преобразования частоты. Функциональная схема мультипликативного смешивания. Сложение сигналов промежуточной частоты и гетеродина при аддитивном смешивании. Преобразователь частоты в передатчике, их функции и необходимость использования.

курсовая работа [1,5 M], добавлен 13.10.2012

Принцип работы, структурная схема и дополнительные возможности прямых цифровых синтезаторов частоты (DDS). Сравнительные характеристики синтезаторов DDS и синтезаторов частоты с косвенным синтезом (ФАПЧ). Применение сдвоенных синтезаторов частоты.

Среди цифровых приборов частотно-временной группы электронно-счетные частотомеры (в дальнейшем цифровые частотомеры - ЦЧ) являются наиболее распространенными, что объясняется, их универсальностью, высокими метрологическими и эксплуатационными характеристиками.

В основу построения ЦЧ положены общие принципы, позволяющие реализовать ряд режимов работы прибора для измерения нескольких величин. Функционально полные ЦЧ позволяют измерять следующие величины: частоту, период, отношение двух частот (иногда выраженное в процентах), длительность импульса или интервала времени, задаваемого пользователем; предусматриваются также режим счета событий (импульсов) и использование ЦЧ как источника сигналов с известными (калиброванными) частотами. Режимы работы задаются и выбираются положением ряда переключателей (механических или электронных) и других органов управления.В более простых вариантах исполнения ЦЧ используются для измерения меньшего числа величин (например, одной или двух).


В любом режиме часть структуры ЦЧ остается неизменной и в ней происходит счет числа импульсов , пропорционального измеряемой величине. Эти импульсы проходят через электронный ключ ЭК, находящийся в замкнутом состоянии, на счетчик импульсов СИ. Код числа, образующийся в СИ, поступает на цифровое отсчетное устройство ЦОУ. В состав ЦОУ входит многодекадный цифровой индикатор с перемещающейся, запятой и, как правило, индикатор с обозначением единиц измерения.


Время замкнутого состояния ЭК, называемое временем счета СЧ , определяется родом измеряемой величины, а его конкретное значение рядом соображений, о которых будет сказано ниже.

Измерение частоты

Структурная схема ЦЧ в этом режиме работы приведена на рис.1 а. Напряжение измеряемой частоты fx (рис.1б) подается на вход формирующего устройства (ФУ), назначение которого - формирование сигнала стандартной формы при достаточно произвольной форме входного сигнала. Обычно в состав ФУ входят усилитель-ограничитель, обеспечивающий заданную амплитуду своего выходного сигнала, и формирователь для обеспечения малой длительности фронта и среза импульсов на выходе ФУ. Частота этих импульсов равна частоте входного сигнала (рис. 1в). Эти импульсы проходят через ЭК на СИ в течение времени счета Т с , которое задается генератором опорной частоты ГОЧ и делителем частоты ДЧ. Частота ГОЧ стабилизирована кварцевым резонатором. Необходимое Т с выбирается переключателем ВРЕМЯ СЧЕТА. При каждом запуске прибора на выходе ДЧ появляется один импульс (рис. 1в), под действием которого замыкается ЭК.

Число импульсов Nx , прошедшее на СИ, определяется приближенной формулой

а значение измеряемой частоты

Измерение периода

Число импульсов Nx и период Tx , приближенно определяются формулами (3) и (4):

Nx = nTx / T такт

Tx = Nx T такт / n

Известно, что частота f и период T связаны формулой l= f T. Поэтому через прямое измерение одной из этих величин можно найти результат косвенного измерения другой.


Погрешности измерения частоты

В режиме измерения частоты в течение Tc подсчитываются импульсы, следующие с измеряемой частотой fx (рис. 3а). Для этого случая имеем:


(5)

Если не принимать специальных мер по синхронизации импульса Tc и импульсов измеряемой частоты (т. е., если не задается принудительно определенное положение этих импульсов по отношению друг к другу), то интервалы t1 и t2 являются независимыми величинами, значения каждой из которых лежит в интервале 0 – Tx и поэтому


Поделив обе части уравнения (5) на произведение Tc Tx , получаем


(6)

и , .

В режиме измерения частоты величина 1/ Tc является ценой единицы младшего разряда счетчика (Cf =1/ Tc ), имеющая размерность Герц (с -1 ). В зависимости от выбранного значения Tc будем иметь С f =1 Гц (Tc =1c), С f =10 Гц (Tc =0,1c), С f =0,1 Гц (Tc =10c) и т. д. Поэтому формулу (6) можно представить в виде



Случайную составляющую погрешности называют погрешностью счета (при более строгом подходе в этой погрешности выделяют две составляющие: погрешность дискретности и погрешность несинхронизации).

Относительное значение этой погрешности равно

, причем .

Другим источником погрешностей ЦЧ является отклонение Tc от номинального значения и его нестабильность. В ЦЧ Tc формируется из целого числа периодов колебаний кварцевого генератора, для которого характерна чрезвычайно высокая стабильность частоты генерируемых им колебаний. Для уменьшения влияния температуры среды в ЦЧ применяется термостатирование генератора.

Таким образом, вторая составляющая погрешности измерения частоты определяется нестабильностью частоты кварцевого генератора


[%] и поэтому .

Следовательно, и .

Суммарные погрешности измерения частоты равны


, [Гц]


, [%]

Погрешности измерения периода . При измерении периода (рис. 3б) в течение Tx (или nTx ) на СИ проходят импульсы с известным периодом следования Ттакт и поэтому (см. рис. 4б)


.

Так же, как и в предыдущем случае, - t1 + t2 является случайной величиной, причем,


, т. е.


.

При измерении n периодов имеем


или


,

что эквивалентно уменьшению цены единицы младшего разряда в n раз.

Период следования импульсов Ттакт задается тем же кварцевым генератором, и все предыдущие замечания в отношении нестабильности Тс полностью справедливы и для этого режима работы. Поэтому

и

Суммарные погрешности (абсолютная и относительная) измерения периода определяются выражениями:


, [c]


, [%]

Повышение эффективности обработки сигналов при оценке частотно-временных параметров

Выбор и оптимизацию алгоритмов обработки данных при оценке частотно-временных параметров исследуемых сигналов выполняют при разработке и построении самых различных радиотехнических систем и приборов, работающих на этих принципах. Наиболее распространенным методом построения аппаратуры и выводы о предельных значениях статистических оценок среднего значения частотно-временных параметров в случае отсутствия априорных данных об исследуемом сигнале, является метод обнаружения и оценки значений неизвестных параметров по максимуму функции правдоподобия, который реализуется в корреляционных и многоканальных устройствах. Трудности, связанные с реализацией таких устройств обеспечивающих потенциальные точностные характеристики, привели к тому, что на практике нашли широкое распространение классические одноканальные цифровые устройства обработки сигналов (цифровые измерители среднего значения мгновенной частоты частотомеры), для которых исследование механизма возникновения и снижения погрешностей при оценке частотно-временных параметров является актуальной задачей исследования. Возможности повышения эффективности обработки сигналов при оценке частотно-временных параметров можно получить, исследуя распространенную модель аддитивной смеси гармонического сигнала и узкополосного детерминированного или случайного процесса:


,

где Um , 0 и 0 - амплитуда, угловая частота и начальная фаза сигнала, а A ( t ) и θ( t) - огибающая и фаза случайного процесса ξ( t) ; U( t), ( t) иΦ( t) - огибающая, случайная фаза и полная фаза аддитивной смеси, представляющая собой случайный нестационарный процесс.

Одной из исследуемых функцией, представляющей практический интерес, является мгновенная частота, связанная с полной фазой известным соотношением:


ω ( t )= d Φ ( t )/ dt =ω0 + ( t) ,

где( t)=( t) - случайная частота, определяемая через производную случайной фазы аддитивной смеси и характеризующая скорость ее изменения.


Оценка математического ожидания случайного процесса (t) на интервале времени усреднения Т в общем виде может быть выполнена по формуле [2]:

где g ( t ) – весовая функция оператора сглаживания, удовлетворяющая условию несмещенности оценки:

Среднее значение мгновенной частоты, вычисляемое классическими цифровыми частотомерами, определяется по приращению полной фазы сигнала на интервале времени усреднения T = tk - t н , то есть используется информация о значениях полной фазы в начале Φ( t н ) и конце Φ( tk ) измерительного интервала с приращением, равным:


или относительно середины измерительного интервала:

Из приведенных аналитических выражений следует, что классический измеритель среднего значения мгновенной частоты реализует операцию дифференцирования фазы сигнала, а (3) является дифференциально-разностным уравнением, для которого существует интегральная форма, являющаяся оператором текущего сглаживания:


совпадающим с (1) при и осуществляет выборку усредненных значений мгновенной частоты с равномерным шагом, кратным времени измерения.

Использование весовой обработки в соответствии с выражением (1), позволяет существенно повысить точность и помехоустойчивость устройств, работа которых основана на использовании формулы (4). Как показано в [2], оптимизация весовой обработки позволяет получать практически потенциальные оценки среднего значения мгновенной частоты при стационарных флуктуациях случайной фазы исследуемого сигнала.

Эффективность весовой обработки при переходе к цифровому измерению среднего значения мгновенной частоты снижается по сравнению с обобщенным алгоритмом (1). При цифровых измерениях с весовой обработкой результатов промежуточных отсчетов искомое значение среднего значения мгновенной частоты определяется в дискретные моменты времени, а оценка среднего значения мгновенной частоты при циклических измерениях производится с интервалом дискретности, пропорциональным времени усреднения, то есть на выходе измерителя формируется функция m1 (ω(кT)) , где к - число циклов усреднения.

Выражение (3) для оценки среднего значения мгновенной частоты при цифровом усреднении классическим измерителем преобразуется к виду:


,

а интегральная форма (4) может быть представлена суммой:


где - интервал квантования по времени, n - количество усредняемых промежуточных временных интервалов. Оператор текущего сглаживания (1) с произвольной весовой функцией g ( t ) преобразуется в аналитическое выражение:

где усредненное значение результирующей оценки мгновенной частоты на интервале времени измерения образуется суммой промежуточных отсчетов средних значений мгновенной частоты взятых с соответствующим весом. Усредненное значение мгновенной частоты по дискретной выборке при этих условиях можно представить как взвешенную сумму разности отсчетов промежуточных значений полной фазы аддитивной смеси на интервале времени измерения:

где - приращение полной фазы исследуемого сигнала на временном интервале t в i -м промежуточном измерении. В соответствии с выражением (7), усредненное значение мгновенной частоты определяется через суммирование приращений полной фазы результирующего сигнала

В связи с квантованием по времени возникает задача выбора интервала квантования случайного нестационарного процесса, обеспечивающего минимальное увеличение дисперсии оценки среднего значения мгновенной частоты гармонического сигнала. Решение этой задачи проведем для дискретной весовой функции Бартлетта, обладающей высокой эффективностью сглаживания флуктуационных помех [3]. Оптимизировать интервал квантования можно как в спектральной области на основе частотных характеристик усредняющих устройств, зависящих от используемых весовых функций и спектральных особенностей воздействующих помех или временным методом, исследовав погрешности оценки (7). Последнее в данном случае представляется наиболее доступным, поэтому, учитывая условие несмещенности оценки (2) и дискретную весовую функцию Бартлетта, определим дисперсию оценки (7) по общим правилам для суммы зависимых случайных величин [4]:

где - дисперсия фазовых флуктуаций усредняемой реализации; R ( it ) - значение нормированной корреляционной функции фазовых флуктуаций, разделенных временным интервалом t = i t . После преобразований, формула (8) приводится к виду:



а так как количество промежуточных измерений n = T / t , то из (9) получим:

При больших n выражение (10) упрощается и, переходя к непрерывному времени, преобразуется в интегральную форму вычисления дисперсии оценки среднего значения мгновенной частоты:

Вычислим дисперсию оценки среднего значения мгновенной частоты на примере некоторых моделей фазовых флуктуаций, например с экспоненциальной корреляционной функцией, нормированный вариант которой будет иметь вид:


где – время корреляции фазовых флуктуаций.

Выполнив вычисления в соответствии с (11), в результате получим:

где , а – эффективная ширина спектра фазовых флуктуаций.


При больших временах усреднения, соответствующих T >> , формулы для вычисления дисперсии (11) и (13) преобразуются к упрощенному выражению для вычисления дисперсии оценки среднего значения мгновенной частоты:


которая по сравнению с оценкой классического измерителя, равной дает выигрыш в точности, равный:


который можно достигнуть, оптимизировав обработку исследуемого сигнала.

Полученные выражения для вычисления дисперсии оценки среднего значения мгновенной частоты, могут быть использованы для определения оптимального количества выборок на интервале усреднения и шага квантования по времени. Оптимальный шаг квантования определим, составив и исследовав отношение дисперсий (10) и (14), равное:


где дискретный аналог корреляционной функции (12), или для сравнения – модель фазовых флуктуаций с равномерным энергетическим спектром и


Другим выражением, представляющим интерес для исследований, является отношение дисперсии оценки среднего значения мгновенной частоты цифрового измерителя с весовой обработкой и дисперсии оценки среднего значения мгновенной частоты классического измерителя, равное:

Список используемой литературы

1. Электрические измерения / Байда Л. И., Добротворский Н. С., Душин Е. М. и др.: Под ред. А. В. Фремке и Е. М. Душина.—Л.: Энергия, 1980.—392с.

2. Кушнир Ф. В. Электрорадиоизмерения: Учебное пособие для вузов,— Л.: Энергоатомиэдат, 1983.—320 с.

3. Кончаловский В.Ю., Семенов В.Ф., Солодов Ю.С. Измерение частоты и интервалов времени. - М.: Изд-во МЭИ, 1999. -12 с.

4. Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983, 320 с.

5. Гутников В.С. Фильтрация измерительных сигналов. Л.: Энергоатомиздат, 1990, 192 с.

Решение многих научных и технических проблем связано с измерением интервалов времени, разделяющих два характерных момента какого-либо процесса.
Измерения интервалов времени необходимы при разработке и испытании всевозможных схем задержки и синхронизации, при исследовании цифровых систем, многоканальных систем с временным разделением каналов,применяемых в технике связи и радиотелеметрии, устройств телеуправления и автоматической коммутации, аппаратуры, используемой в ядерной физике, вычислительной технике и т. д. Подобные измерения особенно нужны в приборостроении, поскольку во многих случаях используемые в ней преобразования аналоговых величин в цифровой код осуществляются в результате промежуточного преобразования измеряемой физической величины винтервал времени.
Измерение частоты и интервалов времени, а также хранение и воспроизведение их единиц лежат в основе многочисленных измерительных задач, решаемых в современной радиотехнике. Техническая аппаратура для частотно-временных измерений образует единый комплекс приборов и средств, обеспечивающий возможность проведения измерений с непосредственной их привязкой к Государственному эталонучастоты и времени. Последнее определяет принципиально высокую точность измерений.
Методы измерения интервалов времени разнообразны. К числу наиболее известных относятся методы дискретного счета (преобразования интервала времени в цифровой код), временных разверток, нулевой и совпадения.

Методы измерения временых интервалов

`Методы измерения временых интервалов
`Методы измерения временыхинтервалов

Пряиого преобразования
Пряиого преобразования
Косвенного преобразования
Косвенного преобразования
Комбинированного преобразования
Комбинированного преобразования

С динамическими запоминением
С динамическими запоминением
Задержанных совадений
Задержанных совадений
осциллографические
осциллографические
стробоскопические
стробоскопические
Зналогового преобразования
Зналоговогопреобразования
нониусные
нониусные
С преобразованием в напряжение
С преобразованием в напряжение
С N-кратным сдвигом серии
С N-кратным сдвигом серии
С интерполяцией иремя-эмплитуда
С интерполяцией иремя-эмплитуда
Нониусной интерполяцией
Нониусной интерполяцией
С интеополяйией на ЭЭЛТ
С интеополяйией на ЭЭЛТ
С интерполяцием мет.задерж.совп
С интерполяцием мет.задерж.совп
Прямогосчета
Прямого счета

Измерения временных интервалов обширно используют во многих областях.Самый простой способ для измерения временных интервалов – метода прямого преобразования.Один из них – метода прямого счета.Из перечисленных выше способов построения преобразователей время-код(ПВК) наиболее простым в реализации является метода прямого счета,основанный на квантовании измеряемого ВИпослетовательностью импульсов время-задающего генератора.Низкая точность этого метода, Точность этого метода зависит от частоты импульсов , Чем выше частота, тем выше точность.Но в реальном применении,Мы должны повышать требования для нстройств и схем при высокой частоты импульсов.Мы хотим использовать общий стандартный источник сигнала-5MHz или 10MHz. Но увеличение частоты пульса не может решить существенные проблемы, Мыне можем измерить очень короткое время интервалов.
Другие методы прямого преобразования (методы задержанных совпедений и последовательно приближения с динамическим запоминанием диапазоном и значительной зависимостью погрешности измерений от внешних условий.
Группа косвенного преобразования ВИ является наиболее шногочисленной.Приборы этой гркппы характеризуются наилучшей разрешаюшей способиностьюсреди существуюих.Так для устройств.базирующихся на методе преобразования время-амплитуда-код достаточно просто достижимо разрешающее время порядка единиц пикосекунд.Однако.область применения косвенных методов преобразования ограничивается узким динамическим диапазоном регистрируемых ВИ.низким быстродействием.А также достаточной линейностью и стабильностью.

Читайте также: