Методы и средства оценки качества изображений реферат

Обновлено: 05.07.2024

Алгоритмы, учитывающие систему визуального восприятия человека. Мультиразмерная ошибка. Мера качества видео на основе дискретного косинусного преобразования. Модификация алгоритмов оценки качества изображения с применением предварительной обработки.

Подобные документы

Характеристика основных требований к методам и алгоритмам фильтрации. Предпосылки возникновения помех и искажений. Особенности фильтров на основе ортогональных и дискретного косинусного преобразований. Применение фильтра со сменным размером окна.

курсовая работа, добавлен 08.12.2011

Оценка качества линейных САУ. Прямые показатели качества числовых показателей. Алгебраические критерии и необходимые условия устойчивости уравнения. Анализ критерия Гурвица. Характеристическое уравнение замкнутой системы. Квадратичная интегральная ошибка.

реферат, добавлен 04.02.2011

Исследование физических параметров звука. Характеристика программного обеспечения для редактирования и обработки видео и аудио. Анализ известных форматов видео, видео разъёмов и эффектов видео редакторов. Методика измерения субъективного качества видео.

курсовая работа, добавлен 02.04.2013

Интегральная оценка как обобщенный показатель качества переходного процесса, его особенности и отличия от других методов оценки качества. Метод линейной интегральной оценки. Сущность и роль дуальной теоремы, преимущества и недостатки ее использования.

реферат, добавлен 14.08.2009

презентация, добавлен 16.03.2014

Оценка качества дискретной системы по переходной функции. Интегральные методы анализа качества. Точность дискретных систем управления. Корневые методы анализа качества. Теорема о конечном значении дискретной функции. Особенности преобразования Лапласа.

реферат, добавлен 27.08.2009

презентация, добавлен 16.03.2014

Исследование информационных возможностей импульсных систем. Критерии оценки качества формирования и воспроизведения сигналов с импульсной модуляцией. Амплитудно-частотный и фазово-частотный спектры периодической последовательности прямоугольных импульсов.

контрольная работа, добавлен 24.08.2015

Основные характеристики видео. Видеостандарты. Форматы записи. Методы сжатия. Современные мобильные видеоформаты. Программы, необходимые для воспроизведения видео. Современные видеокамеры. Носители цифрового видео. Спутниковое телевидение.

реферат, добавлен 25.01.2007

Сущность цветной фотографии, история ее появления и развития, специфика цветного проявления. Особенности качества БРЭА класса Hi-End (высокого класса аппаратного и программного обеспечения). Описание методов оценивания качества параметров аппаратуры.

Результаты объективных измерений должны хорошо согласовываться с результатами субъективных измерений для одной и той же видеопоследовательности. Это требование обуславливает главную сложность разработки объективных методов.

На практике, к сожалению, достаточно часто встречаются ситуации, когда исходное и обработанное изображение кажутся наблюдателю идентичными, в то время как объективные методы для тех же самых изображений дают очень большую ошибку. Учитывая то, что оценка качества человеком является решающей, подобная погрешность при объективных измерениях бывает просто не допустима. По этой причине был разработан ряд алгоритмов, учитывающих систему визуального восприятия человека.

Мультиразмерная ошибка

Одним из недостатков стандартных алгоритмов является тот факт, что вычисления ошибок производятся с учетом всего исходного изображения. Альтернативными являются измерения, имеющие некоторое сходство с системой визуального восприятия человека путем приписывания большего веса фрагментам с низким разрешением, и меньшего веса детальным изображениям.

Рассмотрим различные уровни разрешения, которые обозначим через r ≥ 1. Для каждого уровня r изображение разбивается на блоки c b 1 по bn ,где n зависит от шкалы r. Например, при r = 1 (самое низкое разрешение), только один блок покрывает все изображение, которому соответствует средний уровень яркости g .При r = 2 мы имеем ужечетыре блока размером со средними уровнями яркости g1 1 , g 12 , g21 , g22 . На r -муровне разрешения мы будем работать с блоками размером , которым соответствуют уровни яркости gij , ij= 1…. Таким образом, к каждому блоку bij , принадлежащему изображению , приписывается уровень яркости gij , а соответствует изображению . Среднее искажение уровня яркости при разрешении r имеет вес 2 r . Следовательно, ошибка на этом уровне имеет вид:


(1)

где 2 r-1 - количество блоков по i или по j индексам. Если рассматривать всю совокупность из R уровней разрешения, тогда оценка искажения будет выражена через сумму всех уровней разрешения r = 1… R , т.е.


(2)

Величина R (количество уровней разрешения) определяется начальным разрешением исходного цифрового изображения. К примеру, для изображения размером 512*512 R примет значение равное 9. Общая оценка искажений в видеосигнале выглядит следующим образом:


(2)

Индекс качества изображения ( Image Quality Index)

Данный алгоритм выглядит следующим образом. Пусть и есть исходное и обработанное изображения соответственно. Тогда индекс качества изображения вычисляется следующим образом:


(3)


(4)


(5)


(6)


(7)


(8)

Индекс Q принимает всевозможные значение на промежутке [-1, 1]. Наилучшее значение индекса качества достигается тогда и только тогда, если xi = yi для всех i = 1,2,…N и принимает значение равное единице. Наихудший вариант (-1) происходит когда yi =2x - xi . для всех i = 1,2,…N . Данный индекс качества рассматривает любые искажениякак совокупность трех различных факторов: потеря корреляции, искажение яркости и искажение контрастности. Первая компонента - это коэффициент корреляции между x и y, принадлежащая промежутку [-1, 1]. Наилучшее значение достигается когда yi = axi + b для всех i = 1,2,… N, где a и b - константы и a >0. Даже если x и y находятся в линейной зависимости могут иметь место другие искажения, устанавливаемые во второй и третьей компонентах. Вторая компонента, принимающая значения на промежутке [0,1] определяет степень схожести яркостных составляющих двух изображений x и y. Она принимает значение равное 1 тогда и только тогда, если . А и рассматриваются как оценка разности контраста между x и y, та же принимающая значения на промежутке [0,1] и имеющая наилучший результат при .

Мера качества видео на основе дискретного косинусного преобразования ( Video Quality Measurement ( VQM))

Алгоритм VQM основывается на идее о том, что в большинстве случаев наблюдатель при оценке качества изображения менее внимателен к мелким деталям, в то время как его основное внимание концентрируется на крупных объектах. Следовательно, возможно представить высокочастотную временную и пространственную информацию с меньшей точностью, а потерей качества в таком случае можно пренебречь, поскольку человеческий глаз малочувствителен к искажениям на подобном уровне. По этой причине, вместо попиксельного яркостного сравнения двух изображений (оригинального и искаженного) в алгоритме осуществляется сравнение взвешенных частот на уровне человеческого восприятия.

Кроме того, по мнению автора, наибольшим приоритетом при оценке качества, обладают те части изображения, яркость которых наибольшая. Он основывается на предположении о том, что если часть изображения более яркая, то и искажения на ней должны оказаться более заметны человеческому глазу.

1. Чтение блоков размером 8x8 из исходного и искаженного изображений.

2. Каждый блок подвергается дискретному косинусному преобразованию, в результате чего мы получаем 2 матрицы частотных DCT-коэффициентов размером 8x8.

3. Для каждого блока производится масштабирование частот в зависимости от его общей яркости. Результатом данного этапа являются две матрицы LocalContrast для блоков из исходного и искаженного изображений соответственно:


(9)

где DCT (i ,j ) – матрица размером 8x8, являющая результатом дискретного косинусного преобразования исходного блока, DC – это средняя яркость данного блока перед преобразованием, имеющая нулевую несущую частоту, т.е. DC = DCT (0 ,0 ).

4. Каждый блок подвергается делению на стандартную матрицу квантования, в результате получаем две матрицы, содержащие взвешенные частоты с учетом человеческого восприятия.

5. Вычисляем функцию пространственной контрастной чувствительности (Spatial Contrast Sensitivity Function, SCSF ). Для этого берем абсолютное отклонение соответствующих элементов полученных матриц, вычисляем их сумму, добавляем ее к сумме уже просмотренных блоков, вычисляем максимальное отклонение соответствующих элементов матриц.

6. На последнем этапе производится вычисление качества видеосигнала:


(10)

где sum – это сумма всех абсолютных отклонений, max – максимальное из всех отклонений по всему кадру. Таким образом, вычисляется средняя ошибка по всему кадру. Кроме того, оценка качества изображения производится с учетом максимального отклонения по всему кадру, поскольку в алгоритме делается предположение о том, что одно крупное искажение в одной части изображения, отвлечет наше внимание от более мелких искажений в других частях кадра.

2 Модификация алгоритмов оценки качества изображения с применением предварительной обработки Графические линейные фильтры.

Над любым изображением можно производить различные преобразования, позволяющие изменять исходную картинку. Основной целью такого преобразования является усиление или уменьшение каких либо свойств исходного изображения. Наиболее простыми преобразованиями являются локальные преобразования, затрагивающие вместе с определенным пикселем лишь его непосредственную окрестность (это значит, изменить цвет пикселя в соответствии с цветом его ближайших соседей) с целью достижения некоторого эффекта. Такие преобразования называются фильтрами . С исходным изображением можно работать, как с обычной матрицей, выполняя над ним различные численные преобразования. Интенсивность каждого пикселя изображения - результат действия фильтра вычисляется с помощью воздействия фильтра на соответствующий пиксель исходного изображения и его окрестность.


Каждый линейный фильтр F можно представить в виде матрицы размером , где N и M - размеры (прямоугольной) окрестности по горизонтали и вертикали. Интенсивность пикселя исходного изображения с координатами (x , y ) при воздействии такого фильтра вычисляется по формуле:


(11)

Рассмотрим простейший пример графического фильтра (таблица 2). Это фильтр 3x3, то есть область действия фильтра захватывает сам пиксель и его ближайших соседей.

Таблица 2. Простейший фильтр – размытие исх одног о изображения (blur )


Таким образом, чтобы преобразовать один пиксель в изображении, необходимо умножить значение его цвета на число в центре матрицы, которую содержит фильтр. Затем умножаем восемь значений цветов пикселей, окружающих центральный пиксель, на соответствующие им коэффициенты фильтра, суммируем все девять значений, и получаем в результате новое значение цвета центрального пикселя. Этот процесс повторяется для каждого пикселя в изображении, тем самым изображение, как принято говорить, фильтруется. Коэффициенты фильтра определяют результат процесса фильтрации. В данном примере результатом действия фильтра будет простое усреднение интенсивности пикселей в области 3x3. Это простейший фильтр, приводящий к размывке изображения (blur ). Заметим, что сумма всех элементов матрицы равна 1, то есть общая интенсивность изображения сохраняется. Такое свойство фильтра является очень важным при последовательном многократном его применении. Это означает, что каждый пиксель поглотит что-то из цветов соседей, но полная яркость изображения останется неизменной.

Если же сумма коэффициентов больше чем 1, яркость увеличится; меньше 1 - яркость уменьшится.

Еще одной идеей является введение в фильтр отрицательных чисел, что, вообще говоря, приводит к действию, обратному размывке (sharpening ), то есть, два первоначально близких цвета удаляются друг от друга.

Спектр применения графических фильтров очень велик, начиная с коррекции цифровых фотографий и заканчивая созданием специальных эффектов на исходных изображениях.

Предварительная обработка исходного и искаженного изображений.

Эффективный подход к получению оценки качества цифрового видеосигнала заключается в предварительной обработке исходного и закодированного изображения, после которой применяется один из уже известных алгоритмов оценки качества.

Данный алгоритм основан на предположении о том, что система визуального восприятия человека направлена на извлечение структурной информации из наблюдаемого изображения. Следовательно, измерение изменений структурной информации может оказаться неплохой оценкой визуально воспринимаемых искажений в обработанном изображении.

В целях извлечения структурной информации к исходному и полученному изображениям применить четыре линейных графических фильтра определения границ размером 5x5. Первый фильтр (таблица 1) призван определять вертикальные границы двух изображений, а второй (таблица 2) горизонтальные, два других фильтра (таблица 3 и таблица 4) призваны определять диагональные границы разной ориентации.

Таблица 1. Фильтр, определяющий вертикальные границы

0 0 0 0 0
1 0 0 0 -1
2 1 0 -1 -2
1 0 0 0 -1
0 0 0 0 0

Таблица 2. Фильтр, определяющий горизонтальные границы

0 1 2 1 0
0 0 1 0 0
0 0 0 0 0
0 0 -1 0 0
0 -1 -2 -1 0

Таблица 3. Фильтр, определяющий диагональные границы 1-го типа

2 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 -1 -1
0 0 0 -1 -2

Таблица 4. Фильтр, определяющий диагональные границы 2-го типа

0 0 0 -1 -2
0 0 0 -1 -1
0 0 0 0 0
1 1 0 0 0
2 1 0 0 0

Чтобы преобразовать один пиксель в изображении, необходимо умножить значение его цвета на число в центре фильтра. Затем необходимо умножить 24 значения цветов пикселей, окружающих центральный пиксель, на соответствующие им коэффициенты фильтра, просуммировать все 25 значений. В результате мы получаем новое значение цвета центрального пикселя. Этот процесс повторяется для каждого пикселя в изображении.

Следующим этапом является применение одного из алгоритмов оценки качества цифрового видеосигнала для четырех карт границ в отдельности, вертикальной, горизонтальной, и двух диагональных. Вычисление метрик для карт границ необходимо с целью определения масштаба искажений границ объектов на изображении, поскольку границы объектов являются главной составляющей структурной информации.

На третьем, заключительном этапе, с целью учета границ, ориентированных по четырем направлениям, результат усредняется по вертикальной, горизонтальной, и диагональным составляющим.

3 Критерии качества восстановления изображения

Для сравнения различных алгоритмов сжатия используются следующие объективные критерии качества.

1. Среднеквадратическая ошибка (meansquareerror) или средний квадрат ошибок


, (12)

2. Средняя абсолютная ошибка (meanabsoluteerror)


(13)

3. Нормированная среднеквадратическая ошибка (normalizedMSE)


(14)

4. Нормированная абсолютная ошибка (normalizedabsoluteerror)


(15)

5. Отношение сигнал/шум (signaltonoiseratio)


(16)

Использование логарифмов сглаживает MSE и делает ее менее чувствительной к малым изменениям восстановляемого изображения.

6. Пиковое отношение сигнал/шум (peak signal to noise ratio)

На практике используется модификация меры MSE и называется PSNR (peak of signal-to-noise ratio). PSNR чаще других параметров применяется для оценки сходства между исходным и восстановленным изображениями.

По сравнению с MSE данная мера хороша тем, что исчисляется в логарифмической шкале по амплитуде (в децибелах). Это важно, так как глаз воспринимает сигнал также в логарифмической шкале по амплитуде и поэтому усиление амплитуды сигнала в два раза не означает для человека улучшения качества изображения во столько же раз.


, (17)

где b – число бит на значение пикселя изображения.

Одним из недостатков данной меры является высокая чувствительность к среднему отличию сигналов по амплитуде, что может привести к ошибочному результату, в случае, когда сигналы немного отличаются в среднем по амплитуде. Физиология зрения и психология восприятия изображения человека настолько сложны, что до сих пор не существует способа математического расчета степени визуальной схожести двух изображений.

7. Средняя разность (averagedifference)


(18)

8. Максимальная разность (maximumdifference)


(19)

9. Структурное содержимое (structuralcontent)


(20)

1. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи.- М.: Радио и связь, 2000.

2. Рабинер Л.Р., Шафер Р.В. Цифровая обработка речевых сигналов.-М.: Радио и связь, 2001.

3. Секунов Н.Ю. Обработка звука на PC.- СПб.: БХВ-Петербург, 2001.

6. Нейрокомпьютеры в системах обработки изображений. – М.: Радиотехника, 2003.


Алгоритмы улучшения качества изображений, хранящихся в растровых графических форматах, получают всё большее распространение. На сегодняшний день их существует огромное количество и беспрерывно появляются новые. Это связано с появлением новых способов и технических средств получения, передачи и воспроизводства растровых изображений. Алгоритмы обработки изображений, в основном, ориентированы на ликвидацию недоработок в технических средствах и технологиях, работающих с изображениями. Эти недоработки можно идентифицировать не только визуально, но и пользуясь описанием технических характеристик техники и технологий.

Перед тем, как улучшать изображение, необходимо дать оценку его качеству. Человек, бросив один взгляд на изображение, может сказать яркое оно или тёмное, контрастное или нет, чёткое или размытое и т.д. Алгоритмы же работают детально, анализируя изображение попиксельно или небольшими группами пикселей. Поэтому, на основании работы алгоритма, тяжело дать общую оценку качеству изображения.

К показателям, по которым можно оценить изображение как единое целое, относятся следующие:

  • яркость;
  • контрастность;
  • преобладающий тон;
  • резкость.

Прежде чем приступить к выработке критериев и методов оценки качества, необходимо выбрать цветовую модель. Наиболее удобной представляется модель RGB по нескольким причинам:

  • эта модель достаточна проста как для понимания, так и для математического описания;
  • она применяется во многих технических устройствах и, при необходимости, преобразуется в другие цветовые модели;
  • она близка к представлениям о природе чувствительности к цвету человеческого глаза.

Требования к критериям оценки качества изображений следующие:

  • показатели качества для сравнения с критериями должны вычисляться;
  • значения критериев должны иметь относительный характер (не зависеть от диапазона яркости RGB);
  • критерии должны быть понятны и наглядны для человека.

Достаточно наглядно оценка качества изображения может быть представлена с помощью RGB-гистограмм.

Гистограмма тёмного неконтрастного изображения


Рис. 1. Гистограмма тёмного неконтрастного изображения

Гистограмма светлого изображения


Рис. 2. Гистограмма светлого изображения

Гистограмма сбалансированного полутонового изображения


Рис. 3. Гистограмма сбалансированного полутонового изображения

Гистограмма высококонтрастного изображения


Рис. 4. Гистограмма высококонтрастного изображения

Гистограмма постеризованного изображения


Рис. 5. Гистограмма постеризованного изображения

Недостатком этого способа является отсутствие численного выражения для показателей качества.

Цветовую модель RGB удобно представить в виде куба в прямоугольной системе координат, где в начале координат расположена точка чёрного цвета (яркость R = G = B = 0), а вдоль осей возрастают значения яркости R, G и B. На главной диагонали куба, выходящей из начала координат, расположены ахроматические цвета.


Рис. 6. Цветовая модель RGB

RGB — куб и его невидимые грани


Рис. 7. RGB — куб и его невидимые грани

Оценка яркости изображения

Яркость изображения можно выразить как среднюю яркость всех пикселей (математическое ожидание в терминах теории вероятностей).

Яркость пикселя вычисляется по формуле:

Яркость всего изображения Y, содержащего N пикселей будет равна:

Данное выражение характеризует физическую яркость изображения. Поскольку чувствительность человеческого газа к разным частям спектра неодинакова (максимальная в жёлто-зелёной, меньше в красной, ещё меньше в синей), яркость цветного пикселя будет восприниматься субъективно в зависимости от его тональных характеристик.


Рис. 8. Чувствительность человеческого глаза к различным частям спектра

В соответствии с рекомендациями стандарта Федеральной комиссии связи (FCC), яркость изображения (видимая) вычисляется по формуле:

Оценка как физической (), так и видимой () яркости изображения представлена в абсолютных величинах. Перейти к относительным величинам можно разделив значение яркости на максимально возможное значение яркости:

Тогда будет лежать в диапазоне [0,1]. Значение 0 будет соответствовать абсолютно чёрному изображению, а значение 1 – абсолютно белому. Изображение оптимальной яркости должно иметь значение близкое к 0.5.

Оценка контрастности изображения

Контрастность изображения бывает яркостная и тоновая.

Яркостная контрастность представляет собой разницу между физической или видимой яркостью отдельных участков изображения. Вообще говоря, вычисление физической или видимой яркости можно рассматривать как конвертацию цветного изображения в ахроматические цвета. Поэтому яркостная контрастность — это сравнение двух участков изображения, приведенных к ахроматическим цветам.

Если проанализировать RGB-гистограммы, то можно сделать вывод, что у контрастного изображения количество тёмных и светлых пикселей должно быть приблизительно одинаковым, разница в их яркости — значительна, а основное место сосредоточения пикселей — возле границ диапазона.

Хорошим критерием оценки яркостной контрастности будет дисперсия яркости пикселей изображения:

Более универсальный безразмерный критерий оценки яркостной контрастности — отношение средне-квадратического отклонения к максимально возможному значению яркости:

C изменяется в диапазоне [0,1]. Значение 0 соответствует однотонному изображению, значение 1 — максимально контрастному. Оптимальное значение контрастности зависит от типа объекта, представленного на изображении.

Более сложный случай представляет тоновая контрастность. Конвертированные в оттенки серого цвета могут иметь одинаковую яркость, но визуально чётко различаться.

В RGB-кубе максимальное расстояние между двумя точками равно длине главой диагонали:

Хорошую тоновую контрастность будут иметь пиксели, расположенные на расстоянии , или (длины ребра RGB-куба):

Оценка преобладающего тона

Оценка тоновой насыщенности

Тоновая насыщенность — это отличие цвета от ахроматического при их одинаковой яркости. В RGB-кубе тоновую насыщенность пикселя можно выразить как расстояние до диагонали ахроматических цветов:

Для всего изображения оценка тоновой насыщенности может быть выражена как среднее значение тоновой насыщенности для всех пикселей:

Оценка резкости изображения

Понятие резкость, как характеристику аппаратных средств и технологий, можно разделить на три составляющие:

  • резкость, как характеристика фокусировки объектива на объект;
  • резкость как характеристика оборудования, позволяющая воспроизводить без искажений яркостный переход максимального контраста;
  • резкость как результат специальной обработки исходного изображения.

Идеальное оборудование должно обеспечить вывод информации о смене цвета в элементе изображения таким образом, чтобы никакого промежутка между цветами не было.

С физической точки зрения нерезкий переход можно рассматривать как диффузное смешение двух контрастных цветов.

С точки зрения человеческого восприятия резкость — это наличие контура контрастного перехода (яркостного или тонового) между двумя соседними частями изображения.

Для оценки резкости изображения в ахроматических цветах удобно использовать яркость пикселей. Такое изображение может быть представлено прямоугольной матрицей (размерностью соответствующей размерам изображения в пикселях), элементами которой являются значения яркости пикселя.

Контрастный (сверху) и неконтрастный (снизу) переходы между цветами


Рис. 9. Контрастный (сверху) и неконтрастный (снизу) переходы между цветами

Поскольку в настоящее время в большинстве случаев используется квадратный пиксель, можно составить другую матрицу (матрицу яркостных контрастов), элементами которой будут разности яркости последующего и предыдущего пикселей по горизонтали или по вертикали (~-~Y_p_x" />
или ~-~Y_p_y" />
). Можно учитывать и диагональные разности.

Значения элементов матрицы характеризуются следующим образом:

Далее осуществляется сканирование строк для разностей по горизонтали (столбцов для разностей по вертикали) матрицы яркостных контрастов. Строка (столбец) разбивается на участки, в которые входят элементы, имеющие одинаковый знак (переходые участки) или участки со значениями элементов равными 0.

Для каждого переходного участка оценивается:

Для проведения анализа матрицы яркостных контрастов необходимо определить критерии и их значения: какое значение элемента матрицы считать контрастным переходом, а какое — нет.

Закон утверждает: ощущение разницы между близкими по величине стимулами пропорциональна величине стимулов, т.е.:

Delta X

Это отношение называется пороговым контрастом, а — дифференциальным порогом. В средине дифференциального порога изменения интенсивности стимула не ощутимы.

Отношение Вебера-Фехнера (пороговый контраст) составляет 1-3%.

Таким образом, для каждого переходного участка матрицы яркостных контрастов в идеальном случае или <|>" />
, ~0.03"/> (здесь и далее — крутизна участка).

Поскольку критерии оценки резкости связаны с локальными участками изображения, общая оценка резкости по этим критериям будет сильно зависеть от типа объекта на изображении (документ, пейзаж и т.д.). И всё же в качестве оценки резкости всего изображения можно предложить средние значения длины и крутизны для всех n переходных участков.

Для оценки резкости цветных изображений вместо разности яркости соседних пикселей можно использовать расстояние в RGB-кубе между цветами этих пикселей:

При сканировании матрицы тоновых контрастов, подобно сканированию матрицы яркостных контрастов, необходимо контролировать тенденцию изменения тона: отрезки, соединяющие пиксели в RGB-кубе должны лежать на одной прямой. Реально они могут иметь некоторое незначительное отклонение ε. Осуществить такой контроль можно сравнивая сумму длин расстояний между цветами в RGB-кубе с расстоянием между крайними точками этой ломаной линии:

Прекращение выполнения данного условия можно считать границей участка.

Далее оценка резкости цветного изображения проводится подобно оценке резкости ахроматического изображения. Крутизна участка будет вычисляться через расстояния между цветами пикселей в RGB-кубе:

и для всего цветного изображения вычисляются также, как и для ахроматического изображения.

Несмотря на грубость и приблизительность предложенных критериев и методов оценки, их можно успешно использовать для предварительного отбора изображений из больших массивов в автоматическом режиме; для предварительной оценки качества изображений с целью выбора более детальных методов оценки и т.п.

Рассмотрим наиболее известные методы оценки качества изображений.

Качество изображения определяется большим количеством технических характеристик системы: соотношением сигнал/шум и статистическими характеристиками шума, градационными характеристиками, спектральными (цветовыми) характеристиками, интервалами дискретизации и т.д.

Одним из параметров, которые определяют качество изображений, является контраст. Поскольку изображение имеет сложный сюжетный характер, то это порождает необходимость при определении его контрастности выходить из контраста отдельных комбинаций элементов изображения. При этом все элементы считаются равнозначными, и контраст каждой их пары вычисляется по формуле


, (7)

где , – яркости элементов сюжетного изображения.

Сюжетность изображения предполагает возможность его использования человеком. Поэтому при оценке контраста, как одного из параметров качества изображения, необходимо учитывать ряд особенностей зрительного восприятия человека.

Далее, применяя правило суммирования контрастов, вычисляют набор величин, которые определяют восприятие каждой пары элементов изображения. Проводя усреднение матрицы локальных контрастов, получают суммарный контраст. Полученный результат может быть использован как один из параметров оценки визуального качества изображения [2].

Существует еще один метод оценки качества изображения. Его суть состоит в следующем. Экспериментально было установлено, что оптимальное, с точки зрения субъективного восприятия, изображение имеет нормальное распределение яркостей его элементов. Для удобства дальнейших расчетов был применен критерий нормального распределения. По степени отклонения реального распределения яркостей от нормального проводилась оценка качества изображения. Кроме количественной оценки качества изображения, данный метод позволяет получить информацию о наличии и весовом соотношении яркостных градаций изображения. Результаты оценки качества изображения, полученные по данному методу, хорошо коррелируют с субъективной оценкой визуального качества изображения [3].


Рассмотрим еще один известный эмпирический подход к оценке визуального качества изображения [6]. Для формирования этой оценки рассматриваются такие параметры изображения как среднеарифметическое значение яркостей, полнота использования градаций яркостей, резкость изображения и его обобщенный контраст.

Величина отображает уровень адаптации по яркости зрительной системы человека, оптимальным значением которой является половина максимально возможного диапазона яркостей . Поэтому величину отклонения от можно использовать как оценку уровня адаптации зрительной системы:


. (8)

Вторым важным параметром оценки визуального качества изображения является полнота использования его элементами градаций яркостей. Аналитическое выражение этого параметра такое:


, (9)

где – количество уровней яркостей, для каждого из которых на данном изображении присутствуют большее чем количество элементов с данной яркостью ( и – размеры изображения, – некоторая константа).

Третьим параметром оценки визуального качества изображения в данном методе является его резкость, которая измеряется скоростью нарастания яркости, разделенной на общую величину перепада [4]:


, (10)

где – это видеосигнал; и – точки, которые расположены на противоположных краях перепада. Поэтому оценку резкости находят следующим образом


. (11)

Четвертый параметр дает оценку контраста изображения. Когда оценивается визуальное качество изображения независимо от его сюжетного наполнения, тогда за принимают обобщенный контраст изображения [5].

В целом выражение для количественной оценки визуального качества полутоновых монохромных изображений записывают так [6]:


, (12)


где – нормирующий коэффициент.

Существуют также иные комплексные критерии качества изображений. Их суть состоит в следующем. Подразумевается, что человек-оператор может сам оценить важность отдельных параметров качества изображения для различных классов искажений. После этого строится некоторая комплексная оценка . Примером могут быть комплексные оценки вида [5]:


, (13)


. (14)

Весовые коэффициенты или учитывают относительную важность частичных оценок в комплексной оценке качества.

Рассмотрим еще один метод определения комплексной оценки качества изображения [6]. Его особенность состоит в том, что все частичные оценки комплексного критерия качества будут рассматриваться с точки зрения единой вероятностной модели изображения и определяться на основе моментов гистограммы.

Экспериментальные исследования данного метода дают результаты, которые хорошо согласуются с субъективной визуальной оценкой.

Предложенный метод целесообразно применять для оценки визуального качества незашумленных изображений. Большинство известных подходов использует лишь один параметр качества изображения. Преимущество этого метода состоит в том, что в нем используется интегральный критерий вычисления визуального качества. Он объединяет самые важные показатели качества, определение которых исходит из единой вероятностной модели изображения. Чем большее количество параметров качества изображения будет учтено, тем точнее будет оценка. Тем не менее, для этого метода следует иметь в виду, что при увеличении количества параметров, возрастает его вычислительная сложность.

Пусть одно и то же изображение улучшается двумя различными методами. В результате обработки получим два изображения. Применив к ним предложенный метод, получим две количественные оценки качества. Поскольку эти изображения были получены из одного и того же исходного изображения, то, анализируя эти оценки, можно сравнивать эффективность методов их обработки. Таким образом, предложенный метод является инструментом оценки качества преобразованных изображений и эффективности методов, которые реализуют эти преобразования.

Для тестирования метода поступаем так. Одно и то же изображение обрабатываем методом усиления локальных контрастов и методом низкочастотной фильтрации. Полученная серия изображений - ухудшенное, входное и улучшенное - имеет соответственно самые низкие, средние и самые высокие количественные оценки качества. Приведем результаты экспериментальных исследований и соответствующие им количественные оценки качества для трех различных по своей природе изображений.


1 – ,


2 – ,


3 – ,


4 – ,


5 – ,


6 – ,


7 – ,


8 – ,


9 – ,

Рис. 3. Иллюстрация применения метода количественной оценки качества изображений.

Из рисунка 3 видно, что для серий изображений минимальную оценку качества имеют изображения, которые были размыты (первая колонка), а максимальную - обработанные методом улучшения (третья колонка). Полученная количественная оценка хорошо коррелирует с визуальным восприятием. Проведенные исследования известных методов оценки качества изображений показали, что они являются менее эффективные по сравнению с предложенным методом. Недостатком же предложенного метода является некорректная оценка качества зашумленных изображений. Этот недостаток присущ всем методам, которые при оценке качества изображения используют ту или иную меру контраста. Это связано с тем, что метод оценки качества не обеспечивает идентификации резких перепадов яркостей - по шуму или высококонтрастному участку.

Кроме уже упомянутых в работе, к наиболее употребляемым объективным оценкам качества изображения относятся [6]:


; (15)

нормированная корреляция (normalized cross-correlation) -


; (16)

качество корреляции (correlation quality) -


; (17)

максимальная разность (maximum difference) -


; (18)

верность изображения (image fidelity) -


; (19)

среднеквадратичная лапласианова погрешность (laplasian mean square error) -


, (20)


где ;

среднеквадратичная погрешность (mean square error) -


; (21)

максимальная среднеквадратичная погрешность (peak mean square error) -


; (22)

нормированная абсолютная погрешность (normalized absolute error) -


; (23)

нормированная среднеквадратичная погрешность -


; (24)


норма (Минковского) -

, ; (25)


; (26)

максимум отношения сигнал/шум -


. (27)

Оценки качества, представленные выражениями (15) - (27) удобные в пользовании, тем не менее, они не всегда позволяют объективно оценить качество изображения, в особенности с точки зрения его визуального восприятия.

Вопрос количественной оценки качества изображений до конца не решен. Он является важным шагом на пути к решению задач оптимальных преобразований изображений с точки зрения визуального восприятия.

Задание. Порядок выполнения работы

1. Сформировать в среде MathCad тестовое черно-белое изображение.

2. Выполнить аддитивное зашумление каждого элемента изображения с применением 3 видов шума из 6 перечисленных в теоретической части данной работы.

3. Выполнить оценку качества полученных зашумленных изображений с применением критериев, описанных формулами (15) – (27).

4. Провести сравнительный анализ полученных оценок качества зашумленных изображений для каждого из примененных к исходному изображению видов шума.

5. Сделать выводы по влиянию различных видов шума на качество изображения.


Качество изображений может оцениваться разными способами и в связи с различными задачами [1]. При одном подходе качество рассматривается как характеристика самого изображения и определяется его собственными свойствами (статистическими, структурными, семантическими). В этом случае критерии качества либо являются субъективными (определяемыми человеческим глазом), либо опираются на характеристики изображения: форму и параметры распределения яркости, ширину пространственного спектра и т.п. Однако подобные безотносительные критерии имеют довольно ограниченное применение. Объективными критериями, используемыми при оценке качества изображений, являются критерии, позволяющие получить просто вычисляемую характеристику изображения разностного сигнала между двумя изображениями: реальным и некоторым идеальным, или исходным и преобразованным. Их называют разностными показателями искажения. Использование данных критериев позволяет оценивать количественные изменения значений яркости, уровень искажений изображений при их преобразованиях (фильтрации, сжатии данных и т.д.), то есть, по существу, качество самого средства преобразования - алгоритма или системы. Именно это очень важно при построении алгоритмов и систем обработки изображений и оценке качества алгоритмов.

К таким критериям относится, прежде всего, среднеквадратический критерий [2]. По нему мерой различия двух изображений является среднеквадратическое значение разностного сигнала двух изображений:


(1)

В представленных соотношениях через Сх,y обозначается пиксель пустого контейнера с координатами (x, y), а через Sx,y - соответствующий пиксель заполненного контейнера.


(2)


Рис. 1. Нормированная среднеквадратическая ошибка


Рис. 2. Пиковое отношение сигнал/шум

К разностным показателям относится также показатель максимальной разности между пикселями заполненного и пустого контейнера. Ко второй группе относятся показатели, основанные на корреляции между оригинальным и искаженным сигналами (так называемые корреляционные показатели искажения). Полный список показателей визуального искажения представлен в [3].

1. Методы компьютерной обработки изображений / под ред. В.А. Сойфера. - 2-е изд., испр. - М.: ФИЗМАТЛИТ, 2003. - 784 с.

2. Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. - СПб.: СПбГУ ИТМО, 2008. - 192 с.

3. Конахович Г.Ф., Пузыренко А.Ю. Компьютерная стеганография. Теория и практика. - М.: МК-Пресс, 2006. - 288 с.

Читайте также: