Мембранные методы очистки сточных вод реферат

Обновлено: 05.07.2024

Находят в последние время всё большее применение для очистки промышленных сточных вод.

Они конкурируют с ионообменными методами очистки и в ряде случаев превосходят их. При очистки большого объёма воды лучше ионообменный способ очистки, а для малого объёма, лучше мембранный способ очистки.

Ø Обратный осмос.

Ø Ультра фильтрация.

Ø Испарение через мембрану.

Ø Диффузионное испарение через мембрану.

Выбор метода зависит от размера разделяемых частиц.

В любом из этих процессов раствор приводится в соприкосновение с полупроницаемой мембраной, с одной её стороны в следствие особых свойств полупроницаемой мембраны прошедший через мембрану раствор (растворитель) обедняется (обогащается одним из компонентов).

Для разделения жидких смесей и сточных вод используют обратный осмос и утра фильтрацию.

Более подробно можно рассмотреть метод, осмоса и обратного осмоса.

в) Р>π Обратный осмос

II. Описание принципиальной технологической схемы

Сточная вода поступает на решетку (Р), где улавливаются крупные нерастворимые, плавающие загрязнители. Из решетки вода попадает в песколовку (П), песок образовавшийся в процессе очистки поступает в емкость (Е1). Затем вода поступает в нефтеловушку (Н/л) где нефтепродукты всплывают и по спец. отводу попадают в ёмкость (Е2) для сбора нефтепродуктов, а из этой емкости на сжигание. После этого вода поступает в усреднитель (У) в котором усредняются водные потоки по объемам и концентрациям примесей. Перемешивание в усреднителях осуществляются с помощью барботажа воздуха. После усреднителя вода переходит в сатуратор (С), после него во флатор (Ф). Потом, вода поступает в адсорбер (А1-А2), в котором нефтепродукты поглощаются активным углём и вода очищается приблизительно до 0,3г/л-1мг/л. После промывки адсорберов водой, нефтепродукты сливаются в емкость (Е4) и поступают на сжигание. Очищенная вода, выходящая из адсорбера (А1-А2) поступает на водооборот предприятия.

Ш. Расчёт основного оборудования

Похожие работы





. процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ. 3.2.3 Сорбция Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях. Сорбция – это процесс поглощения вещества из окружающей среды твердым телом или жидкостью. Поглощающее тело называется .

. мембран, кроме соотношения размеров молекул, частиц и размеров пор, влияет обменное взаимодействие между растворенным веществом и веществом мембраны. Ультрафильтрация позволяет производить очистку сточных вод от примесей нефтепродуктов, когда гидрофобные молекулы углеводородов задерживаются гидрофильными полярными ацетатцеллюлозными мембранами (АЦМ) с размерами пор, превышающими размеры молекул .






. труб на новые мембранные мелкопузырчатые аэраторы. Для достижения поставленных целей необходимо было решить следующие задачи: Ø Тщательно изучить теоретические основы технологии биохимической очистки сточных вод нефтеперерабатывающих предприятий; Ø Проанализировать имеющуюся технологическую схему очистки сточных вод на предприятии ООО "ЛУКОЙЛ-Пермнефтеоргсинтез"; Ø Выбрать .

Традиционные способы очистки воды - механические, химические или реагентные - не обеспечивают в большинстве случаев необходимую эффективность очистки. Особый интерес вызывают мембранные методы разделения - обратный осмос, ультрафильтрация и микрофильтрация, позволяющие очищать воду от солей, органических веществ, коллоидов и взвесей. Мембранные системы водоподготовки, промышленное освоение которых началось примерно с 1985 года, в настоящее время применяются практически во всех отраслях, потребляющих очищенную воду.

Содержание

Введение
1. Мембранная технология очистки воды
2. Классификация мембранных процессов
3 Основные методы очистки мембран
4. Универсальные мембранные системы очистки питьевой воды
Выводы
Список используемой литературы

Прикрепленные файлы: 1 файл

Мембранные методы очистки воды1.docx

Министерство образования и науки Республики Казахстан

Карагандинский государственный университет им. Е. А. Букетова

Физико-технический факультет

Кафедра Инженерной теплофизики им. профессора Акылбаева Ж.С.

Тема: Мембранные методы очистки воды

1. Мембранная технология очистки воды

2. Классификация мембранных процессов

3 Основные методы очистки мембран

4. Универсальные мембранные системы очистки питьевой воды

Список используемой литературы

Традиционные способы очистки воды - механические, химические или реагентные - не обеспечивают в большинстве случаев необходимую эффективность очистки. Особый интерес вызывают мембранные методы разделения - обратный осмос, ультрафильтрация и микрофильтрация, позволяющие очищать воду от солей, органических веществ, коллоидов и взвесей.

Мембранные системы водоподготовки, промышленное освоение которых началось примерно с 1985 года, в настоящее время применяются практически во всех отраслях, потребляющих очищенную воду.

Первые искусственные мембраны были изготовлены в XIX веке из обработанной в азотной кислоте клетчатки (целлюлозы) – сырья, которое является ничем иным как оболочками растительных клеток, то есть природными мембранами. Из нитрата целлюлозы научились делать целлулоид, а позднее целлофан, но с обнаруженной у них микропористостью активно боролись, так как хотели получить в первую очередь защитные материалы, непроницаемые для воздуха и влаги. И только в 1960 году Лоэбом и Соурираджаном была изобретена мембрана из другого вида модифицированной целлюлозы – ацетата, которая была уже пригодна для практического применения.

Мембраны, как и другие фильтрующие материалы, можно рассматривать как полупроницаемые среды: они пропускают воду, но не пропускают, точнее, хуже пропускают некоторые примеси. Однако если обычное фильтрование применяют для удаления из воды относительно крупных образований – дисперсных и крупных коллоидных примесей, то мембранные технологии – для извлечения мелких коллоидных частиц, а также растворенных соединений. Для этого мембраны должны иметь поры очень малого размера.

Движущей силой, заставляющей жидкость проникать через препятствие в виде тонкой перегородки, может быть:

а) приложенное давление;

б) разница концентраций растворенных веществ;

в) разница температур по обе стороны перегородки;

г) электродвижущая сила.

Основное отличие мембран от обычных фильтрующих сред состоит в том, что они тонкие, и удаляемые примеси задерживаются не в объеме, а только на поверхности мембраны.

Грязеемкость поверхности, очевидно, гораздо меньше, чем у объема. Казалось бы, мембрана должна из-за этого очень быстро засориться и перестать пропускать воду. Так бы оно и было, если бы в мембранном фильтре не происходило постоянного самоочищения мембраны.

Мембранная технология очистки воды

Мембранные фильтры являются фильтрами, удерживающими частицы на своей поверхности, что означает отсутствие удерживания частиц на внутренней ткани фильтра. Благодаря равномерному и однородному распределению пор на поверхности легко определить максимальный размер частиц, которые могут пройти через фильтр, так что можно говорить об абсолютном уровне фильтрования. Эти фильтры не меняют природу фильтрата и почти не адсорбируют жидкость внутри себя.

Классификация мембранных процессов

Мембранные процессы можно классифицировать по размерам задерживаемых частиц на следующие типы:

Ультрафильтрационные мембраны имеют наиболее крупные поры диаметром от 1 до 0,05 микрон (1 мкм=10-6 м) и работают обычно при давлениях 2-5 бар. Они применяются, например, для доочистки питьевой водопроводной воды от коллоидных и высокомолекулярных загрязнений, если не требуется корректировка ее солевого состава.

Нанофильтрационные элементы (поры 5-50 нм, или 0,05-0,005 мкм)- это процесс фильтрации воды через полупроницаемую ультратонкую мембрану, которая задерживает различные растворенные загрязнители на молекулярном уровне, используют для умягчения воды с повышенной жесткостью, для удаления ионов тяжелых металлов и хлороорганики. Одновалентные ионы, такие как Na, K, Cl, NO3 задерживаются слабо – в среднем не более 10-30%. Рабочее давление нанофильтрации обычно не превышает 5-7 бар. Установки для нанофильтрации воды используются в основном для полного обессоливания воды, то есть для получения технической воды, которая может быть использованы в промышленности для самых разнообразных нужд.

Обратноосмотические мембраны имеют поры диаметром менее 10 нанометров (менее 0,01 мкм), работают при давлениях до 100 бар и позволяют осуществлять глубокое обессоливание, или деминерализацию. Они задерживают все бактерии и вирусы, бoльшую часть растворенных солей и органических веществ (в том числе железо и гумусовые соединения, придающие воде цветность и патогенные вещества), пропуская лишь молекулы воды небольших органических соединений и легких минеральных солей. Обратный осмос применяют для получения сверхчистой воды для производственных нужд, а также для опреснения морской и солоноватых подземных вод, причем степень обессоливания (селективность) составляет обычно не менее 92-97%.

Обратноосмотическую воду можно пить без кипячения, поскольку в ней нет ни только вирусов, микробов и бактерий, но и органических веществ - гербицидов, пестицидов и т.п. Однако, при использовании очистки основанной на принципе обратного осмоса, предварительно необходима механическая очистка и абсорбция.

Обратноосмотические мембраны используются во многих отраслях промышленности, где есть необходимость в получении воды высокого качества (разлив воды, производство алкогольных и безалкогольных напитков, пищевая промышленность, фармацевтика, электронная промышленность и т. д.).

Типы мембранных элементов

Мембраны могут иметь различную геометрическую форму: трубчатые, половолоконные и плоские.

Трубчатые мембраны представляют собой трубки диаметром от нескольких миллиметров до 1-2 см, изготовленные из пористого материала, например керамики. При этом они могут быть симметричными или асимметричными. Симметричная мембрана имеет одинаковую пористость по всему объему материала. У асимметричной же трубки на одной из поверхностей – наружной или внутренней – при изготовлении формируют тонкий слой такого же или другого материала с гораздо большей плотностью. Этот слой и является работающим, так как именно он определяет задерживающую способность мембраны. Более крупнопористый материал играет роль подложки-носителя с дренажными свойствами. Подача очищаемой воды осуществляется со стороны рабочей поверхности.

Мембраны в виде полых волокон (Hollow Fibre) тоже имеют трубчатую форму, но их диаметр составляет обычно от 0,1 до 0,5 мм. Из-за такого малого размера в единицу объема фильтровального аппарата можно поместить огромное количество волокон, и их суммарная рабочая поверхность будет в десятки и даже сотни раз выше, чем у трубчатых мембран большого диаметра.

Плоские мембраны - производят в виде пленок (thin film), которые могут быть бесподложечными (однородное вещество), армированными (с тканевой основой и нанесенным пористым материалом) и подложечными (с подложкой из крупнопористого материала и нанесенным рабочим слоем).

Загрязнение мембран и их промывка

Чем больше в исходной воде веществ с низкой растворимостью или взаимодействующих с материалом мембраны, тем больше вероятность ее загрязнения.

Главная причина такого рода проблем – так называемая концентрационная поляризация, то есть локальное повышение концентрации примесей вблизи рабочей поверхности мембраны. Механические и коллоидные частицы в таких условиях имеют тенденцию к укрупнению и образованию агрегатов, которые могут отлагаться на мембране, блокируя ее. Для солей с относительно низкой растворимостью повышение концентрации тоже может вызвать образование осадка.

Для того чтобы снизить интенсивность загрязнения, оптимизируют конструкцию мембранных элементов и схему их подключения друг с другом, если установка многоступенчатая. При этом добиваются как можно большей линейной скорости движения воды вдоль поверхности мембраны, в том числе за счет рециркуляции концентрата, и максимальной турбулентности потока.

Основные методы очистки мембран

1. Гидравлическая очистка обратным потоком пермеата. Речь идет о периодической подаче пермеата из-под мембраны в камеру исходного раствора. При этом в камере снимают давление, но продолжают прокачивать раствор. Схема такой очистки показана на рисунке (Способ применим для мембран с высокой механической прочностью.)

2. Гидравлическая очистка реверсивным потоком концентрата. Здесь речь идет о периодической смене направления движения исходного потока вдоль мембраны.

3. Механическая очистка мембран с помощью мягких губчатых тел, которые проталкиваются вдоль мембраны потоком исходного раствора, снимая с поверхности гелевые и осадочные образования.

4.Химическая очистка мембран периодическим заполнением межмембранных каналов химическими реагентами, растворяющими образовавшиеся отложения. Очень важно правильно выбрать моющее средство, которое не должно растворять мембрану, а также подобрать его концентрацию и режим мойки.

Очистка заключается в промывке мембран различными моющими растворами. Эффективность такой очистки обусловлена правильностью подбора реагентов, действие которых заключается в переводе отложений в растворимую форму. Для правильного подбора реагента надо знать структуру и состав загрязнений, а также стойкость мембран по отношению к этому реагенту и ее адсорбционные свойства.

Как правило, эффективная мойка проходит при сочетании нескольких реагентов. Рассмотрим их далее.

Используют соляную, серную и азотную кислоты, а также лимонную, винную, щавелевую, глюконовую и другие органические кислоты. Некоторые из них работают как растворяющие вещества, некоторые как комплексоны, способствующие растворению. Поэтому кислотная мойка – это всегда сложный, многоступенчатый процесс с различными добавками: карбометилцеллюлоза, ПАВ, растворители органические, фториды аммония и натрия и др.

Обычно последовательность операций такая: раствор кислоты – чистая вода – раствор кислоты с комплексоном – чистая вода – раствор кислоты с ПАВ – чистая вода – раствор щелочи – чистая вода. Часто промывку проводят с повышением температуры, увеличенной скоростью циркуляции, с барботированием воздуха, длительное время. Практикуют промывку под высоким давлением для очистки пор, тогда растворившиеся загрязнения проходят в дренажные каналы. Это надо учитывать при конструировании установок.

Сильнодействующие растворители. Ограничения на их применение связаны с хим. стойкостью мембран. Поэтому хорошо отмываются керамические мембраны диоксаном, этилацетатом. Фенол, крезол, гидрохинон годятся для отмывки ацетатцеллюлозных мембран, но надо соотносить их с санитарными требованиями к получаемому продукту.

Проблемы загрязнения водного бассейна. Мембранные методы очистки воды: типы мембранных элементов, механизм разделения на мембранах, предварительная подготовка воды. Опреснение сточных вод методом обратного осмоса, оборудование и методика его расчета.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 07.06.2009
Размер файла 478,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Загрязнение водного бассейна

2. Мембранные методы очистки воды

2.1 Классификация мембран по размерам пор

2.2 Типы мембранных элементов

2.3 Основные закономерности процессов мембранного разделения

2.4 Представления о механизме разделения на мембранах

2.5 Загрязнение мембран и их промывка

2.6 Предварительная подготовка воды

3. Классификация мембранных методов

4. Практическое применение

4.1 Опреснение сточных вод методом обратного осмоса

4.2 Технологическая характеристика опреснения обратным осмосом

4.3 Выбор оборудования и методика его расчета

4.4 Технологический расчет

4.5 Технологическая и экономическая оценка рассматриваемого оборудования

4.6 Промышленные системы водоподготовки

Обратный осмос для бытового использования (вместо заключения)

Список используемой литературы

Введение

Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.

Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км 3 .

Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное количество воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.

Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.

На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

1. Загрязнение водного бассейна

Загрязнение водного бассейна в городах следует рассматривать в двух аспектах - загрязнение воды в зоне водопотребления и загрязнение водного бассейна в черте города за счет его стоков. Проследим состав и объемы сточных вод на примере условного города-миллионера.

Неконтролируемый сброс промышленных, сельскохозяйственных и бытовых отходов привел к значительному ухудшению качества воды, идущей на хозяйственно-питьевые нужды. В воде появились такие токсичные вещества как пестициды, гербициды, фенолы, нитриты, тяжелые металлы (ртуть, кадмий, свинец и др.). Применяемые на муниципальных водоподготовительных предприятиях технологии не позволяют полностью удалить эти загрязнения при водоподготовке.

Около 40 лет назад начала развиваться принципиально иная технология очистки воды — мембранная технология. Она основана на пропускании воды под давлением через полупроницаемую мембрану и разделении воды на два потока: фильтрат (очищенная вода) и концентрат (концентрированный раствор примесей). Мембранная фильтрация незаменима для избавления воды от микробов. Принцип метода мембранной фильтрации – концентрирование присутствующих в анализируемой пробе микроорганизмов на поверхности мембранного фильтра с размером пор 0,45-0,65 мкм путем пропускания пробы через фильтр. После фильтрации пробы, фильтр с задержанными микроорганизмами помещают на питательную среду и инкубируют в соответствующих условиях.

Мембранные фильтры являются фильтрами, удерживающими частицы на своей поверхности, что означает отсутствие удерживания частиц на внутренней ткани фильтра. Благодаря равномерному и однородному распределению пор на поверхности легко определить максимальный размер частиц, которые могут пройти через фильтр, так что можно говорить об абсолютном уровне фильтрования. Эти фильтры не меняют природу фильтрата и почти не адсорбируют жидкость внутри себя.

Следует помнить, что по эффективности очистки мембранные системы не имеют себе равных: она достигает практически 100% по любому из видов загрязнений. Достаточно сказать, что только перечень удаляемых примесей занимает не одну страницу. Через мельчайшие поры полупроницаемой тонкопленочной мембраны, имеющие размер порядка 0,0001 микрона, способны просочиться под давлением только молекулы воды и кислорода, а все примеси, остающиеся по другую сторону мембраны, сливаются в дренаж.

мембранный фильтрация вода очистка

1. МЕМБРАННАЯ ТЕХНОЛОГИЯ ОЧИСТКИ ВОДЫ

2.КЛАССИФИКАЦИЯ МЕМБРАННЫХ ПРОЦЕССОВ

Мембранные процессы можно классифицировать по размерам задерживаемых частиц на следующие типы:

При переходе от микрофильтрации к обратному осмосу размер пор мембраны уменьшается и, следовательно, уменьшается минимальный размер задерживаемых частиц. При этом, чем меньше размер пор мембраны, тем большее сопротивление она оказывает потоку и тем большее давление требуется для процесса фильтрации.

Микрофильтрационные мембраны с размером пор 0,1-1,0 мкм задерживают мелкие взвеси и коллоидные частицы, определяемые как мутность. Как правило, они используются, когда есть необходимость в грубой очистке воды или для предварительной подготовки воды перед более глубокой очисткой.

Ультрафильтрационные мембраны с размером пор от 0,01 до 0,1 мкм удаляют крупные органические молекулы (молекулярный вес больше 10 000), коллоидные частицы, бактерии и вирусы, не задерживая при этом растворенные соли. Такие мембраны применяются в промышленности и в быту и обеспечивают стабильно высокое качество очистки от вышеперечисленных примесей, не изменяя при этом минеральный состав воды.

Нанофильтрационные мембраны характеризуются размером пор от 0,001 до 0,01 мкм. Они задерживают органические соединения с молекулярной массой выше 300 и пропускают 15-90 % солей в зависимости от структуры мембраны.

3. ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ИСПОЛЬЗОВАНИЯ МЕМБРАННОЙ ФИЛЬТРАЦИИ

Метод мембранной фильтрации обладает следующими преимуществами:

1) Количественное определение

2) Высокая точность

3) Исследование проб больших объемов

4) Исключение влияния ингибиторов роста

5) Экономия питательных сред

6) Экономия времени

7) Документирование результата

Метод мембранной фильтрации решает все недостатки очистки воды от микробов:

Если в исследуемом образце воды ожидается низкое содержание микроорганизмов, можно взять большой объем пробы. При фильтрации на мембране задержатся все микробы.

1. Чтобы исключить влияние естественных бактериостатиков, мембрану после фильтрации пробы можно промыть физраствором или дистиллированной водой.

2. Процесс фильтрации занимает немного времени (при использовании установки на 47 мм, и фильтре 0,45 мкм – скорость фильтрации при 90% вакууме 400-600 мл/минуту в зависимости от происхождения фильтра).

3. Оборудование компактно, не требует обширного рабочего места

Установка вакуумной фильтрации для анализа жидких проб выполнена из нержавеющей стали, что делает ее долговечной, простой в использовании, позволяет проводить обработку пламенем.

Для работы также потребуются мембранные фильтры и питательные среды.

Питательные среды можно готовить самостоятельно, на что потребуется дополнительное время, персонал, оборудование.

Но удобнее и выгоднее использовать питательные картонные подложки (ПКП).

ПКП – это диск из сорбирующего материала, пропитанный селективной питательной средой, а затем высушенный в специальных условиях и стерильно упакованный в пластиковую чашку Петри. Активация питательной среды проводится непосредственно перед использованием путем смачивания подложки стерильной водой. В комплекте с подложками поставляются стерильные мембранные фильтры.

Материал мембранных фильтров – нитрат целлюлозы. Как показала многолетняя практика, этот материал обеспечивает оптимальные условия роста задержанных микроорганизмов, исключая получение ложного отрицательного результата.

Процесс изготовления ПКП стандартизован и сертифицирован по международным стандартам ISO и GMP. Это означает, что, используя ПКП, Вы застрахованы от влияния человеческого фактора на результат анализа, когда при приготовлении питательной среды не выдержана строго рецептура, что приводит с созданию неудовлетворительных условий для роста микроорганизмов. Или когда в стерилизованную среду случайно вносится загрязнение, что обеспечивает ложный положительный результат.

Мембранный фильтр состоит из нескольких слоев, которые соединены вместе и обмотаны вокруг пластиковой трубки. Материал мембраны полупроницаем. Вода продавливается через полупроницаемую мембрану, которая отторгает даже низкомолекулярные соединения. Замена мембранного фильтра может потребоваться в случае, когда установка станет производить заметно меньше воды или измениться ее вкус. Обычно срок эксплуатации мембранного фильтра при правильной эксплуатации и своевременной замене фильтров предварительной очистки - 2 - 3 года. Мембранные системы имеют и ряд других достоинств. Во-первых, загрязнения не накапливаются внутри мембраны, а постоянно сливаются в дренаж, что исключает вероятность их попадания в очищенную воду. Благодаря такой технологии даже при значительном ухудшении параметров исходной воды качество очищенной воды остается стабильно высоким. Может лишь понизиться производительность, о чем потребитель узнает по счетчикам, встроенным в систему. В этом случае мембрану необходимо промыть специальными реагентами. Такие промывки проводятся регулярно (примерно 4 раза в год) специалистами сервисной службы. Одновременно производится контроль работы установки. Другое преимущество — отсутствие химических сбросов и реагентов, что обеспечивает экологическую безопасность. Мембранные системы компактны и прекрасно вписываются в интерьер. Они просты в эксплуатации и не нуждаются во внимании со стороны пользователя.

Наибольшее признание получили обратноосмотические системы благодаря уникальному качеству воды, достигаемому после фильтрации. Явление прохождения воды через пленку из малоконцентрированного раствора в более концентрированный раствор было открыто еще в XVIII в. Это явление получило название осмоса, а пленка, пропускающая воду, названа мембраной. Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки. Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной. Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей — нет.

Такие мембраны эффективно справляются с низкомолекулярными гуминовыми соединениями, которые придают воде желтоватый оттенок и ухудшают ее вкусовые свойства, и которые очень трудно удалить другими методами. С использованием мембранных обратноосмотических систем можно получить чистейшую воду. Такая вода не только безопасна для здоровья, но и сохраняет белоснежность дорогостоящей сантехники, не выводит из строя бытовую технику и систему отопления, и просто радует глаз.

4. УНИВЕРСАЛЬНЫЕ МЕМБРАННЫЕ СИСТЕМЫ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ

Полупроницаемая полимерная плёнка действует подобно стенкам клеток живых организмов, пропуская через мельчайшие поры лишь частицы, соизмеримые с молекулами воды. Композитная полиамидная обратноосмотическая мембрана задерживает практически все загрязнения, в том числе бактерии и вирусы. Для того чтобы загрязнения не оседали на мембране и не закупоривали поры, вода течет с высокой скоростью вдоль поверхности мембраны, смывая загрязнения в канализацию. Система проста в обслуживании и легко монтируется под кухонной раковиной или рядом с ней и снабжена отдельным краном.

В базовую комплектацию системы входят:

1. Предварительный фильтр механической очистки (5 мкм).

2. Предварительный фильтр с гранулированным углем

3. Дополнительный фильтр с прессованным углем .

4. Корпус с обратноосмотической мембраной.

5. Финишный фильтр

6. Автоматический клапан отключения воды.

7. Накопительный бак с краном.

8. Муфта подключения к линии холодной воды.

9. Муфта подключения к канализации.

10. Кран чистой воды.

Сменные компоненты системы очистки питьевой воды.

1) Картриджи механической очистки обеспечивают очистку воды от механических примесей (песок, ржавчина и т.п.), что позволяет защитить мембрану от повреждения и загрязнения. Минимальный размер задерживаемых примесей – 5 мкм. Картриджи изготовлены из термически связанного полипропиленового микроволокна и имеют переменную плотность упаковки, увеличивающуюся от поверхности к центру, что значительно повышает грязеемкость картриджей. Пропускная способность – 1100 л/ч (при потере давления 0,1 бар). Ресурс картриджа - до 6 месяцев (в зависимости от расхода и качества воды).

2) Картридж и с прессованным активированным углем обеспечивают эффективную очистку воды от хлора, органических и хлорорганических соединений (фенолы, хлорфенолы, моющие вещества и т.п.). Картриджи состоят из прессованного активированного угля, покрытого полипропиленовой сеткой, защищающей уголь от механических загрязнений. В мембранной системе устанавливается до мембранного модуля для защиты мембраны от разрушающего воздействия хлора. Эффективность очистки от хлора выше, чем у картриджей с гранулированным углем и составляет не менее 95% (при содержании хлора 2 мг/л и расходе воды 170 л/час). Пропускная способность – 420 л/ч (при потере давления 0,2 бар). Ресурс картриджей по хлору - до 6 месяцев (в зависимости от расхода и качества воды).

3) Картриджи с гранулированным активированным углем изготовлены из скорлупы кокосового ореха. Обеспечивают очистку воды от хлора, хлорорганических и органических соединений (фенолы, хлорфенолы, моющие вещества и т.п.). В мембранной обратноосмотической системе устанавливается до мембранного модуля для защиты мембраны от разрушающего воздействия хлора. Пропускная способность – 300 л/ч. Ресурс составляет до 6 месяцев.

4) Финишный угольный фильтр – используется для доочистки воды от низкомолекулярных органических соединений, которые могут проникнуть через обратноосмотическую мембрану или попасть в чистую воду из резиновой груши бачка и вызвать неприятный запах и вкус, устанавливается при помощи специальных креплений на корпус мембраны. Представляет собой неразборный пластиковый корпус с активированным углем, который после выработки ресурса заменяется полностью. Пропускная способность – 120 л/ч. Ресурс – 3500 / 5300 литров.

2. Теоретические основы зашиты окружающей среды: Учеб. пособие А.Г. Ветошкин-М.: Высш.шк., 2008.-397 с.:ил.

Мембранные системы очистки воды являются сложными. Даже после завершения разработки технического проекта может быть сложно, оценить стоимость в сравнении. Все мы знаем, от покупки чего-либо, к примеру, от обуви до стиральных машин, самый дешевый продукт, вероятно, не обеспечит нам наилучшую ценность. И если мы исследуем крупную покупку для члена семьи, например, детское автокресло или медицинское обслуживание для престарелого родителя, мы определенно не выберем вариант с самой низкой ценой. Если вы вовлечены в индустрию очистки воды, вы, вероятно, ответственно подходите к тому, чтобы предоставить своим клиентам стабильный, безопасный и высококачественный продукт. Если вы являетесь владельцем или конечным пользователем, вы можете зависеть от инженера или технического проекта, чтобы обеспечить высококачественную мембранную систему. Это отличный шаг для подтверждения того, что будет получена наилучшая мембранная система.

1. Мембранная очистка как инновационный процесс очистки.

Загрязнение воды тяжелыми металлами, цианидами и красителями возрастает во всем мире и требует решения, так как это приведет к дефициту воды, а также к качеству воды. Различные методы были использованы для очистки и возобновления воды для потребления человеком и в сельскохозяйственных целях, но у каждого из них есть свои ограничения. Среди этих методов мембранная технология является перспективной для решения проблем. Нанотехнологии представляют большой потенциал в очистке сточных вод для повышения эффективности очистки очистных сооружений. Кроме того, нанотехнологии дополняют водоснабжение за счет безопасного использования современных источников воды.

Мембранная обработка воды является процессом, способным удалять бесполезные компоненты из воды. Мембрана - это барьер, который позволяет определенным веществам проходить через них, блокируя другие. Водоочистные сооружения используют различные типы мембран и процессов для очистки поверхностных, подземных и сточных вод, чтобы производить воду для промышленности и для питья. Это многомиллиардная индустрия, которая растет в результате растущей озадаченности по поводу загрязнителей воды и сокращения количества безопасных, чистых, легко доступных существующих источников воды.


Рис. 1 Мембранная очистка

Процессы мембранного разделения быстро развиваются для очистки воды и сточных вод в связи с их значительной ролью в очистке воды. В зависимости от размера молекулы и пор мембраны действуют как физический барьер для веществ.

Читайте также: