Металлические строительные материалы реферат

Обновлено: 05.07.2024

В качестве строительной арматуры железо уже в эпоху Древнего мира применяли на Ближнем Востоке (шумеры, ассирийцы, персы), в Индии и Китае. Железные балки и колонны изготавливались с помощью технологии горячей кузнечной (горновой или огневой) сварки из криц массой не более 40 кг.

Дополнительная информация

Широкое применение железо нашло в индийской храмовой архитектуре в эпоху Гуптов, династии, правившей в Северной Индии в IV – VI вв. Использовались железные закрепы, штыри, хомуты, затяжки, скобы и даже пилоны. Во многих индийских храмах, построенных во второй половине 1 тыс., роль основных несущих конструкций выполняют железные сварные балки длиной до 6 м. Наиболее известными фундаментальными сооружениями из железа в средневековой Индии являются колонны в городах Дели и Дхаре.

Нержавеющая колонна в Дхаре имеет гораздо меньшую известность. Дхар был крупным городом в средневековом королевстве Мальва на севере Индии. Предполагается, что дхарская колонна была изготовлена примерно в тоже время, что и делийская. В период вторжения монголов она была сброшена с каменного постамента и разломилась, существуют три ее обломка общей длиной 13,22 м. Общая масса колонны оценивается в 7,3 т.
Химический анализ металла, из которого изготовлены индийские колонны, показал, что это именно железо с очень низким содержанием углерода – менее 0,02% (масс.) и высоким содержанием фосфора – около 0,3% (масс.). Однако эти цифры не объясняют удивительной стойкости металла к коррозии.

Для древних китайских архитектурных традиций характерно использование чугуна. Технология чугунного литья была освоена китайцами значительно раньше, чем любым другим народом мира. Уже в 1 тыс. в Китае изготавливались необычайно крупные отливки из чугуна. Наиболее известные памятники того времени – чугунные пагоды.

Как только техника сооружения пагод проникла в Китай, она сразу же вобрала в себя особенности китайских строений и пагоды в Китае строились в национальном стиле. Китайские пагоды бывают самых разнообразных форм – квадратные, шестиугольные, восьмиугольные, обычно с чётным числом углов и многоярусные. По своей конструкции они имеют вид башен или павильонов с многочисленными карнизами. Строительным материалом им служит дерево, кирпич, камень, глазурованная черепица, железо. В настоящее время в Китае насчитывается свыше 2000 пагод. Металлические пагоды представляли собой модульные сооружения, собираемые из заранее отлитых деталей, которые соединялись при помощи литья или специальных замковых сопряжений.

Другие древние чугунные пагоды – Восточная и Западная в храме Гуансяо в Гуанчжоу. Западная отлита во времена Пяти Династий, в 963 г. Первоначально она имела 7 ярусов, однако 4 из них были разрушены ещё в древности. Восточная пагода была сооружена немного позже, в 967 г. Её высота составляет 6,35 м, она установлена на каменном пьедестале высотой 1,34 м. Первоначально она имела также шпиль, который позднее был разрушен.

В Европе первыми стали применять железо в постройке греки. Для преодоления напряжения растяжения они скрепляли каменной кладкой железную арматуру – каркас такой конструкции. Металлические стяжки были использованы при строительстве Парфенона. Зодчий Мнесикл замуровал в специальных канавках мраморных блоков железные стержни длиной около 2 м. Каменные блоки Эрехтейона – одного из главных храмов Афин, в одном ряду скреплялись металлическими скобами в виде пластин, напоминающими двойную букву Т или были П-образной формы. Блоки в смежных рядах связывали вкладышами-пиронами (короткий металлический стержень, скрепляющий блоки каменной кладки по вертикали). Каждый пирон вставляли в перевёрнутый камень и ставили на место так, чтобы свободный его конец входил в гнездо нижнего камня, которое заливали свинцом по специально пробитому лотку. Иногда строители Эрехтейона применяли деревянные вкладыши или комбинированные скрепы в виде металлических штырей, заделанных в деревянные пробки. Металлические крепления заделывались в свинец или дерево, для того чтобы мягкая свинцовая оболочка смягчала их удары о стенки мраморных блоков при землетрясениях. Вслед за греками, этой технологией пользовались римляне и египтяне (например, при возведении терм Каракаллы и храма Крокодилов). А при возведении храмов в Византии для соединения строительных деталей применяли железные скобы – железные полосы, изогнутые под углом, служащие для скрепления деревянных частей в лесах, стропилах, мостах и других сооружениях.

  • Студент: Ратнов А.C.
  • Руководитель: Черноусов П.И.

Металлы (от латинского metallum - шахта, рудник) - группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло - и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. [5, с.30]

Содержание работы

Введение …………………………………………………………………………. 3
1. Классификация металлов . 4
1.1. Сталь углеродистая обыкновенного качества . 4
1.2. Сталь углеродистая качественная конструкционная . 6
1.3. Сталь легированная . 7
2. Строение металлов . 10
3. Свойства металлов . 13
3.1. Химические свойства . 13
3.2. Физические свойства . 14
4. Применение металлов в строительстве . 19
Заключение . 25
Список литературы .

Содержимое работы - 1 файл

реферат Регина.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра строительных материалов

РЕФЕРАТ

Выполнили: студенты группы 1ВВ102

Мухаметханова А., Приданникова Р.

Проверила: Камалова З.А.

Казань 2012

1. Классификация металлов . . . 4

1.1. Сталь углеродистая обыкновенного качества . . 4

1.2. Сталь углеродистая качественная конструкционная . . 6

1.3. Сталь легированная . . . . 7

2. Строение металлов . . . . 10

3. Свойства металлов . . . . 13

3.1. Химические свойства . . . . 13

3.2. Физические свойства . . . . 14

4. Применение металлов в строительстве . . . 19

Список литературы . . . . 26

Металлы (от латинского metallum - шахта, рудник) - группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло - и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. [5, с.30]

Наука о металлах развивается широкими темпами во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств. Создаются сверхтвердые сплавы, сплавы с заранее заданными свойствами, многослойные композиции с широким спектром свойств и многие другие металлические, алмазные и керамико-металлические материалы. [3, с.267]

В современном строительстве металл имеет не менее важное значение, чем бетон, железобетон, каменные и лесные материалы. Из стального проката возводят каркасы промышленных зданий и сооружений, башни, мачты, опоры, мосты, эстакады, резервуары. Широко используют в строительстве и такие металлические изделия, как арматура для железобетона, трубы, болты, заклепки, гвозди. Особое значение в современном строительстве приобрели легкие металлические конструкции зданий и сооружений, применение которых способствует уменьшению трудоемкости, продолжительности и стоимости их монтажа.

Широкое применение металла в строительстве объясняется главным образом наличием свойств, выгодно отличающих его от других строительных материалов,— это высокая прочность, способность к значительным упругим и пластичным деформациям; металл относительно легко поддается обработке давлением (прокатке, ковке, штамповке) и литью; из него можно получать изделия любых профилей. [4, с.129]

1. Классификация металлов

В строительстве обычно применяют не чистые металлы, а сплавы. Наибольшее распространение получили сплавы на основе черных металлов (~94%) и незначительное – сплавы цветных металлов (рис. 1) [1, с.288]

Рис. 1. Классификация металлов и сплавов.

1.1. Сталь углеродистая обыкновенного качества

Решающее влияние на механические свойства в углеродистых сталях оказывает содержание углерода (рис. 2). При увеличении содержания углерода повышаются прочность, твердость и износоустойчивость, но понижаются пластичность и ударная вязкость, а также ухудшается свариваемость. [6, с.324]

Примесь фосфора вызывает хладноломкость, а примесь серы – красноломкость стали. Для различных марок стали допустимое содержание фосфора 0,04. 0,09 %, а серы 0,04…0,7 %. Вредное влияние на свойства стали оказывает кислород: содержание его более 0,03% вызывает старение стали, а более 0,1 % – красноломкость. Примеси марганца и кремния в количестве 0,8. 1 % не оказывают практически влияния на механические свойства углеродистых сталей. В стали, предназначенной для сварных конструкций, содержание кремния не должно превышать 0,12. 0,25 %. Содержание азота повышает прочность и твердость стали и снижает пластичность. [5, с.35]

Рис. 2. Влияние углерода на механические свойства отожженных сталей.

Спокойная сталь является более качественной, но по стоимости она на 12 -15 % дороже кипящей. Полуспокойная сталь занимает по свойствам промежуточное положение между спокойной и кипящей сталью, но в результате и незначительного расхода раскислителей стоимость ее меньше, чем спокойной.

Механические характеристики стали зависят также от формы и толщины проката. Углеродистые стали обыкновенного качества применяют без термообработки. В таблице 1 приведены нормы на механические свойства стали углеродистой обыкновенного качества (группа А). [6, с.318]

Сталь углеродистая обыкновенного качества.

Марки стали
группы А

Предел прочности при растяжении, МПа

Предел текучести, МПа

1.2. Сталь углеродистая качественная конструкционная

Качественная конструкционная сталь выплавляется в мартеновских и электрических печах (спокойная, полуспокойная, кипящая). В зависимости от химического состава эта сталь делится на две группы: I – с нормальным содержанием марганца и II – с повышенным содержанием марганца. Марки стали и требования к механическим свойствам стали I группы в состоянии нормализации приведены в таблице 2. В марке стали двузначные цифры означают среднее содержание углерода в сотых долях процента. Сталь в соответствии с требованиями может поставляться в термически обработанном состоянии (отожженная, нормализованная, высокоотпущенная). [6, с.327]

Инструментальные качественные углеродистые стали предназначены для изготовления режущего, мерительного и штамповочного инструмента небольших размеров. Марки этих сталей обозначаются буквой У и цифрой, показывающей содержание углерода в десятых долях процента (У7, У8, У9. У13). Высококачественные стали имеют низкое содержание серы (до 0,02 %) и фосфора (до 0,03%), меньше неметаллических включений, обладают повышенными механическими свойствами. В обозначениях марок высококачественных сталей в отличие от качественных ставится буква А. [8, с.224]

Сталь углеродистая качественная по ГОСТ 2050-74

Предел прочности при растяжении, МПа

Предел текучести, МПа

1.3. Сталь легированная

При введении в углеродистые стали специальных легирующих добавок (Cr, Mn, Ni, Si, W, Mo, Ti, Co, V) достигается значительное улучшение их физико-механических свойств (например, повышение предела текучести без снижения пластичности и ударной вязкости). [1, с.293]

Легирующие добавки, растворяясь в железе, искажают и нарушают симметрию его кристаллической решетки, так как они имеют другие атомные размеры и строение внешних электронных оболочек. Чаще всего увеличивается карбидосодержащая фаза за счет уменьшения углерода в перлите, что соответственно увеличивает прочность стали. Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно повышает вязкость стали. Некоторые легирующие элементы расширяют область аустенита, снижая критические точки Ас3, а другие, наоборот, сужают эту область. Большое значение на практике имеет способность большинства легирующих элементов повышать прокаливаемость стали на значительную толщину, задерживая переход аустенита в другие структуры, что создает возможность закаливать стали при умеренных скоростях охлаждения. При этом уменьшаются внутренние напряжения и снижается опасность появления закалочных трещин. [3, с.128]

Согласно существующим стандартам легированные стали классифицируют по назначению, химическому составу и микроструктуре.

- По назначению легированные стали разделяют на три класса: конструкционные (машиноподелочные и строительные), инструментальные и стали с особыми физико-химическими свойствами.

Для обозначения марок сталей принята буквенно – цифровая система. Легирующие элементы обозначаются буквами: С – кремний, Г – марганец, X – хром, Н – никель, М – молибден, В – вольфрам, Р – бор, Т – титан, Ю – алюминий, Ф – ванадий, Ц – цирконий, Б – ниобий, А – азот, Д – медь, К – кобальт, П – фосфор. Цифры, стоящие перед буквами, показывают содержание углерода в конструкционных сталях в сотых долях процента, в инструментальных - в десятых долях процента. Цифры, стоящие за буквами, показывают содержание легирующих элементов в процентах. Если содержание элементов не превышает 1,5 %, то цифры не ставят. Буква А, стоящая в конце марки, означает, что сталь высококачественная. Например, сталь марки 35ХНЗМА – высококачественная, содержащая 0,35 % С, 1 % Сг, 3 % Ni, 1 % Mo. [9, с.178]

- По химическому составу легированные стали делят на три класса: низколегированные с общим содержанием легирующих элементов до 2,5 %; среднелегированные – от 2,5 до 10% и высоколегированные, содержащие более 10 % таких элементов, например нержавеющая сталь 1Х18Н9.

- В зависимости от структуры, которую получают легированные стали после нормализации, их делят на пять классов: перлитная, мартенситная, аустенитная, ферритная и карбидная (ледебуритная). Большинство конструкционных и инструментальных сталей относится к сталям перлитного класса. Такие стали содержат незначительное количество легирующих элементов (не более 5. 6 %), хорошо обрабатываются давлением и резанием.

В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.

Содержание работы

Введение 3
1. Историческая справка 4
2. Классификация 7
3. Сырьевые материалы 9
4. Основные технологические процессы и оборудование 10
5. Основные свойства продукции 14
6. Технико-экономические показатели 19
Заключение 21
Список использованной литературы 22

Файлы: 1 файл

реферат Гульшат.doc

Министерство образования и науки РФ

Казанский государственный архитектурно – строительный университет

Кафедра строительных материалов

МЕТАЛЛЫ В СТРОИТЕЛЬСТВЕ, МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ

Выполнил: студент гр № 11-404

Проверил: к.т.н. доцент

Введение

Металлы – наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях народного хозяйства.

В технологии металлов изучаются свойства металлов, а также практика и теория их получения и обработки. Составными частями технологии металлов являются: металлургия, металлография, термическая обработка металлов, химико-термическая обработка, литейное производство, обработка металлов давлением, сварочное производство, обработка металлов резанием и электрическая обработка металлов.

В процессе развития перечисленных отраслей производства, в результате накопившихся опыта, знаний и их обобщения, а также развития смежных наук (физики, химии и др.), каждая из этих отраслей явилась предметом специальной науки под тем же названием.

Так, например, металлургия — наука, изучающая способы получения металлов и сплавов. Термическая обработка — наука об изменении механических и физических свойств вследствие нагревания и охлаждения сплавов и т. д.

Самостоятельной наукой является металлография, изучающая структуру (строение) металлов и зависимость их свойств от структуры.

В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.

1. Историческая справка

История развития металлических конструкций в России

Понятие "металлические конструкции" включает в себя их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, а с другой — возможностями технической базы: развитием металлургии, металлообработки, строительной науки и техники. Исходя из этих положений история развития металлических конструкций может быть разделена на пять периодов.

Первый период (с XII до начала XVII в.) характеризуется применением металла в уникальных по тому времени сооружениях (дворцах, церквах и т.п.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Одной из первых конструкций такого типа являются затяжки Успенского собора во Владимире. По зрелости конструктивного решения выделяется металлическая конструкция, поддерживающая каменный потолок и пол чердака над коридором между притворами Покровского собора — храма Василия Блаженного. Это первая известная нам конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Затяжки, поддерживающие пол и потолок в этой конструкции, укреплены для облегчения работы на изгиб подкосами.

Поражает, что уже в те времена конструктор знал, что для затяжек, работающих на изгиб, надо применять полосу, поставленную на ребро, а подкосы, работающие на сжатие, лучше делать квадратного сечения.

Второй период (с начала XVII до конца XVIII в.) связан с применением наклонных металлических стропил и пространственных купольных конструкций ("корзинок") глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замках и скрепах горновой сваркой. Конструкции такого типа сохранились до наших дней. Примерами служат перекрытия пролетом 18 м над трапезной Троице-Сергиевой лавры в Сергиевом посаде, перекрытие старого здания Большого Кремлевского дворца в Москве, каркас купола колокольни Ивана Великого, каркас купола Казанского собора в Петербурге пролетом 15 м и др.

Третий период (с начала XVIII до середины XIX в.) связан с освоением процесса литья чугунных стержней и деталей. Строятся чугунные мосты и конструкции перекрытий гражданских и промышленных зданий. Соединения чугунных элементов осуществляются на замках или болтах. Первой чугунной конструкцией в России считается перекрытие крыльца Невьянской башни на Урале. В 1784 г. в Петербурге был построен первый чугунный мост. Совершенства чугунные конструкции в России достигли в середине XIX столетия. Уникальной чугунной конструкцией 40-х годов XIX в. является купол Исаакиевского собора, собранный из отдельных косяков в виде сплошной оболочки.

Чугунная арка пролетом 30 м применена в перекрытии Александрийского театра в Петербурге. В 50-е годы XIX в. в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, являющийся самым крупным чугунным мостом мира. В этот же период наслонные стропила постепенно трансформируются в смешанные железочугунные треугольные фермы.

Сначала в фермах не было раскосов, они появились в конце рассматр иваемого периода. Сжатые стержни ферм часто выполняли из чугуна, а растянутые — из железа. В узлах элементы соединялись через проушины на болтах. Отсутствие в этот период прокатного и профильного металла ограничивало конструктивную форму железных стержней прямоугольным или круглым сечением. Однако преимущества фасонного профиля уже были оценены, и стержни уголкового или швеллерного сечения изготовляли гнутьем или ковкой нагретых полос.

Четвертый период (с 30-х годов XIX в. до 20-х годов XX в.) связан с быстрым техническим прогрессом во всех областях техники того времени и, в частности, в металлургии и металлообработке. В начале XIX в. кричный процесс получения железа был заменен более совершенным — пудлингованием, а в конце 80-х годов — выплавкой железа из чугуна в мартеновских и конвертерных печах.

Наряду с уральской базой была создана в России южная база металлургической промышленности. В 30-х годах XIX в. появились заклепочные соединения, чему способствовало изобретение дыропробивного пресса; в 40-х годах был освоен процесс получения профильного металла и прокатного листа. В течение ста последующих лет все стальные конструкции изготовлялись клепаными.

Сталь почти полностью вытеснила из строительных конструкций чугун, будучи материалом более совершенным по своим свойствам (в особенности при работе на растяжение) и лучше поддающимся контролю и механической обработке.

В России до конца XIX в. промышленные и гражданские здания строились в основном с кирпичными стенами и небольшими пролетами, для перекрытия которых использовались треугольные металлические фермы. Конструктивная форма этих ферм постепенно совершенствовалась: решетка получила завершение с появлением раскосов; узловые соединения вместо болтовых на проушинах стали выполнять заклепочными с помощью фасонок.

В конце прошлого столетия применялись решетчатые каркасы рамно-арочной конструкции для перекрытия зданий значительных пролетов. Примерами являются покрытия Сенного рынка в Петербурге пролетом 25 м, Варшавского рынка пролетом 16 м, покрытие Гатчинского вокзала и др.

Пятый период (послереволюционный) начинается с 20-х годов, с первой пятилетки, когда государство приступило к осуществлению широкой программы индустриализации страны. К концу 40-х годов клепаные конструкции были почти полностью заменены сварными, более легкими, технологичными и экономичными. Развитие металлургии уже в 30-е годы позволило применять в металлических конструкциях вместо обычной малоуглеродистой стали более прочную низколегированную сталь (сталь кремнистую для железнодорожного моста через р. Ципу в Закавказье и сталь ДС для Дворца Советов и москворецких мостов).

В начале 30-х годов стала оформляться советская школа проектирования металлических конструкций. В связи с развитием металлургии и машиностроения строилось много промышленных зданий с металлическим каркасом.

Стальные каркасы промышленных зданий оказались ведущей конструктивной формой металлических конструкций, определяющей общее направление их развития. Советская школа постепенно отходила от европейских схем компоновки поперечных рам каркаса, для которых характерны стремление приблизить конструктивную схему к расчетным предпосылкам и введение большого числа шарниров, что усложняло монтаж и изготовление конструкций. Такие схемы не отвечали требованиям эксплуатации в отношении поперечной жесткости зданий в связи с увеличением размеров пролетов, высоты и, главное, грузоподъемности и интенсивности движения мостовых кранов.

Требованиям эксплуатации и высоких темпов строительства в большей степени отвечали сложившиеся к тому времени схемы конструирования поперечных рам с жестким сопряжением колонн с фундаментами и ригелями. Советские проектировщики взяли за основу эти схемы и улучшили их путем аналитического определения оптимальных геометрических соотношений элементов, схемы решеток и т.п.

В годы Великой Отечественной войны 1941—1945 гг. несмотря на временную потерю южной металлургической базы и большой расход металла на нужды войны в промышленном строительстве и мостостроении на Урале и в Сибири широко использовались металлические конструкции, лучше других отвечавшие основной задаче военного времени — скоростному строительству.

В 50—70-е годы строительство металлических конструкций развивалось с соблюдением основных принципов советской школы проектирования, установленных еще в довоенный период: экономия стали, упрощение изготовления, ускорение монтажа. Для этих лет характерно широкое применение стали в промышленных сооружениях больших размеров с тяжелыми технологическими нагрузками. Построены такие уникальные промышленные здания, как сборочный цех пролетом 120 м с кранами грузоподъемностью 30 т, подвешенными к стропильным фермам на отметке 57 м, и двухпролетное здание с кранами грузоподъемностью 1200 и 600 т.[1]

2. Классификация

Классификация металлов может быть основана на различных признаках: по объему и частоте использования, физико-химическим свойствам и др.

По объему и частоте использования металлов в технике их можно разделить на металлы технические и редкие. Технические металлы — это наиболее часто применяемые; к ним относятся железо Fe, медь Си, алюминий А1, магний Mg, никель Ni, титан Ti, свинец РЬ, цинк Zn, олово Sn. Все остальные металлы — редкие (ртуть Hg, натрий Na, серебро Ag, золото Аи, платина Pt, кобальт Со, хром Сг, молибден Мо, тантал Та, вольфрам W и др.).

Железо в чистом виде используется чрезвычайно редко. Обычно используют железоуглеродистые (Fe-C) сплавы — стали и чугуны, которые образуют группу черных металлов. Все остальные представляют группу цветных металлов. На долю черных металлов приходится ~85 % всех производимых металлов, а на долю цветных -15 %.

По физико-химическим свойствам металлы можно разделить на шесть основных групп.

Магнитные — Fe, Co, Ni обладают ферромагнитными свойствами. Сплавы на основе Fe (стали и чугуны) являются главными конструкционными материалами; сплавы на основе Fe, Co и Ni являются основными магнитными материалами (ферромагнетиками).

Тугоплавкие — металлы, у которых температура плавления выше, чем у Fe (1539 °С); это W (3380 °С), Та (2970 °С), Мо (2620 °С), Сг (1900 °С), Pt (1770 °С), Ti (1670 °С) и др. Применяют их как самостоятельно, так и в виде добавок в стали, работающие, в частности, при высокой температуре.

Легкоплавкие — имеют 7^ ниже 500 °С; к ним относятся: Zn (419 °С), РЬ (327 °С), кадмий Cd (321 °С), таллий Т1 (303 °С), висмут Bi (271 °С), олово Sn (232 °С), индий In (156 °С), Na (98 °С), Hg (—39 °С) и др. Назначение их самое различное: антикоррозионные покрытия, антифрикционные сплавы, проводниковые материалы.

Из тугоплавких и легкоплавких металлов перечислены наиболее распространенные, хотя известны и такие тугоплавкие металлы, как, например, рений Re (3180 °С), осмий Os (3000 °С), ниобий Nb (2470 °С), а из легкоплавких — литий Li (180 °С), калий К (68 °С), рубидий Rb (39 °С), цезий Cs (28 °С).

Легкие металлы имеют плотность не более 2,75 Мг/м3; к ним относится А1, плотность — 2,7, Cs — 1,90, бериллий Be — 1,84, Mg —1,74, Rb — 1,53; Na — 0,97, Li — 0,53 Мг/м3 и др. Эти металлы 337 применяют для производства сплавов, используемых в конструкциях с ограничениями в массе.

Благородные — в электротехнике применяют Аи, Ag, Pt, палладий Pd, а также металлы платиновой группы: иридий 1г, родий Rh, осмий Os, рутений Ru. Эти металлы и сплавы на их основе обладают высокой химической стойкостью, в том числе и при повышенных температурах. Их используют в производстве ответственных контактов, выводов интегральных микросхем и других полупроводниковых приборов, термометров сопротивления и термопар, нагревательных элементов, работающих в особых условиях.

Редкоземельные — лантаноиды; их применяют как присадки в различных сплавах. Сплавы (RM) металлов группы железа (М) с редкоземельными элементами (R) являются весьма перспективными магнитотвердыми материалами.

Классифицируются металлы и по другим признакам, например в электротехнике по значению электропроводности: хорошо и плохо проводящие электрический ток; к первым относится большинство металлов, они хорошо проводят электрический ток и пластичные. Ко вторым — элементы V группы периодической системы Д.И. Менделеева — это висмут Bi, сурьма Sb, мышьяк As, они плохо проводят ток и хрупкие, их иногда называют полуметаллами.[2]

Металлами называют вещества, характерными свойствами которых являются высокая прочность, пластичность, тепло- и электропроводность, особый блеск, называемый металлическим.

Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: так называемые благородные металлы (золото, серебро и др.), и некоторые другие (например, ртуть, медь).

Черные металлы представляют собой сплав железа с углеродом. Кроме того, в них могут содержаться в большем или меньшем количестве и другие химические элементы (кремний, марганец, сера, фосфор). С целью придать черным металлам специфические свойства в их состав вводят улучшающие или легирующие добавки (никель, хром, медь и др.). Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали.

Чугун - железоуглеродистый сплав с содержанием углерода 2-4,3%. В зависимости от назначения различают чугуны литейные, чугуны передельные и чугуны специальные. Литейные чугуны применяют для отливки различных строительных деталей; предельные — используют для производства стали; специальные чугуны — в качестве добавок при производстве стали и чугунного литья специального назначения.

Сталь - ковкий железоуглеродистый сплав с содержанием углерода до 2%. В зависимости от способа получения стали разделяют на мартеновские, конвертерные и электростали. По химическому составу в зависимости от входящих в сплав химических элементов стали бывают углеродистые и легированные. К углеродистым сталям относят сплавы железа с углеродом и примесями марганца, кремния, серы и фосфора. Углеродистую сталь, полученную различными способами, по характеру застывания принято разделять на спокойную, полуспокойную и кипящую. Легированными называют стали, в состав которых входят легирующие добавки (никель, хром, вольфрам, молибден, медь, алюминий и др.).

По назначению стали могут быть конструкционные, применяемые для изготовления различных строительных конструкций и деталей машин, специальные, характеризующиеся высокой жаро- и износостойкостью, а также коррозионной стойкостью, и инструментальные.

Цветные металлы в чистом виде весьма редко используют в строительстве. Значительно чаще находят применение сплавы цветных металлов, которые по истинной плотности разделяют на легкие и тяжелые.

Легкие сплавы получают на основе алюминия или магния. Наиболее распространенными легкими сплавами являются алюминиево-марганцевые, алюминиево-кремнеземистые, алюминиево-магниевые и сплавы дюралюминия. Их используют для несущих (фермы и др.) и ограждающих (оконные переплеты и др.) конструкций зданий и сооружений.

Тяжелые сплавы получают на основе меди, олова, цинка, свинца. Среди тяжелых сплавов в строительстве применяют бронзу (сплав меди с оловом или сплав меди с алюминием, железом и марганцем) и латунь (сплав меди с цинком). Из этих сплавов изготовляют архитектурные детали и санитарно-техническую арматуру.

52. Виды изделий из стали

В отличие от маркировки углеродистых сталей буквы в марке низколегированных сталей показывают наличие в стали легирующих примесей, а цифры - их среднее содержание в процентах; предшествующие буквам цифры показывают содержание углерода в сотых долях процента.

Для маркировки стали каждому легирующему элементу присвоена определенная буква: кремний - С, марганец - Г, хром - X, никель - Н, молибден - М, вольфрам - В, алюминий - Ю, медь -Д, кобальт - К. Первые цифры марки обозначают среднее содержание углерода (в сотых долях процента для инструментальных и нержавеющих сталей); затем буквой указан легирующий элемент и последующими цифрами - его среднее содержание.

Сталь углеродистая обыкновенного качества - сплав железа с углеродом. В ее составе также присутствуют в небольшом количестве примеси: кремний, марганец, фосфор и сера, каждая из которых оказывает определенное влияние на механические свойства стали. В сталях обыкновенного качества, применяемых в строительстве, углерода содержится 0,06-0,62%. Стали с низким содержанием углерода характеризуются высокой пластичностью и ударной вязкостью. Повышенное содержание углерода придает стали хрупкость и твердость.

Сталь углеродистую обыкновенного качества подразделяют на три группы:

А - поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (СтО, Ст1 и др.);

Б - поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а их уровень, кроме условий обработки, определяется химическим составом (БСтО, БСт1 и др.);

В - поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).

Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на: горячекатаную и кованую, калиброванную, круглую со специальной отделкой поверхности - серебрянку.

Наиболее широко в строительстве используют сталь марки СтЗ, которая идет на изготовление металлических конструкций гражданских и промышленных зданий и сооружений, опор линии электропередач, резервуаров и трубопроводов, а также арматуры железобетона.

Низколегированные стали наиболее часто применяют в строительстве. Содержание углерода в низколегированных сталях не должно превышать 0,2%, при большем количестве понижаются пластичность и коррозионная стойкость, а также ухудшается свариваемость стали.

Легирующие добавки влияют на свойства стали следующим образом: марганец увеличивает прочность, твердость и сопротивление стали износу; кремний и хром повышают прочность и жаростойкость; медь - стойкость стали к атмосферной коррозии; никель способствует улучшению вязкости без снижения прочности. Низколегированные стали имеют более высокие механические свойства, чем малоуглеродистые. Стали, содержащие никель, хром и медь, высокопластичны, хорошо свариваются, их с успехом используют для сварных и клепаных конструкций промышленных и гражданских зданий, пролетных строений мостов, нефтерезервуаров, труб и т. д.

Легированную сталь по степени легирования разделяют на:

-низколегированную (легирующих элементов до 2,5%);

-среднелегированную (от 2,5 до 10%);

-высоколегированную (от 10 до 50%).

В зависимости от основных легирующих элементов различают 14 групп сталей.

К высоколегированным относят:

I) коррозионностойкие (нержавеющие) стали и сплавы, обладающие

стойкостью против электрохимической и химической коррозии;

межкристаллитной коррозии, коррозии под напряжением и др.;

II) жаростойкие (окалиностойкие) стали и сплавы, обладающие

стойкостью против химического разрушения в газовых средах при

температуре выше 50°С, работающие в ненагруженном и

III) жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

53. Виды изделий из цветных металлов

строительный материал гипсовый вяжущий

В чистом виде в строительстве алюминий применяется для отливки деталей, изготовления порошков (алюминиевые краски и газообразователи при изготовлении ячеистых бетонов), фольги, электропроводов. Из алюминиевой фольги делают высокоэффективный утеплитель (альфоль), используют ее в качестве отражателя тепловых лучей, а также декоративного материала. Путем анодного оксидирования из алюминиевых сплавов получают архитектурные детали различной расцветки.

Сплав, состоящий из меди и цинка, называют латунью. Латунь обладает высокими механическими и антикоррозийными свойствами и поддается горячей и холодной обработке. Иногда к сплаву латуни добавляют свинец, олово, алюминий, кремний и др. Применяют ее в виде листов, прутьев, проволоки, труб. Латунь в строительстве применяют также в виде специальных изделий, сочетающих антикоррозийные и художественные качества (для архитектурной отделки интерьеров - базы колонн, различные погонажные изделия).

Применяется в строительстве для специальных труб, антикоррозийных покрытий, звуко- и гидроизоляции и как составная часть некоторых легких сплавов. Свинец добывают из сульфидных руд.

Сплавы, состоящие из свинца, олова, сурьмы, меди, применяют в качестве антифрикционных (анти - против, фриктио - трение) или подшипниковых. Такие сплавы носят название баббитов.

В последнее время некоторые цветные металлы с успехом заменяют стеклом, пластмассами, химически обработанной древесиной и др.

Раздел: Строительство
Количество знаков с пробелами: 166283
Количество таблиц: 1
Количество изображений: 4

Читайте также: