Методы исследования нервной ткани реферат

Обновлено: 05.07.2024

Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. При этом организм функционирует как единое целое. Благодаря нервной системе осуществляется связь организма с внешней средой.

Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи и мышления – психический процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменить. Основой взаимоотношений организма с окружающей средой являются рефлексы или инстинкты, которые, по определению И. П. Павлова, представляют определенные, закономерные реакции животного организма на определенные внешние агенты.

Действие на организм внешнего агента трансформируется определенными концевыми аппаратами нервной системы (рецепторами) и становится жизненным процессом. Последний, в форме нервного импульса распространяется по нервной системе через центры до рабочего органа. Здесь нервный импульс снова трансформируется, в результате этого выявляется специфическая деятельность рабочего органа, которая выражается в виде сокращения мускулатуры или секреции железы.

Вместе с тем нервная система отражает все изменения, происходящие во внутреннем мире организма. Особенно важное значение имеет высший отдел нервной системы – кора больших полушарий головного мозга. Под влиянием коры находятся все функции, и в ней тончайшим образом отражается все развитие организма. Здесь осуществляется высший анализ и синтез постоянно изменяющегося взаимодействия организма с внешней средой и непрерывных изменений его внутреннего мира.

Изучая нервную систему, отдельные элементы ее – клетки и неклеточное вещество – можно называть тканевыми элементами.

2. Тканевые элементы нервной системы.

Основной тканью, из которой образована нервная система является нервная ткань. Среди тканевых элементов нервной системы принято различать клетки и неклеточное промежуточное вещество. Клетки в деталях имеют различное строение и разные функции. Их принято делить на 2 группы: нейроны (нейроциты), выполняющих основную функцию нервной системы - реактивность, и нейроглии (глиальные клетки). Клетки глии и находящиеся с ними в тесной связи неклеточное вещество являются вспомогательными ее элементами , выполняющими опорную, трофическую, разграничительную и секреторную функции. На один нейрон приходится минимум 10 глиальных клеток.

3. Нейроны, строение и их классификация

Главная составная часть нервной системы – нейроны в различных местах тела имеют различное строение и разную величину.

Нервная ткань

Рис. 1. Схема нервной клетки: 1-дендриты; 2-тело клетки; 3-аксонный холмик; 4-аксон; 5-коллатераль аксона; 6-пресинаптические окончания аксона.

Две важнейшие в функциональном отношении части нейрона – это длинный нитевидный отросток, называемый аксоном, и участок соединения между клетками – синапс. У каждого нейрона только один аксон, но число синаптических соединений, образуемых нейроном, может достигать нескольких сотен и даже тысяч, и это имеет огромное значение для интеграции нервной деятельности. Аксоны функционируют как проводники, а синапсы – как очень сложные включающиеся или выключающиеся устройства.

От тела клетки берут начало и дендриты. В большинстве случаев дендриты сильно разветвляются. Вследствие этого их суммарная поверхность значительно превосходит поверхность клетки. Это создает условия для размещения на дендритах большого числа синапсов. Таким образом, именно дендритам принадлежит ведущая роль в восприятии нейроном информации. В морфологическом отношении на основании количества отходящих от тела клетки отростков все нейроны принято делить на 3 вида: мультиполярные, биполярные и униполярные.

Мультиполярный нейрон имеет несколько отходящих от тела отростков – аксон и дентриты (рис. 2).

Нервная ткань

Рис.2. Мультиполярный нейрон. Двигательная клетка (эффекторная) из переднего рога спинного мозга. (1 – тело нейрона, 2 – аксон, 3 – дендриты)

От тела биполярной нервной клетки отходят 2 отростка. Один из них (переферический) направляется на периферию, другой (центральный) направляется к центру (рис. 3).

Нервная ткань

Рис. 3. Биполярный нейрон. Чувствительная клетка (афферентная) из кожи личинки стрекозы (по Заварзину).

1 – чувствительный волосок, 2 – периферический отросток, 3- тело нейрона, 4 – периферический отросток.

Тела униполярных нейронов имеют округлую форму. От тела нейрона отходит один отросток, который на различном расстоянии от клетки делится на два более тонких отростка: периферический и центральный (рис.4). Такого вида нервные клетки у высших позвоночных находятся в спинальных ганглиях. В раннем возрасте они биполярные, но в ходе развития организма постоянно превращаются в униполярные. Благодаря сближению места отхождения двух нервных отростков они постепенно сливаются в один большой отросток. Эти способности развития дали основание называть их также псевдоуниполярными.

Нервная ткань

Рис.4. Униполярные (псевдоуниполярные) нейроны. Чувствительные (афферентные) клетки из гассерова узла (по Рамон-Кахалю).

1 – тело нейрона, 2- отросток, 3- Т-образное деление отростка на переферический и центральный отростки.

Наиболее правильной и точно отражающей строение и функции нервной системы является функциональная классификация. По этой классификации все нейроны делят на три группы: афферентные, или чувствительные, эффекторные, или двигательные, и промежуточные, или ассоциативные. Все три типа нейронов можно ясно представить при рассмотрении трехчленной рефлекторной дуги цереброспинального или вегетативного отделов нервной системы.

Афферентные нейроны могут быть мульти-, би- и униполярными. У высших позвоночных и человека они находятся в спинальных ганглиях и в гомологичных ганглиях головного мозга и относятся к псевдоуниполярным. Их периферические отростки идут к различным тканям, где и завершаются нервными окончаниями (рецепторами), имеющими разнообразное строение. Они способны воспринимать различные раздражения как со стороны внешней среды (экстерорецепторы), так и от внутренней среды (интерорецепторы).

Воспринятое раздражение в виде нервного импульса проводится в центростремительном направлении. Место связи между нейронами называется синапсом, имеет характер соприкосновения между конечными разветвлениями центрального отростка и дендритами или телом промежуточного нейрона. Здесь происходит передача импульса с афферентного нейрона на промежуточный (мультиполярный) нейрон.

Двигательный нейрон – мультиполярный. Его аксон направляется в мышцу или железу. Здесь он завершается двигательным или секреторным окончанием. Рассмотренные три типа нейронов составляют рефлекторную дугу, по которой осуществляется рефлекс. Несмотря на различное положение в составе рефлекторной дуги, строение нейронов в общих чертах сходно. Так же нейроны делятся на: возбудительные и тормозящие.

В отличие от аксонов и дендритов, окончания которых разбросаны по всему телу, клеточные тела нейронов обычно сгруппированы в так называемые ганглии, или нервные узлы. Ганглием можно назвать любое скопление тел нервных клеток; в качестве примера можно привести спинномозговые ганглии позвоночных (рис. 5), которые представляют собой просто скопления тел сенсорных нейронов, и вегетативные ганглии – группы тел моторных нейронов. Однако чаще ганглий содержит не только тела нервных клеток, но и вставочные нейроны с их отростками; это такой участок, где различные нейроны соединяются друг с другом и где может происходить значительная переработка и интеграция нервных сигналов.

Нервная ткань

Рис.5. Схема основных чувствительных и двигательных нейронов спинномозговых нервов и их связей со спинным мозгом.

У всех животных в центральной нервной системе существуют две зоны, в одной из которых сосредоточены тела нейронов, а в другой – их отростки (нервные волокна). У позвоночных серое вещество мозга содержит тела нервных клеток, дендриты и частично аксоны. Белое вещество состоит исключительно из аксонов.

Помимо нейронов нервная ткань содержит клетки еще одного типа. Они выполняют опорную и защитную функции и называются глиальными клетками или глией. По численности их в 10 раз больше, чем нейронов, и они занимают половину объема ЦНС. Глиальные клетки окружают нервные клетки и играют вспомогательную роль. Глиальные клетки более многочисленные, чем нейроны: составляют по крайней мере половину объема ЦНС.

Глия не только выполняет опорные функции, но и обеспечивает многообразные метаболические процессы в нервной ткани, участвует в формировании миелиновой оболочки и способствует восстановлению нервной ткани после травм и инфекций.

Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство, занимающее 12-14% общего объема мозга. Глиальные клетки невозбудимы, во время деполяризации глиальных клеток проводимость их мембран не повышается.

Клетки нейроглии делятся на несколько типов. Клетки эпендимы выстилают желудочки головного мозга и спинномозговой канал и образуют эпителиальный слой в сосудистом сплетении. Они соединяют желудочки с нижележащими тканями.

Клетки макроглии делятся на две категории - астроциты и олигодендроциты.

Протоплазматические астроциты локализованы в сером веществе; от тела клетки, содержащей овальное ядро и большое количество гликогена, отходят сильно разветвленные короткие и толстые отростки.

Фибриллярные астроциты локализованы в белом веществе. Ядро у них также овальное, и тело клетки содержит много гликогена, но отростки длинные и менее разветвленные, некоторые ветви буквально упираются в стенки кровеносных сосудов. Эти клетки переносят питательные вещества из крови в нейроны.

Астроциты двух типов взаимосвязаны и образуют обширное трехмерное пространство, в которое погружены нейроны. Они часто делятся, образуя в случае повреждений центральной нервной ситемы рубцовую ткань.

Олигодендроциты локализованы в сером и белом веществе. Они мельче астроцитов и содержат одно сферическое ядро. От тела клетки отходит небольшое число тонких веточек, а само оно содержит цитоплазму с большим количеством рибосом. Шванновские клетки - это специализированные олигодендроциты, синтезирующие миелиновую оболочку миелинизированных волокон.

Клетки микроглии локализованы и в сером, и в белом веществе, но в сером веществе их больше. От каждого конца маленького продолговатого тела клетки, содержащей лизосомы и хорошо развитый аппарат Гольджи, отходит по толстому отростку. От всех его ветвей отходят более мелкие боковые веточки. При повреждении мозга эти клетки превращаются в фагоциты и, перемещаясь при помощи амебоидного движения, противостоят вторжению чужеродных частиц.

Глия является системой трофического обеспечения нервной системы, а также принимает активное участие в специфическом функционировании нервной ткани: в норме тормозит гиперактивность нейронов, способствует активному поглощению из синаптической щели и утилизации медиаторов и других агентов, участвующих в повреждении нейронов. В условиях ишемии микроглиальные клетки индуцируют синтез не только нейротоксичных веществ, но и сигнальных молекул, клеточных регуляторов, трофических факторов, способствующих выживаемости нейронов и уменьшающих процессы постишемического рубцевания.

Микроглия - единственный иммунокомпетентный компонент в центральной нервной системе.

Рис. 6. Различные формы клеток нейроглии: 1 — плазматические астроциты; 2 – волокнистые астроциты: 3 — олнгодендроглиоциты; 4 — эпендимоциты: 5 — глиальные макрофаги (микроглия).

Термин синапс (от греческого sy'napsys) ввел И. Шеррингтон в 1897 году. В настоящее время синапсами называют специализированные функциональные контакты между возбудимыми клетками (нервными, мышечными, секреторными), служащие для передачи и преобразования нервных импульсов. По характеру контактирующих поверхностей различают: аксо-аксональные, аксо-дендритические, аксо-соматические, нервно-мышечные, нейро-капиллярные синапсы. Электронно-микроскопические исследования выявили, что синапсы имеют три основных элемента: пресинаптическую мембрану, постсинаптическую мембрану и синаптическую щель (рис. 7).

Нервная ткань

Рис.7. Основные элементы синапса.

Передача информации через синапс может осуществляться химическим или электрическим путем. Смешанные синапсы сочетают химические и электрические механизмы передачи. В литературе на основании способа передачи информации принято выделять три группы синапсов - химические, электрические и смешанные.

В состав синапса входит пресинаптическое окончание, синаптическая щель и постсинаптическое окончание. Сам синапс очень маленький (его диаметр не более одного мкм). Один нейрон получает такие контакты, как правило, от нескольких тысяч (3-10 тыс.) других нейронов. Каждый синапс надежно закрыт специальными клетками глии, поэтому исследовать его очень не просто. На рисунке 8 показана схема синапса, как это представляет себе современная наука.

Нервная ткань

Рис.8. Синапс (схема): 1-визикулы; 2-митохондрии; 3-пресинаптическая мембрана; 4-синаптическая щель; 5-ионный канал; 6-постсинаптическая мембрана.

Несмотря на свою миниатюрность, он устроен весьма сложно. Одним из его основных компонентов являются пузырьки, которые находятся внутри синапса. Эти пузырьки содержат биологически очень активное вещество, которое называется нейротрансмиттером, или медиатором (предатчиком).

Синаптические контакты могут находиться, как в области аксональных концевых утолщений, так и у касательных утолщений по ходу аксона. Эти контакты могут быть между аксоном и дендритом, между аксоном и сомой клетки и между аксонами. Медиатор синтезируется в основном в нервном окончании, но иногда и в других частях нейрона. При многократном раздражении запасы медиатора, депонированного в синаптических пузырьках истощаются.

6. Нервные волокна

Нервные волокна - это отростки нервных клеток (аксоны) вместе с их оболочками, проводящие нервные импульсы. Нервные волокна обычно имеют толщину 0,5—30 мкм. Длина нервных волокон зависит от размеров животного и может превышать 1 м. В нервной системе позвоночных различают мякотные, или миелинизированные, и безмякотные нервные волокна.

Нервная ткань

Рис. 9. Мякотные нервные волокна.

а- два нервных волокна из седалищного нерва лягушки, обработанного осмиевой кислотой; б- мякотное волокно кошки, прижизненно окрашенное метиленовой синью ( по Немилову); в- схема строения мякотного волокна на продольном и поперечном (г) разрезах (по Немилову).

1 – осевой цилиндр, 2 – шванновская клетка, 3 – миэлин в цитоплазме шванновской клетки после удаления миэлина, 5 – насечки, 6 – перехваты, 7 – неврилемма, 8 – соединительная ткань.

Нервная ткань

Рис. 10. Безмякотные нервные волокна.

а- изолированные безмякотные нервные волокна; б- поперечный разрез нерва вегетативного отдела нервной системы.

1- соединительная ткань, 2- безмякотные нервные волокна, 3- ядро шванновской клетки.

У тех и других оболочка образована так называемыми шванновскими клетками, которые в безмякотных нервных волокнах формируют шванновскую оболочку, заключающую в себе один или несколько аксонов, а в мякотных — также и миелиновую. Последняя состоит из белого белково-липидного комплекса — миелина) и возникает вследствие многократного обёртывания аксона (называется также осевым цилиндром) шванновской клеткой. При этом цитоплазма шванновской клетки оттесняется на периферию, а её поверхностные мембраны как бы "забинтовывают" аксон, занимая участок длиной от 200 мкм до нескольких мм. Свободные от оболочки промежутки (длиной около 1 мкм) между соседними шванновскими клетками называются перехватами Ранвье (см. рис 11).

Нервная ткань

Миелиновая оболочка, являясь изолятором, препятствует действию тока, возникающего при возбуждении, на соседние участки мембраны аксона. Благодаря этому нервный импульс распространяется по мякотному волокну не непрерывно, как по безмякотному, а быстрее — скачками, от одного перехвата Ранвье к другому (так называемое сальтаторное проведение). Скорость распространения нервных импульсов по нервному волокну повышается и с утолщением аксонов.

Исходя из вышесказанного, понятно что нервная ткань — ткань эктодермального происхождения, представляющая собой систему специализированных структур, образующих основу нервной системы и создающих условия для реализации её функций. Нервная ткань осуществляет связь организма с окружающей средой, восприятие и преобразование раздражителей в нервный импульс и передачу его к эффектору. Нервная ткань обеспечивает взаимодействие тканей, органов и систем организма и их регуляцию.

К. Вилли, В. Детье, Биология (Биологические процессы и законы), М., 1975

К.Д. Пяткин, Микробиология , М., 1971

А.М. Цузмер, О.Л. Петришина, Биология, М., 1990

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Содержание
Введение………………………………….3
Глава
I
. Общая характеристика нейрона…….3
Глава
II
.Виды нейронов…………4 1.
В зависимости от формы сомы
2.
По количеству отростков (по строению)
3.
По выполняемым функциям
4.
По эффекту, который нейроны оказывают на другие клетки
Глава
III
.Строение нейрона…….6 1.Тело клетки
2.Аксон и дендрит
3.Синапс
Глава
IV.Функции ней рона……….7
Глава
V
Способы исследования центральной нервной системы……………8 1. Экспериментальные методы.
2. Клинические методы.
Заключение…………………………………………13
Литература…..14
РЕСЕЙ МЕДИЦИНАЛЫҚ
УНИВЕРСИТЕТІ


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РОССИЙСКИЙ
МЕДИЦИНСКИЙ
УНИВЕРСИТЕТ
ВВЕДЕНИЕ
Значение нервной ткани в организме связано с основными свойствами нервных клеток воспринимать действие раздражителя, переходить в возбужденное состояние, распространять потенциалы действия. Нервная система осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь организма с окружающей средой. Нервная ткань состоит из нейронов, выполняющих специфическую функцию, и нейроглии, играющей вспомогательную роль, осуществляющей опорную, трофическую, секреторную, разграничительную и защитную функции.
Общая характеристика
Нервные клетки (нейроны, или нейроциты) - основные структурные компоненты нервной ткани, организуют сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляют генерирование и распространение нервных импульсов. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.
3


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Виды нейронов
Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям, эффектам ,,которые нейрон оказывает на другие клетки.
В
зависимости
от
формы
сомы
различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.
По
количеству
отростков
(по
строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются; 2.
Псевдоуниполярные нейроны(ложноодноотростчатые), такие нейроны имеют
Тобразный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3.
Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон
(т.е. 2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4.
Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е. много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.
По
выполняемым
функциям
нейроны
бывают:
1.
Афферентные (рецепторные, чувствительные)
нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях
(спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.
4


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.Пример
чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи
Эфферентные (эффекторные,
секреторные, двигательные) нейроны
регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы
Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце. Пример
двигательных нейронов: мотонейрон спинного мозга.
3.Вставочные(контактные,интернейроны,
ассоциативные,
замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.
В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.
Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.
По эффекту, который нейроны оказывают на другие клетки: 1. Возбуждающие
нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
5 2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг.
Эффекторные вырабатывают и посылают команды к рабочим органам.
Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.
Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт, осуществляемые с помощью кинезин-динеинового механизма (кинезин отвечает за антероградный ток, динеин — за ретроградный).
2. Аксон и дендрит
Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к другому нейрону ,или же от нейрона к исполнительному органу.
Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом для образования влияющих на нейрон возбуждающих и тормозных синапсов ,и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации потенциала действия у большинства нейронов является аксонный холмик— образование в месте отхождения аксона от нейросомы.
7
3. Синапс
Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.
Функции ней
рона
Нервная система, наряду с эндокринной, осуществляет координацию деятельности всего организма. Каждый нейрон является частью цепи в координации того или иного физиологического процесса. Говоря вообще, основная функция нейрона заключается в получении и передаче информации.
Это справедливо в отношении любой клетки рассматриваемой системы, ведь именно этим она и занимается - получает от одних клеток и передает другим информацию в форме нервных импульсов. Однако для различных нейронов выделяют и более специфические функции.
Способы исследования центральной нервной системы
Исследование ЦНС включает группу экспериментальных и клинических методов.
К экспериментальным методам относят перерезку, экстирпацию, разрушение мозговых структур, а также электрическое раздражение и электрическую коагуляцию. К клиническим методам относят электроэнцефалографию, метод вызванных потенциалов, томографию .
8
1..Экспериментальные методы.
Метод перерезки и выключения. Метод перерезки и выключения различных участков ЦНС производится различными способами. Используя этот метод можно наблюдать за изменением условно-рефлекторного поведения.
Методы холодового выключения структур головного мозга дают возможность визуализировать пространственно-временную мозаику электрических процессов мозга при образовании условного рефлекса в разных функциональных состояниях.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Методы молекулярной биологии направлены на изучение роли молекул ДНК, РНК и других биологически активных веществ в образовании условного рефлекса.
Стереотаксический метод заключается в том, что животному вводят в подкорковые структуры электрод, с помощью которого можно раздражать, разрушать, или вводить химические вещества. Тем самым животное готовят для хронического эксперимента. После выздоровления животного применяют метод условных рефлексов.
2.Клинические методы.
Клинические методы позволяют объективно оценить сенсорные функции мозга, состояние проводящих путей, способность мозга к восприятию и анализу стимулов, а также выявить патологические признаки нарушения высших функций коры больших полушарий.
Электроэнцефалография.
Электроэнцефалография относится к наиболее распространенным электрофизиологическим методам исследования ЦНС. Суть ее заключается в регистрации ритмических изменений потенциалов определенных областей коры большого мозга между двумя активными электродами (биполярный способ) или активным электродом в определенной зоне коры и пассивным, наложенным на удаленную от мозга область. Электроэнцефалограмма – это кривая регистрации суммарного потенциала постоянно меняющейся биоэлектрической активности значительной группы нервных клеток. В эту сумму входят синаптические потенциалы и отчасти потенциалы действия нейронов и нервных волокон.
9
Метод регистрации импульсной активности нервных клеток.
Импульсная активность отдельных нейронов или группы нейронов может оцениваться лишь у животных и в отдельных случаях у людей во время оперативного вмешательства на мозге. Для регистрации нейронной импульсной активности головного мозга человека используются микроэлектроды.Они могут быть выполнены из нержавеющей стали, вольфрама, платиноиридиевых сплавов или золота. Электроды вводятся в мозг с помощью специальных микроманипуляторов, позволяющих точно подводить электрод к нужному месту.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Электрическая активность отдельного нейрона имеет определенный ритм, который закономерно изменяется при различных функциональных состояниях.
Электрическая активность группы нейронов обладает сложной структурой и на нейрограмме выглядит как суммарная активность многих нейронов, возбуждающихся в разное время, различающихся по амплитуде, частоте и фазе.
Метод вызванных потенциалов.
Специфическая активность, связанная со стимулом, называется вызванным потенциалом. У человека – это регистрация колебания электрической активности, возникающего на ЭЭГ при однократном раздражении периферических рецепторов
.У животных раздражают также афферентные пути и центры переключения афферентной импульсации. Амплитуда их обычно невелика, поэтому для эффективного выделения вызванных потенциалов применяют прием компьютерного суммирования и усреднения участков ЭЭГ, которое записалось при повторном предъявлении стимула.
10
Вызванный потенциал состоит из последовательности отрицательных и положительных отклонений от основной линии и длится около 300 мс после окончания действия стимула. Часть компонентов вызванного потенциала, которые отражают поступление в кору афферентных возбуждений через специфические ядра таламуса, и имеют короткий латентный период, называются первичным ответом.
Они регистрируются в корковых проекционных зонах тех или иных периферических рецепторных зон. Более поздние компоненты, которые поступают в кору через ретикулярную формацию ствола, неспецифические ядра таламуса и лимбической системы и имеют более длительный латентный период, называются вторичными ответами. Вторичные ответы, в отличие от первичных, регистрируются не только в первичных проекционных зонах, но и в других областях мозга,


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
связанных между собой горизонтальными и вертикальными нервными путями.
Один и тот же вызванный потенциал может быть обусловлен многими психологическими процессами, а одни и те же психические процессы могут быть связаны с разными вызванными потенциалами.
Томографические методы.
Томография – основана на получении отображения срезов мозга с помощью специальных техник. Идея этого метода была предложена Дж.Родоном в1927г, который показал, что структуру объекта можно восстановить по совокупности его проекций, а сам объект может быть описан множеством своих проекций.
Компьютерная томография – это современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки. При компьютерной томографии через мозг пропускается тонкий пучок рентгеновских лучей, источник которого вращается вокруг головы в заданной плоскости; прошедшее через череп излучение измеряется сцинтилляционным счетчиком. Таким образом, получают рентгенографические изображения каждого участка мозга с различных точек. Затем с помощью компьютерной программы по этим данным рассчитывают радиационную плотность ткани в каждой точке исследуемой плоскости. В результате получают высококонтрастное изображение среза мозга в данной плоскости.
11
Позитронно-эмисионная томография – метод, который позволяет оценить метаболическую активность в различных участках мозга. Испытуемый глотает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Суть метода заключается в том, что каждый позитрон, испускаемый радиоактивным соединением, сталкивается с электроном; при этом обе частицы взаимоуничтожаются с испусканием двух γ-лучей под углом 180°. Эти улавливаются фотодетекторами, расположенными вокруг головы, причем их регистрация происходит лишь тогда, когда два детектора, расположенные друг против друга возбуждаются одновременно. На основании полученных данных строится изображение в соответствующей плоскости, которое отражает радиоактивности разных участков исследуемого объема ткани мозга.


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
Метод ядерно-магнитного резонанса (ЯМР-томография) позволяет визуализировать строение мозга без применения рентгеновских лучей и радиоактивных соединений. Вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. В обычных условиях оси вращения каждого ядра имеют случайное направление. В магнитном поле они меняют ориентацию в соответствии с силовыми линиями этого поля. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого излучают энергию. Эту энергию фиксирует датчик, а информация передается на компьютер. Цикл воздействия магнитного поля повторяется много раз и в результате на компьютере создается послойное изображение мозга испытуемого.
12
Реоэнцефалография.
Реоэнцефалография представляет собой метод исследования кровообращения головного мозга человека, основанный на регистрации изменений сопротивления ткани мозга переменному току высокой частоты в зависимости от кровенаполнения и позволяет косвенно судить о величине общего кровенаполнения мозга, тонусе, эластичности его сосудов и состоянии венозного оттока.
Эхоэнцефалография.
Метод основан на свойстве ультразвука, по-разному отражаться от структур мозга, цереброспинальной жидкости, костей черепа, патологических образований. Кроме определения размеров локализации тех или иных


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
образований мозга этот метод позволяет оценить скорость и направление кровотока.
ЗАКЛЮЧЕНИЕ
Таким образом, мы выяснили, что нейрон является важнейшей структурнофункциональной единицей всего человеческого организма. Эти нервные клетки играют важную роль как поодиночке, так и при совместном взаимодействии. Это осуществляется путем передачи нервных импульсов в высшие интегративные центры, расположенные в головном мозге, а также обратную передачу информации из головного мозга к исполнительным органам.
13
Литература
1)Физиология человека. Под редакцией Покровского В.М., Коротько Г.Ф. //
М.Медицина. – 2003 2)Батуев А.С. Высшая нервная деятельность. // М. – 2001


МЕББМ ҚАЗАҚСТАН- НУО
КАЗАХСТАНСКО
РЕСЕЙ МЕДИЦИНАЛЫҚ
РОССИЙСКИЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТІ
УНИВЕРСИТЕТ
3)Нормальная физиология. Учебник для мед. вузов/ К.В. Судаков. – М. Мед. информ. агентство, 2006 4)Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.
5)
Нормальная физиология - Дегтярев В.П.
14

Окрашивание нервной тканиПри морфологических исследованиях нервной ткани на светооптическом уровне применяют большое количество методов окрашивания, многие из которых модифицированы. Чаще всего это избирательные (элективные) методы, используемые для выявления одного или двух элементов. С определенной целью применяют комбинированные методы.

ФИКСАЦИЯПри изучении нервной ткани из простых фиксаторов наиболее часто используют 10 — 20 % раствор формальдегида и 96 % и 100 % спирт, из фиксирующих смесей — сулему и пиридин. Существуют также специфические фиксаторы, применяющиеся только при исследовании элементов нервной ткани.

Фиксирующая смесь Рамон-и-Кахаля (для выявления глии):

нейтральный формалин 15 мл бромид аммония 20 г

дистиллированная вода 85 мл

Смесь применяют для серебрения глии по Рамон-и-Кахалю —Хортеге. Продолжительность фиксации тонких (до 1,5 см) кусочков материала 2 — 15 дней. Промывание в проточной воде.

Фиксирующая смесь Рамон-и-Кахаля (для выявления нейро-фибрилл):

пиридин 40 мл? 96 % спирт 30 мл

Продолжительность фиксации 2 ч. Промывание в проточной воде в течение 1 ч.

ОБЕЗВОЖИВАНИЕ

Особенностью обработки нервной ткани является ее тщательное обезвоживание. Для обезвоживания кусочков толщиной 5 —б мм используют следующую схему:

100 % спирт I 6 ч

100% спирт II 6 ч

Продолжительность обезвоживания 32 ч

НЕКОТОРЫЕ ОСОБЕННОСТИ ЗАЛИВКИ НЕРВНОЙ ТКАНИ

Нервную ткань для гистологического исследования заливают в парафин, целлоидин и желатин. Методика заливки в парафин и целлоидин никаких особенностей обработки нервной ткани на этой стадии нет.

Заливка в желатин по СнесаревуМетод пригоден для эмбриологических исследований. Преимущество его заключается в том, что он не вызывает сморщивания материала. Рекомендуется для выявления тонкой межклеточной структуры соединительной ткани, а также для некоторых цитологических исследований.

Для заливки берут бесцветный прозрачный пищевой желатин и вначале из него готовят 25 % раствор. Для этого мелко нарезают нужное количество желатина, насыпают в широкогорлую банку и ставят в термостат при 37 °С до растворения. После этого часть приготовленного желатина разводят пополам теплым 1 % раствором фенола (карболовой кислоты) и таким образом получают 12,5 % раствор. Растворы желатина лучше готовить в небольших количествах по мере надобности. После фиксации тщательно промытый материал переносят в 12,5 % раствор желатина, где держат в зависимости от величины кусочков от 1 — 2 ч до 1 — 2 сут, затем на такое же время переносят в 25 % раствор желатина при 37 °С. После заливки следуют быстрое охлаждение в холодильнике и уплотнение в 5— 10 % формалине. Блоки режут только на замораживающем микротоме.

Гистохимия, раздел гистологии, изучающий химические свойства тканей животных и растений. Задача Г. — выяснение особенностей обмена веществ в тканевых клетках (см. Клетка) и межуточных средах. Она изучает изменения свойств клеток в процессе развития, связи между работой, метаболизмом и обновлением зрелых клеток и тканей. Основной принцип гистохимических методик — связывание определённого химического компонента клеток с красителем или образование окраски в процессе реакции. Ряд методов (цитофотометрия, люминесцентная и интерференционная микроскопия) исходит из физических свойств веществ. С помощью разных гистохимических методов можно определить локализацию и количество многих веществ в ткани, их метаболизм (тканевая авторадиография), связи с субмикроскопической структурой (электронная Г.), активность ферментов. Перспективным направлением является также иммуногистохимия. Наиболее точные гистохимические методы, позволяющие исследовать структуры клетки, называют цитохимическими (см. Цитохимия).

Первые специальные гистохимические исследования принадлежат французскому учёному Ф. Распайлю (1825—34). Интенсивно Г. стала развиваться с 40-х гг. 20 в., когда появились надёжные методы определения в клетке белков, нуклеиновых кислот, липидов, полисахаридов, некоторых неорганических компонентов. С помощью гистохимических методик удалось, например, впервые показать связь изменений количества РНК с синтезом белка и постоянство содержания ДНК в хромосомном наборе.

4. Виды микроскопии.

Методы световой микроскопии
Методы световой микроскопии (освещения и наблюдения). Методы микроскопии выбираются (и обеспечиваются конструктивно) в зависимости от характера и свойств изучаемых объектов, так как последние, как отмечалось выше, влияют на контрастность изображения.

Метод светлого поля и его разновидности
Метод светлого поля в проходящем свете применяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д.

Метод темного поля и его разновидности
Используют специальный конденсор, выделяющий контрастирующие структуры не окрашенного материала. При этом лучи от осветителя падают на препарат под косым углом, и объект исследования проявляется освещенным в темном поле..

Метод фазового контраста
При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные - фаза световой волны, что и используют для получения высоко контрастного изображения.

Поляризационная микроскопия
Поляризационная микроскопия позволяет изучать ультраструктурную организацию тканевых компонентов на основе анализа анизотропии и/или двойного лучепреломления

Метод интерференционного контраста
Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой — мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом). Величина этого запаздывания измеряется компенсатором

Метод исследования в свете люминесценции
Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами.

Ультрафиолетовая микроскопия. Основана на применении ультрафиолетовых лучей с длиной волны менее 380 нм, что позволяет увеличить разрешающую способность объективов с 0,2. 0,3 мкм до 0,11 мкм. Требует применения специальных ультрафиолетовых микроскопов, в которых используются ультрафиолетовые осветители, кварцевая оптика и преобразователи ультрафиолетовых лучей в видимую часть спектра. Многие вещества, входящие в состав клеток (например, нуклеиновые кислоты), избирательно поглощают ультрафиолетовые лучи, что используется для определения количества этих веществ в клетке.

Юрий Вадимович Андрусов

В предыдущей части статьи я немного рассказал о таком методе функциональной диагностики нервной системы, как регистрация вызванных потенциалов головного мозга. Данный метод позволяет изучить различные отделы центральной нервной системы.

Что такое "периферическая нервная система"?

Но ведь представить себе функционирование нашего организма без периферической нервной системы тоже невозможно. Для ее обследования используется электронейромиография.

Электронейромиография (ЭНМГ)

  • Стоимость: 8 400 руб.
  • Продолжительность: 30-40 минут
  • Госпитализация: амбулаторно

Конечно, электронейромиография не является волшебным и универсальным диагностическим методом (как не является им ни одна из других, более известных в широких кругах методик, например МРТ ). Не все нервы и мышцы доступны изучению, не на всех участках их можно проверить. Но при грамотном подходе со стороны врача, назначающего или проводящего ЭНМГ, данный метод может дать много полезной информации.

Так что же представляет из себя стимуляционная ЭНМГ?

Стандартный метод исследования моторных и сенсорных волокон периферических нервов внешне выглядит несложно. Над поверхностью мышцы или на участок кожи, иннервируемой изучаемым нервом, накладываются электроды (чаще всего они похожи на маленький пластырь или наклейку), электроды подключаются к аппаратуре (электронейромиографу). На участках, где нерв находится не очень глубоко, с помощью специального стимулятора (отдаленно напоминающего штекер любого электроприбора) нерв раздражается разрядами электрического тока. Ток слабый и абсолютно безопасен, хотя ощущения могут быть и неприятными. В результате электрического раздражения происходит сокращение мышцы или возникает ответ в кожных покровах (в случае исследования сенсорных волокон). Этот ответ или сокращение мышцы и регистрируется наклейками-электродами. Полученные данные и анализируются врачом.

Декремент-тест

Исследование и анализ состояния большинства крупных нервов конечностей обычно не вызывает сложностей. Оценка состояния сплетений и нервных корешков более сложна, ведь, как рассказывалось выше, они образуются из множества периферических нервов, и возникает необходимость исследовать почти каждый из них.

Игольчатая ЭНМГ

Для исследования мышц, а это бывает необходимо при подозрении на патологию двигательного нейрона спинного мозга, при заболеваниях мышц, определении степени поражения мышцы при неврологической патологии, используется игольчатая электромиография. Тонкая игла-электрод вводится в исследуемую мышцу (напоминает внутримышечный укол). Регистрируют электрическую активность мышцы в покое и при умеренном напряжении. Игольчатая ЭНМГ – более сложный с точки зрения интерпретации метод и часто занимает больше времени, требует от врача большей квалификации.

Возможности электронейромиографии

Итак, при правильном использовании электронейромиография позволяет:

  • проводить диагностику заболевания нервов и мышц на ранних стадиях, когда при клиническом осмотре отклонений еще не наблюдается;
  • установить уровень поражения нерва;
  • провести дифференциальную диагностику между периферическим поражением нерва и радикулопатией (поражение нервного корешка), и плексопатией (поражение сплетения);
  • оценить тяжесть поражения периферической нервной системы и мышц;
  • оценить результаты лечения и степень восстановления, характер течения заболевания;
  • помочь в дифференциальной диагностике причин нарушения мочеиспускания и/или потенции.

Показания для исследования

Почему же ЭНМГ редко назначается врачами? Может быть, мало показаний для назначения исследования?

Ниже приведен список симптомов, синдромов, состояний и заболеваний, при которых может быть назначена электронейромиография.

Вот неполный список заболеваний, при которых может быть целесообразно провести электронейромиографию:

  • БАС (боковой амиотрофический склероз, болезнь двигательного нейрона)
  • Диабетическая полинейропатия
  • Миастенический синдром Ламберта-Итона
  • Миастения (myasthenia gravis)
  • Миелодисплазия спинного мозга
  • Миозит и полимиозит
  • Миопатии
  • Неврит тройничного нерва
  • Мононевропатия
  • Невропатия седалищного нерва
  • Паралич Белла (невропатия лицевого нерва)
  • Плексит
  • Плексопатия
  • Полимиалгия
  • Полиневрит
  • Радикулопатия при грыже межпозвонкового диска
  • Синдром Гийена-Барре
  • Синдром запястного канала (карпальный синдром)
  • Кубитальный синдром
  • Синдром Толоса-Ханта
  • СМА (спинальные мышечные атрофии)
  • Тригеминальная невралгия
  • Туннельные синдромы
  • Фибулярный синдром
  • Хроническая воспалительная демиелинизирующая полинейропатия (ХВДП)
  • Сахарный диабет и диабетическая полинейропатия
  • Миелит, энцефаломиелит
  • Дефицит витаминов В, Е, С
  • Гипотиреоз, гипертиреоз
  • Системная красная волчанка
  • Васкулит
  • Рассеянный склероз
  • Хроническая тазовая боль
  • Нейрогенный мочевой пузырь

Как видно, список не маленький, а главное включает в себя не только чисто неврологические заболевания. Заболевания внутренних органов не редко дают осложнения в виде поражения нервной системы. К примеру, атрофический гастрит может привести к дефициту витамина группы В, тем самым спровоцировать возникновение полинейропатии или поражения спинного мозга. Ну а самый известный пример – это поражение нервов ног при сахарном диабете (диабетическая полинейропатия).

Представляется, что основной причиной малого использования ЭНМГ и ЭМГ является затруднение при интерпретации результатов врачами. Дело в том, что максимальное количество информации можно получить только тогда, когда врач, проводящий ЭНМГ, хорошо разбирается в неврологических заболеваниях и симптомах, а лечащий врач знает о всех нюансах и особенностях электромиографии. В противном случае врач-диагност может провести исследование не в полном объеме, а лечащий доктор может неверно интерпретировать результат, что приведет к постановке ошибочного диагноза.

Таким образом, диагност в любом случае должен быть еще и неврологом, в идеале обследование должен выполнять сам лечащий врач-невролог или ЭНМГ должно проводиться в том учреждении, где лечится обследуемый (в таком случае имеется обратная связь между врачом и диагностом).

Как правильно – ЭНМГ или ЭМГ?

В двух частях этой статьи мы коротко ознакомились с функциональной диагностикой центральной и периферической нервной системы. Точнее, всего с двумя методами – вызванными потенциалами и электронейромиографией. Но, конечно, таких методов много больше – это и известная многим электроэнцефалография (ЭЭГ), и различные виды длительного мониторирования ЭЭГ, полисомнография, кардиореспираторный скрининг и многие другие. О них мы поговорим в другой раз.

Читайте также: