Мероприятия по обеспечению электробезопасности в гостиницах реферат

Обновлено: 07.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уральский государственный экономический университет

по дисциплине "Безопасность жизнедеятельности"

Студент: Ботова Н.Ю.

Екатеринбург, 2004 г.

С о д е р ж а н и е

2 Типы поражающего тока. ……………. ……. 3

3 Причины и виды поражения электрическим током……………………..4

4 Классификация помещений по электробезопасности………………….5

7 Оказание первой помощи…………………………………………………9

Возможны местные электротравмы тканей и органов - ожоги, электрические знаки (припухлость с затвердевшей в виде мозоли кожей при контакте с токоведущими частями), электрометаллизация кожи (проникновение металла в кожу вследствие разбрызгивания и испарения его при ожоге электрической дугой), электроофтальмия (поражение глаз ультрафиолетовым излучением дуги), механические повреждения (ушибы, переломы при падении с высоты из-за сокращений мышц или потери сознания). Также возможны общие электротравмы, т.е. электрический удар, который поражает весь организм, вызывая его шок: сокращение мышц, паралич дыхания и сердца при малых токах - несколько сот миллиампер; поражение зависит от силы и продолжительности действия тока и может быть от судорожного беспорядочного сокращения отдельных волокон (фибрилл) мышцы сердца (фибрилляция) без потери сознания до клинической смерти 3-5 минут — отсутствие дыхания и кровообращения.

2 Типы поражающего тока

Сила поражающего тока зависит от его рода и частоты, напряжения в сети, сопротивления цепи протекания тока, в том числе и тела человека, от пути тока через тело человека, индивидуальных свойств организма, площади контакта тела с проводником тока. Характер воздействия переменного тока в зависимости от его силы: а) 1мА - пороговый ощутимый ток; б) 10-15 мА — пороговый неотпускающий тока — наибольший ток самостоятельного освобождения от электродов, захваченных действием мышц, через которые проходит ток (для постоянного тока — 50-80 мА); меньшие токи — отпускающие; в) 51-100мА — пороговый фибрилляционный, так как возможна фибрилляция, приводящая к смерти, паралич дыхания; г) 101-200 мА — фибрилляция, приводящая к смерти; паралич дыхания; д) 201мА и более — сильные ожоги, паралич дыхания.

Чем выше напряжение, тем опаснее, так как увеличивается сила тока. Сопротивление человека принято 1000 Ом - это сопротивление верхнего слоя кожи и в меньшей степени — сопротивление внутренних органов. Сопротивление влажной, загрязненной кожи резко снижается. Наиболее уязвимы: тыльная (наружная) часть кисти руки, участок выше кисти, шея, висок, спина, плечо — прикосновение ими смертельно при очень малых силе тока и напряжении. В цикле работы сердца, равном I секунде, имеется фаза расслабления 0,1с, когда оно наиболее уязвимо и может возникнуть фибрилляция; при действии тока менее 0,1с фибрилляция уменьшается; действие тока в течение нескольких секунд может привести к смерти.

3 Причины и виды поражения электрическим током

Причины поражения электрическим током: 1) прикосновение к находящимся под напряжением токоведущим частям оборудования; 2) появление напряжения на нетоковедущих частях оборудования (т. е. не находящихся под напряжением при работе исправного оборудования), на земле из-за замыкания, статического или атмосферного электричества; 3) работа на электроустройствах без соблюдения мер ОТ; 4) некачественное заземление или зануление электроустановок; 5) использование в особо опасных помещениях переносных электроустройств на напряжение более 36В.

Электрическое замыкание на землю — это случайное соединение токоведущей части аппарата с землей или с нетоковедущими проводящими конструкциями, не изолированными от земли. Земля становится участком цепи в зоне растекания тока, в которой из-за сопротивления земли напряжение падает, т. е. появляется разность потенциалов между точками ее поверхности, называемая при ширине шага 0,8 м шаговым напряжением. В зоне растекания тока нужно соединить ноги и выходить так, чтобы ступня одной ноги не выходила за ступню другой (т. е. минимальными шажками).

Статическое электричество - это возникновение, сохранение и релаксация (т.е. ослабление, уменьшение) электрического заряда в диэлектриках, полупроводниках или изолированных проводниках. Заряды накапливаются на оборудовании и материалах, а разряды могут вызвать пожар, взрыв, нарушение технологических процессов или работы электрических приборов и средств автоматики. Особенно опасны процессы дробления, просеивания, измельчения, танспортирования твердых и жидких веществ конвейерами и по трубам. При заполнении резервуаров свободно падающей струей горючей жидкости и разбрызгивании капли электризуются, появляется опасность электрического разряда и воспламенения паров; такой способ налива горючих жидкостей не допускается; расстояние от конца трубы до поверхности жидкости не должно превышать 200 мм или струю направляют по стенке. Разряд происходит, если напряженность электрического поля над поверхностью диэлектрика достигает критической (пробивной) величины (для воздуха З0кВ/см). Заряд в 15000-20000В может накапливаться на человеке в одежде из синтетики, электронепроводящей обуви, при движении по диэлектрикам, переходить с наэлектризованного оборудования и материалов и воспламенять взрывоопасные смеси воздуха с газами, парами и пылями. Разряды такого потенциала не опасны для человека и ощущаются как укол, толчок или судорога, так как сила тока мала. Но возможны рефлекторные (т. е. произвольные, бессознательные) движения, приводящие к падению с высоты, попаданию в опасную зону машины и др.

Атмосферное электричество (молния) может вызвать взрыв, пожар, поражение людей. Разрушительное действие прямого удара молнии велико, так как сила тока — до 200 кА, напряжение — до 150 МВ. Опасно и вторичное ее проявление в виде электростатической и электромагнитной индукции (т. е. наведения электрических зарядов на проводниках), заноса высоких потенциалов в помещение по проводам или металлическим коммуникациям. В разрывах такой электроцепи возможно искрение и воспламенение горючей среды.

4 Классификация помещений по электробезопасности

Помещения по степени опасности поражения током из-за характера окружающей среды делятся на классы: 1-й класс — помещения с повышенной опасностью — при наличии одного из условий: а) сырость (относительная влажность воздуха превышает 75%); б) токопроводящая пыль; в) токопроводящие полы (металлические, земляные, железобетонные, кирпичные и др.): г) температура воздуха выше +35°С (помещения с сушилками, котельные и т.д.); д) возможность одновременного прикосновения человека к металлическим корпусам электрооборудования и к соединенным с землей металлоконструкциям здания, технологическим аппаратам, механизмам; 2-й класс — особо опасные помещения — при наличии одного из условий: а) особая сырость (влажность близка к 100%, при этом потолок, стены, пол и предметы покрыты влагой); б) химически активная среда (т. е. агрессивные пары, газы, жидкости) или органическая среда, образующая отложения и плесень, разрушающие изоляцию и токоведущие части электрооборудования; в) одновременно два и более условия повышенной опасности; 3-й класс — помещения без повышенной опасности — при отсутствии условий повышенной или особой опасности.

5 Способы защиты

На предприятии назначается ИТР, ответственный за электрохозяйство. Мелкие предприятия привлекают специализированную эксплутационную организацию или в доле с другими содержат персонал во главе со своим ИТР

Электроопасность от токоведущих частей оборудования устраняется техническими средствами: защитные оболочки (изоляция), ограждения; безопасное расположение токоведущих частей (на недоступной высоте или в корпусе оборудования), защитное отключение; предупредительная сигнализация, знаки опасности; блокировка. Для защиты при прикосновении к металлическим нетоковедущим частям электроустановок, оказавшимся под напряжением, т.е. для защиты от переходного напряжения используют: защитные заземление, зануление и отключение, малое напряжение (не более 42В), изоляцию токоведущих частей, СИЗ и предохранительные приспособления.

При случайном замыкании токоведущих частей на изолированный от земли корпус оборудования он оказывается под напряжением и прикосновение к нему будет также опасно, как и к фазе. Преднамеренное соединение с “землей” металлических нетоковедущих частей, которые могут оказаться под напряжением, называется защитным заземлением Оно за счет уменьшения потенциала относительно “земли” из-за малого сопротивления снижает напряжение прикосновения к корпусу до безопасного уровня. Заземляют все оборудование с электроприводом, электрообогревом, холодильное, пускорегулирующее (пускатели, рубильники, регуляторы):

а) во всех случаях при напряжении 380В и выше в сетях переменного и при 440В и выше в сетях постоянного тока;

б) в помещениях с повышенной опасностью, особо опасных и вне помещений при напряжении 42-3 80В переменного тока и 110-440В постоянного.

Устройство для заземления состоит из заземлителей (металлических проводников, погруженных в грунт) и заземляющих проводников (также металлических, соединяющих заземляемые части электроустановки с заземлителем).

Защитное зануление — это также преднамеренное электрическое соединение металлической нетоковедущей части оборудования, но не с “землей”, а с заземленным нулевым проводом в трехфазных четырехпроводных электрических сетях (т.е. сетях с глухозаземленной нейтралью). Защитное отключение — это быстродействующая защита, отключающая электроустановку в случае возникновения опасности поражения человека током при замыканиях на землю или корпус и в других случаях.

Защита от статического электричества — это предупреждение возникновения заряда заземлением, снижение потенциала заряда до безопасного подбором материалов, их скоростей движения, увлажнением воздуха, нейтрализацией заряда ионизацией воздуха и другими способами. Для непрерывного снятия зарядов с человека используют электропроводящие полы, заземленные оборудование, трапы, рабочие площадки, антиэлектростатические халаты, обувь с подошвой из кожи или электропроводной резины. Защита от атмосферного электричества (молнии) представляет собой молниеотводы и специальные заземления.

6 Правила эксплуатации

Правила эксплуатации переносных электроприборов состоят в следующем. Напряжение питания переменным током в помещениях без повышенной опасности должно быть не выше 220В, а светильников общего и местного освещения, подвешенных ниже 2,5 м от уровня пола в производственных помещениях, - не выше 42В, в помещениях с повышенной опасностью, особо опасных и вне помещений — не выше 36В, а для светильников — не выше 12В. При невозможности использования 36В применяют 220В с автоматическим защитным отключением или заземлением корпуса и использованием СИЗ. В особо опасных помещениях при особо неблагоприятных обстоятельствах, т.е. в стесненных условиях при соприкосновении работающего с большими металлическими заземленными поверхностями (например, работа в металлическом гараже, металлической емкости, смотровой яме, сидя или лежа) применяется напряжение 12В с использованием СИЗ. Переносной электроинструмент должен: 1) быстро включаться в сеть и отключаться от нее штепсельным разъемом; самопроизвольное отключение недопустимо; 2) иметь недоступные для случайного прикосновения токоведущие части; 3) концы оболочек кабелей и проводов должны помещаться в электроинструменте и закрепляться во избежание их излома и истирания.

Осветительная сеть также опасна, поэтому необходимо правильно выбирать провода, арматуру и светильники. При смене ламп и арматуры электрическую цепь обесточивают, так как лампа может разорваться и поранить сменяющего или при звуке короткого замыкания он может упасть с подставки.

К СИЗ от поражения электрическим током относятся переносимые и перевозимые средства, используемые в тех случаях, когда примененные на электроустановках защитные устройства не гарантируют безопасность.

Изолирующие СИЗ (основные и дополнительные) изготавливаются из материалов с устойчивой диэлектрической характеристикой — фарфора, эбонита, специальной резины и т.п. Изоляция основных средств выдерживает рабочее напряжение электроустановки и с их помощью разрешается касаться токоведущих частей под напряжением: это указатели или индикаторы напряжения, электроизмерительные клещи (для измерения силы переменного тока без разрыва цепи), диэлектрические перчатки, инструмент с изолированными ручками. Дополнительные изолирующие СИЗ применяются в сочетании с основными, так как самостоятельно не обеспечивают безопасность: это диэлектрические галоши, боты, резиновые диэлектрические ковры и изолирующие подставки (деревянные настилы на фарфоровых ножках для сырых помещений). СИЗ из резины хранят в помещениях на стеллажах, в шкафах отдельно от инструментов, вдали от нагревательных приборов, оберегают от солнечных лучей, масел, бензина и других веществ, разрушающих резину. Вспомогательные предохранительные средства служат для защиты от падения с высоты (предохранительные пояса, страхующие канаты), безопасного подъема на высоту (лестницы, когти) и защиты от тепловых, световых, химических и других воздействий при работе с электросетями и электроустановками (спецодежда, рукавицы, противогазы, защитные очки и др.). Переносные лестницы при шероховатых и бетонных полах снабжают резиновыми наконечниками, а при деревянных и земляных полах — стальными шипами. Раздвижные лестницы снабжают крюками, предотвращающими раздвигание во время работы.

7 Оказание первой помощи

Первая помощь при поражении электрическим током состоит в следующем. Так как при действии тока мышцы сокращаются, то человек крепко обхватывает предмет, находящийся под напряжением. Поэтому первая помощь — освобождение пострадавшего от действия тока. Для этого в первую очередь необходимо обесточить аппарат, отключив рубильник, пускатель или вывернув предохранители или разорвав провода изолированным предметом (топор, багор с сухой деревянной ручкой и др.). При этом надо стоять на сухой доске или надеть галоши, диэлектрические перчатки или изолировать руки сухой тканью; брать пострадавшего нужно за неприлегающие к телу части одежды.

Если не работает сердце, а дыхание есть — применить закрытый массаж сердца в ритме 60-70 надавливаний в минуту: нижней частью ладони упираются в нижнюю половину грудины, но не ниже; нажимать на грудину по вертикали, а не под углом. Остановку кровообращения можно обнаружить также по расширению зрачков. В этом случае немедленно делать искусственное дыхание и массаж сердца: если один спасатель, то на два вдувания 15 нажимов; если два спасателя, то одно вдувание на пять нажимов. Доврачебную помощь начинать немедленно по возможности на месте происшествия, одновременно вызвав врача.

Жизнедеятельность – это повседневная деятельность и отдых, способ существования человека.

Достижения в медицине, повышение комфортности деятельности и быта, интенсификация и рост продуктивности сельского хозяйства во многом способствовали увеличению продолжительности жизни человека.

Одновременно с демографическим взрывом идет процесс урбанизации населения планеты. Этот процесс имеет во многом объективный характер, ибо способствует повышению производительной деятельности во многих сферах, одновременно решает социальные и культурно-просветительные проблемы общества.

Урбанизация непрерывно ухудшает условия жизни в регионах, неизбежно уничтожает в них природную среду.

Оценивая экологические последствия развития энергетики, следует иметь в виду, что во многих странах это достигалось преимущественно использованием тепловых электростанций, сжигающих уголь, мазут или природный газ. Выбросы ТЭС наиболее губительны для биосферы. Они поступают в окружающую среду в виде выбросов в атмосферу, сбросов в водоемы, производственного и бытового мусора, потоков механической, тепловой и электромагнитной энергии и т.п. Количественные и качественные показатели отходов, а также регламент обращения с ними определяет уровни и зоны возникающих при этом опасностей. Значительным техногенным опасностям подвергается человек при попадании в зону действия технических систем. Уровни опасного воздействия на человека в этом случае определяется характеристиками технических систем и длительность пребывания человека в опасной зоне.

2. Теоретические основы безопасности

Вероятно проявление опасности и при использовании человеком технических устройств на производстве и в быту, электрические сети и приборы, станки, ручной инструмент и т.д. Возникновение таких опасностей связано как с наличием неисправностей, так и с неправильными действиями человека при их использовании. Уровни возникающих при этом опасностей определяются энергетическими показателями технических устройств. К наиболее распространенным и обладающим достаточно высокими концентрациями или энергетическими уровнями относятся вредные производственные факторы: запыленность и загазованность воздуха, шум, вибрации, электромагнитные поля, ионизирующие излучения, повышенные и пониженные параметры атмосферного воздуха, недостаточное и неправильное освещение, монотонность деятельности, тяжелый физический труд и др.

Состояние условий труда, при котором исключено воздействие на работающих различных опасных или вредных производственных факторов, принято называть безопасностью труда. Охрана труда – это система социально-экономических, технических, санитарно-гигиенических и организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

Безопасность – состояние объекта защиты, при котором воздействие на него всех потоков веществ, энергии и информации не превышает максимально допустимых значений.

2.1 Электробезопасность

Техника безопасности в электроустановках (электробезопасность) – это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статистического электричества.

Технические и организационные меры защиты направлены на обеспечение недоступности к токопроводящим частям и невозможности случайного прикосновения к ним, устранение опасности поражения при замыкании тока на корпус электрооборудования или на землю; предотвращение ошибочных действий персонала в электроустановках. Персонал, работающий в электроустановках, систематически обучают, проверяют знания и тренируют по техники безопасности.

Электрический ток может причинить человеку повреждения не только при прямом прохождении через тело, но и при других видах энергии, в которое превращается электричество: мощными потоками световой и тепловой энергии дуги, ультрафиолетовым излучением и др. При этом наблюдается перегрев тканей тела или их полное сгорание, электролитическое разложение жидких сред, крови, перевозбуждение нервной системы, шок и др.

Электротравмы возникают при следующих условиях включения человека в цепь тока:

Двухфазное прикосновение, т.е. прикосновение одновременно к двум фазам сети переменного тока. При этом независимо от того , заземлена нейтраль источника питания или нет, человек окажется под линейным напряжением, что безусловно опасно, так как ток поражения при этом достигает сотни миллиампер.

Двухполюсное прикосновение в сети постоянного тока или в однофазной сети переменного тока сопровождается попаданием человека под рабочее напряжение. Через его тело будет проходить ток:

Однофазное прикосновение неизолированного от земли человека к неизолированным токопроводящим частям, находящимся под напряжением. Наиболее распространено в практике. При этом значение тока, проходящего в цепи тела человека, зависит от того, заземлена нейтраль источников питания или нет. Если человек прикоснется к голому фазному проводу при заземленной нейтрали, он окажется под фазным напряжением

где Rп сопротивление участка пола, имеющего площадь соприкосновения со ступнями ног, R - сопротивление заземленной нейтрали. Если человек стоит на проводящем полу Rп = 0, а сопротивление заземления нейтрали мало (Rо = 4 Ом) по сравнению с сопротивлением тела человека (Rчел = 1000 Ом), то почти все фазное напряжение будет приложено к человеку. Ток, проходящий через тело человека, будет опасным:

Iчел = 220/1000 = 0,22 А = 220 мА

2.2 Действие электрического тока

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через человека электроток производит термическое, электролитическое, механическое и биологическое действия.

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенно –взрывоподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением тканей организма, а также нарушением внутренних биологических процессов.

Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности. Остановка сердца связана с фибрилляцией – хаотическим сокращением отдельных волокон сердечной мышцы (фибрилл). К местным травмам относят ожоги, металлизацию кожи, механические повреждения, электроофтальмии. Металлизация кожи связана с проникновением в нее мельчайших частиц при его расплавлении под влиянием чаще всего электрической дуги.

Исход поражения человека электротоком зависит от многих факторов: силы тока и времени его прохождения через организм, характеристика тока (переменный или постоянный), пути тока в теле человека, при переменном токе – от частоты колебания.

Ток, протекающий через организм, зависит от напряжения прикосновения, под которым оказался пострадавший, и суммарного электрического сопротивления, в которое входит сопротивление тела человека. Сопротивление кожи зависит от состояния кожи, при сухой, неповрежденной коже оно составляет сотни тысяч Ом. Если эти условия не соблюдаются, сопротивление кожи падает до 1 кОм. При высоком напряжении и значительном времени протекания тока через тело сопротивление кожи падает еще больше, что приводит к более тяжелым последствиям поражения током. Внутреннее сопротивление тела человека не превышает несколько сот Ом и существенной роли не играет.

На сопротивление организма воздействию электрического тока оказывает влияние физическое и психологическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводит организм к снижению сопротивления.

Допустимым считается ток, при котором человек может самостоятельно освободиться от действия электрического тока. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.

Переменный ток опаснее постоянного, однако, при высоком напряжении, более 500 В., опаснее постоянный ток. Из возможных путей протекания тока через тело человека (голова-рука, голова-нога, рука-рука, нога-рука. Нога-нога и т.д.) наиболее опасен тот, при котором поражается головой мозг (голова-руки, голова-ноги), сердце и легкие (руки-ноги).

3. Средства защиты

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей. В системах местного освещения, в ручном электрофицированном инструменте и в некоторых других случаях применяется пониженное напряжение.

Требование к устройству защитного заземления и зануления электрооборудования определены ПУЭ, в соответствии с которыми они должны устраиваться при номинальном напряжении 380 В и выше переменного и 440 В и выше постоянного тока. В условиях работ в помещениях с повышенной опасностью и особо опасных они должны выполняться в установках с напряжением питания > 42 В переменного и > 110 В постоянного тока. Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека, которые могут оказаться под напряжением в результате повреждения изоляции.

Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей электроустановок с землей.

При пробое изоляции токоведущих частей на корпус, изолированный от земли, он оказывается под фазным напряжением Uф . В этом случае ток, проходящий через человека,

где Rч - сопротивление тела человека; RСИЗ - сопротивление средств индивидуальной защиты; при их отсутствии RСИЗ = 0.

При наличии заземления вследствие стекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В электроустановках 380/220 В оно должно быть не более 4 Ом, в установках 220/127 В – не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 10 Ом.

В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители. Возможно применение железобетонных фундаментов промышленных зданий и сооружений. При отсутствии естественных заземлителей допускается применение переносных заземлителей, например, ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100…200 мм над поверхностью земли, к которым привариваются соединительные проводники. Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами.

Защитное отключение электроустановок обеспечивается путем введения устройства, автоматически отключающего оборудование – потребитель тока при возникновении опасности поражения током. Схемы отключающихся автоматических устройств весьма разнообразны. Во всех случаях система срабатывает на превышение, какого – либо параметра в электрических сетях технологического оборудования (силы тока, напряжения сопротивления изоляции).

Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.

Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей находящихся под напряжением, и работать на этих частях. К таким средствам относятся в электроустановках напряжением до 1000 В – диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В, в электроустановках напряжением выше 1000 В – изолирующие штанги, изолирующие и электроизмерительные клещи, а также указатели напряжения выше 1000 В.

Дополнительные изолирующие электрозащитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защищать человека от поражения током. Их назначение – усилить защитное действие основных изолирующих средств, вместе с которыми они должны применятся. К дополнительным изолирующим средствам относятся: в электроустановках до 1000 В – диэлектрические галоши, коврики и изолирующие подставки; в электроустановках выше 1000 В диэлектрические перчатки, боты, коврики изолирующие подставки.

Ограждающие средства защиты предназначены для временного ограждения токоведущих частей (временные переносные ограждения, щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки).

Сигнализирующие средства включают запрещающие и предупреждающие знаки безопасности, а также плакаты.

Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относятся защитные очки, противогазы, специальные рукавицы и т.д.

4. Статическое напряжение

Величина потенциалов зарядов искусственного статического электричества на ременных передачах и лентах конвейеров может достигать 40 кВ, при механической обработке пластмасс и дерева до 30 кВ, при распылении красок до 12 кВ. при соответствующих условиях происходит пробой воздушной прослойки, сопровождающийся искровым разрядом (пробивное сопротивление абсолютно сухого воздуха составляет 3000 кВ/м), что может инициировать взрыв или пожар.

Основные мероприятия, принимаемые для защиты от статического электричества производственного происхождения, включают методы, исключающие или уменьшающие интенсивность генерации зарядов, и методы, устраняющие образующие заряды. Интенсивность генерации зарядов можно уменьшить соответствующим подбором пар трения или смешиванием материалов таким образом, что в результате трения один из смешанных материалов наводит заряд одного знака, а другой на другого. В настоящее время создан комбинированный материал из нейлона и дакрона, обеспечивающий защиту от статистического электричества по этому принципу.

Изменением технологического режима обработки материалов также можно добиться снижения генерируемых зарядов (уменьшение скоростей обработки, скоростей транспортирования и слива диэлектрических жидкостей, уменьшение сил трения). При заполнении сыпучими веществами или жидкостями диэлектриками резервуаров на входе в них применяют релаксационные емкости, чаще всего в виде заземленного участка трубопровода увеличенного диаметра, обеспечивающего стекание всего заряда статистического электричества на землю.

Образующиеся заряды статистического электричества устраняют чаще всего путем заземления электропроводных частей производственного оборудования. Сопротивление такого заземления должно быть не более 100 Ом. При невозможности устройства заземления практикуется повышение относительной влажности воздуха в помещении. Возможно увеличить объемную проводимость диэлектрика, для чего в него вносят графит, ацетиленовую сажу, алюминиевую пудру, а в жидкие диэлектрики – специальные добавки.

К средствам индивидуальной защиты от статистического электричества относятся электростатические халаты и специальная обувь, подошва которой выполнена из кожи либо электропроводной резины, а также антистатические браслеты

Значительно большую опасность представляет атмосферное статическое электричество, эффективным средством защиты от которого является молниезащита. Она включает комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружений, оборудования и материалов от взрывов. Загораний и разрушений, возможных при воздействии молний.

Для всех зданий и сооружений, не связанных с производством и хранением взрывчатых веществ, а также для линии электропередач и контактных сетей выполняется проектирование и изготовление молниезащиты.

По степени защиты зданий и сооружений от воздействия атмосферного электричества молниезащита подразделяется на три категории. Категории молниезащиты определяется назначением зданий и сооружений среднегодовой продолжительностью гроз, а также ожидаемым числом поражений здания или сооружения молнией в год.

Информацию о средней за год продолжительности гроз можно получить в местном отделении Росгидромета либо воспользоваться картой, представленной в РД 34.21.122-47.

Здания и сооружения, отнесенные к 1и 11 категориям молниезащиты, должны быть защищены от прямых ударов молнии, вторичных проявлений молний и заноса высокого потенциала через наземные (надземные) и подземные металлические коммуникации. Здания и сооружения, отнесенные к 111 категории молниезащиты, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные (надземные) металлические коммуникации.

Для создания зон защиты применяют одиночный стержневой молниеотвод; двойной стержневой молниеотвод; многократный стержневой молниеотвод; одиночный и двойной тросовый молниеотвод.

Контроль за средствами обеспечения электробезопасности, и в частности за соответствием их требованиям безопасности, возложен на службу главного энергетика и электриков подразделений.

5. Загрязнение окружающей среды

Много загрязняющих веществ поступает в атмосферный воздух от энергетических установок, работающих на углеводородном топливе (бензине, керосине, дизельном топливе, мазуте, угле и др.). количество этих веществ определяется составом, массой сжигаемого топлива и организацией процесса сгорания.

Основными источниками загрязнения атмосферы являются тепловые электрические станции.

Основными компонентами, выбрасываемые в атмосферу при сжигании различных видов топлива в электроустановках, - нетоксичные диоксид углерода и водяной пар. Однако кроме них в атмосферу выбрасываются и вредные вещества, такие как оксид углерода, оксиды серы, азота, соединений свинца, сажа, углеводороды, в том числе канцерогенный бенз(а)пирен, несгоревшие частицы твердого топлива и т.п.

При сжигании твердого топлива в котлах ТЭС образуется большое количество золы, диоксиды серы, оксидов азота. Перевод котлов на жидкое топливо (мазут) существенно уменьшает образование золы, но практически не снижает выбросы диоксида серы, так как мазуты, применяемые в качестве топлива, содержат 2% и более серы. Дымовые газы, образующиеся при сжигании мазута, содержат, кроме того, оксиды азота, газообразные и твердые продукты неполного сгорания. Так же, как и при сгорании твердого топлива, отходящие газы содержат соединения тяжелых металлов. При сжигании природного газа в дымовых выбросах содержатся оксиды азота.

Электробезопасностью на рабочем месте называют систему сохранения жизни и здоровья работников в процессе трудовой деятельности, связанной с влиянием электрического тока и электромагнитных полей. Электробезопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование.

Прикрепленные файлы: 1 файл

Способы и методы обеспечения электробезопасности.doc

Электробезопасностью на рабочем месте называют систему сохранения жизни и здоровья работников в процессе трудовой деятельности, связанной с влиянием электрического тока и электромагнитных полей. Электробезопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование.

Большинство опасных и вредных производственных факторов воспринимаются органами чувств человека, поэтому их легко обнаружить и принять меры, чтобы предупредить последствия воздействия на организм. Некоторые из них (электрический ток, излучения и др.) не могут быть обнаружены органами чувств, это увеличивает опасность поражение.

Ситуация в сфере охраны труда и травматизма остается острой. Расследование несчастных случаев свидетельствует о том, что большинство несчастных случаев и электротравм происходит из-за нарушений требования мер электробезопасности и охраны труда и не обеспечение со стороны работодателей своих функциональных обязанностей в организации производства работ, а также по соблюдению норм и правил охраны труда.

Способы и методы электробезопасности

Электробезопасность персонала обеспечивается конструкцией электроустановок, организационными и техническими мероприятиями, а также техническими способами, средствами и приспособлениями.

Организационные мероприятия включают в себя: требования к персоналу (возраст, медицинское освидетельствование, обучение, проверка знаний и др.); назначение лиц, ответственных за организацию и производство работ; оформление наряда (распоряжения) на производство работ; осуществление допуска к проведению работ; организацию надзора за проведением работ и др.

Технические мероприятия в действующих установках со снятым напряжением при работах в электроустановках или вблизи их – это отключение установки (или ее части) от источника; механическое запирание приводов отключающих коммутационных аппаратов; снятие предохранителей; отсоединение концов питающих линий; установка знаков безопасности и ограждений; применение заземления и др.

Технические мероприятия при выполнении работ под напряжением включают в себя применение изолирующих, ограждающих и вспомогательных защитных средств.

Изолирующие защитные средства служат для изоляции персонала от частей электрооборудования или проводов сети, находящихся под напряжением, а также для изоляции человека от земли (рис. 1).

Изолирующие средства делятся на основные и дополнительные.

К основным средствам относятся такие средства, изоляция которых надежно выдерживает рабочее напряжение электроустановок и при помощи которых допускаются работы в электроустановках под напряжением и изолируют главным образом руки работающих от токоведущих частей или частей, оказавшихся под напряжением (рис. 2).

К ним относятся (в электроустановках напряжением до 1000В) электрические перчатки, инструмент с изолированными рукоятками, указатели напряжения (токоискатели) и др.

К дополнительным защитным изолирующим средствам относятся средства, которые сами по себе не могут обеспечить электробезопасность и лишь дополняют защитную роль основных изолирующих средств, изолируя ноги работающих от земли (рис. 1). К дополнительным защитным изолирующим средствам относятся диэлектрические галоши, диэлектрические резиновые коврики, изолирующие подставки и т.п.

Рис. 1. Основные и дополнительные защитные средства, применяемые для работы в электроустановках (1 – изолирующие клещи, 2 – изолирующая штанга, 3 – указатель напряжения, 4 – токоизмерительные клещи, 5 – диэлектрические галоши, 6 – диэлектрические боты, 7 – диэлектрические коврики, 8 – изолирующая поставка, 9 – слесарно-монтажный инструмент с изолирующими ручками, 10 - диэлектрические перчатки).

Основные изолирующие средства должны применяться совместно с дополнительными. В этом случае сопротивление в цепи тела человека резко увеличивается, снижая опасность электропоражения.

Рис. 2. Использование основных (I) и дополнительных (II) изолирующих средств.

Ограждающие защитные средства предназначены для временного ограждения токоведущих частей и защиты персонала от прикосновения к токоведущим частям оборудования. К ним относятся временные переносные ограждения (щиты, ограждения–клетки и т.п.), изолирующие накладки, кожухи, предупредительные плакаты и др.

При работах на отключенном оборудовании во избежание электропоражения при ошибочной подаче на него напряжения или появлении наведенного напряжения применяются временные переносные заземления и закоротки.

Предупредительные плакаты служат для предупреждения персонала об опасности, напоминания о принятых мерах безопасности, запрещения подачи напряжения и т.п.

Вспомогательные защитные средства служат для защиты персонала от сопутствующих опасностей и вредностей при работе в электроустановках. К ним относятся: приспособления, предохраняющие от падения с высоты (предохранительные пояса, страхующие канаты и т.п.); приспособления для безопасного подъема на высоту (стремянки, лестницы, монтерские когти и т.п.); устройства, защищающие работающих от световых, тепловых, электромагнитных, механических и химических воздействий (защитные очки, респираторы, противогазы, рукавицы и др.).

Для защиты от поражения электрическим током при эксплуатации различного технологического оборудования, использующего электрическую энергию, применяется ряд технических методов (способов), основными из которых являются: применение малых напряжений для электропитания технических установок, оборудования и ручного инструмента; электрическое разделение сетей; защитное заземление; зануление; устройства защитного отклонения (УЗО) и др.

Применение малых напряжений в пределах наибольших допустимых значений для электропитания приборов, электрифицированного ручного инструмента и установок является наиболее эффективным способом обеспечения электробезопасности. Поэтому в тех случаях, где это возможно, необходимо использовать более низкие напряжения, не превышающие.

К признакам повышенной опасности поражения электрическим током в производственных помещениях относятся: наличие в помещении токопроводящих полов (земляные, металлические, железобетонные, кирпичные и т.п.); поддержание в помещении длительное время (более 2 часов) температуры воздуха равной или более 25°С и относительной влажности равной или более 75%; наличие в воздухе токопроводящей пыли; наличие возможности одновременного прикосновения к корпусам и другим частям оборудования, на которых может оказаться напряжение, с одной стороны, и к каким–либо заземленным конструкциям здания, другого оборудования, с другой.

К признакам особой опасности помещений относятся: наличие в помещении двух или более признаков повышенной опасности; наличие в воздухе помещения химически агрессивной среды; поддержание в помещении высокой относительной влажности, близкой к 100%.

Электрическое разделение сетей заключается в использовании разделительных трансформаторов с помощью которых сети большой протяженности или сети, имеющие большое количество ответвлений разделяются на отдельные небольшие сети того же напряжения (рис. 3.). Электрическое разделение сетей позволяет обеспечить сопротивление фазных проводов по отношению к земле достаточно большим (500 кОм в сетях до 1000 В) и тем самым обеспечить их безопасность при однофазном прикосновении.

Для разделения сетей могут применяться также преобразователи частоты и выпрямительные установки.

Рис. 3. Электрическое разделение сетей

Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей оборудования (например, корпусов), которые могут оказаться под напряжением в результате нарушения изоляции токоведущих частей оборудования (и по другим причинам), с землей посредством заземляющего устройства.

Принцип действия защитного заземления заключается в уменьшении опасности электропоражения за счет снижения напряжения на заземленном корпусе (или других частях) при замыкании на него (или другие части оборудования) питающего напряжения) до значения (где – ток, протекающий через заземлитель; – сопротивление защитного заземления) и выравнивания или снижения разности потенциалов между корпусом установки и землей за счет подъема потенциала земли (основания, на котором стоит человек), возникшего в результате растекания в нем тока.

В связи с тем, что потенциал на поверхности грунта уменьшается в зависимости от расстояния до заземлителя (места стекания тока в землю) по гиперболическому закону, то по мере удаления от места заземления разность потенциалов между корпусом и основанием будет увеличиваться и в зоне электротехнической земли (расстояние равно около 15–20 м), где потенциал на основании (поверхности грунта) приблизительно равен нулю, она станет равной напряжению на корпусе. В этом случае коэффициент напряжения прикосновения =1, а напряжение прикосновения равно:

Зона, в пределах которой потенциалы на поверхности грунта не равны нулю, называется зоной растекания тока.

Для того, чтобы обеспечить достаточно безопасное значение напряжения прикосновения, т.е. не более 42 В, при длительности воздействия t≥1с, необходимо, как видно из выражения , уменьшать значение сопротивления заземляющего устройства . Так как ток, протекающий через заземлитель , не может быть более 10 А в сетях напряжением до 1000 В, то должно быть не более 4 Ом. Допускается 10 Ом при суммарной мощности источников напряжения сети до 100 кВ·А.

Чтобы получить заземление, обеспечивающее безопасность, т.е. напряжение прикосновения не более 42 В, применяют сложные групповые заземлители.

Если расстояние между отдельными электродами (одиночными заземлителями) меньше 20 м, то их поля растекания накладываются, то есть они экранируют друг друга, что выражается величиной коэффициента экранирования .

Общее сопротивление группового заземлителя определяется как сопротивление всех параллельно соединенных одиночных заземлителей с учетом коэффициента экранирования по формуле:

где – сопротивление одиночного заземлителя;

n – количество одиночных заземлителей.

Заземляющие устройства (заземления) бывают двух типов – выносные и контурные (распределенные) или выполненные в ряд.

Выносные заземления устраиваются при отсутствии возможности разместить заземлитель в пределах защищаемой площадки, высоком сопротивлении грунта на этой территории и наличии сравнительно на небольшом удалении мест с повышенной проводимостью, а также при рассредоточенном размещении заземляемого оборудования.

К достоинству выносных заземлений можно отнести возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное (распределенное) заземляющее устройство применяется в случаях, когда необходимо выровнять потенциал на защищаемой площадке с возможными потенциалами заземленных частей оборудования и тем самым уменьшить напряжение прикосновения (и напряжение шага) до безопасных значений.

Для заземления электроустановок в первую очередь должны использоваться естественные заземлители –– водопроводные и другие трубопроводы, проложенные в земле (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов и смесей), металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, свинцовые оболочки кабелей, проложенные в земле, нулевые (нейтральные) провода воздушных линий напряжением до 1000 В, рельсовые пути магистральных неэлектрифицированных железных дорог и др.

Защитное заземление применяется в сетях, изолированных от земли (трехфазные трехпроводные сети с изолированной от земли нейтралью, двухпроводные сети переменного и постоянного тока с изолированными от земли проводами или полюсами).

Заземлению подлежат корпуса и другие части электрооборудования, на которых может оказаться напряжение, во всех случаях при величине номинального напряжения электропитания 380 В переменного тока и 440 В постоянного тока и выше; при номинальных напряжениях равных и выше 42 В (50 Гц) и 110 В помещених с признаками повышенной и особой опасности и в наружных условиях; во взрывоопасных помещениях при любых значениях постоянного и переменного напряжения.

Реферат - Электробезопастность

Дисциплина - безопасность жизнедеятельности
Электротравмы
Действие тока на организм
Типы поражающего тока
Причины и виды поражения электрическим током
Классификация помещений по электробезопасности
Способы защиты
Правила эксплуатации
Оказание первой помощи
Список использованной литературы

Реферат - Зануление

  • формат doc
  • размер 144.31 КБ
  • добавлен 02 декабря 2008 г.

Электротравматизм и защитные меры в электроустановках Организация зануления Методика расчета зануления на отключающую способность

Реферат - Обеспечение электробезопасности техническими способами и средствами

  • формат doc
  • размер 53.5 КБ
  • добавлен 21 мая 2010 г.

Обеспечение электробезопасности техническими способами и средствами. Организационные и технические мероприятия по обеспечению электробезопасности. Контроль требований электробезопасности.

Реферат - Оказание первой доврачебной помощи пострадавщему от действия тока

  • формат doc
  • размер 113.83 КБ
  • добавлен 06 ноября 2009 г.

Ташкентский университет информационных технологии, Направление специальности "Телекоммуникация" и "Информационные технологии". стр, 13. По дисциплине " Безопасность жизнедеятельности" (Word)/ Методические указания для выполнения лабораторных работ (c компьютерной программой) В лабораторной работе наглядно продемонстрированы основные методы оказания первой помощи при поражении электрическим током.

Реферат - Оказание первой помощи человеку пораженному электрическим током

  • формат doc
  • размер 434 КБ
  • добавлен 02 декабря 2009 г.

Реферат Рассмотрены следующие пункты: виды действия электрического тока на организм, виды поражений, освобождение пострадавшего от действия электрического тока, меры первой доврачебной помощи, первая помощь при клинической смерти.

Реферат - Опасные и вредные факторы, могущие воздействовать на персонал электросетей

  • формат doc
  • размер 645.5 КБ
  • добавлен 20 декабря 2010 г.

Содержание: 1. Введение 2. Воздействие на организм человека электрического тока, защитные меры 3. Защита от воздействия электромагнитного поля промышленной частоты в электроустановках сверхвысокого напряжения 4. Заключение 5. Список литературы Простенькая работа, выполнена студентом-заочником филиала ДВГТУ им. Куйбышева, специальность Электроснабжение. Содержит 20 листов.

Реферат - Первая помощь пострадавшим от воздйствия электрического тока

  • формат doc
  • размер 238.78 КБ
  • добавлен 05 октября 2009 г.

Реферат - Производственный травматизм в электроэнергетике

  • формат doc
  • размер 469.12 КБ
  • добавлен 18 ноября 2009 г.

Производственный травматизм. Особенности воздействия электрического тока на организм человека. Статистические данные по электротравматизму. Обеспечение безопасности в электроэнергетике. УлГТУ, 2008 г.

Реферат - Электрический ток

  • формат doc
  • размер 26.01 КБ
  • добавлен 01 декабря 2009 г.

Введение. Источники электрического тока. Действие тока на организм. Факторы, влияющие на опасность поражения током. Электрозащитные средства. Первая помощь при поражении человека электрическим током. Заключение. Список литературы.

Реферат - Электробезопасность

  • формат doc
  • размер 70.68 КБ
  • добавлен 11 ноября 2008 г.

Актуальность. Источники воздействия электрического тока на человека. Природа электрического тока. Факторы, влияющие на исход поражения электрическим током. Методы измерения электрического тока. Воздействие электрического тока на человека. Средства защиты от электрического тока. Список использованной литературы. ПГТУ, кафедра БЖД, 3 КУРС, 2 СЕМЕСТР, 14 СТРАНИЦ, АВТОР АНТОН.

Реферат - Электробезопасность

  • формат docx
  • размер 30.4 КБ
  • добавлен 14 мая 2011 г.

Действие электрического тока на организм человек. Виды поражения организма человека электротоком. Электрический удар. Оказание помощи пострадавшему от электрического ток.

Читайте также: