Медицинские экспертные системы реферат

Обновлено: 05.07.2024

Современные технические возможности позволяют выйти на качественно новый уровень представления течения заболевания, а именно визуально, на основе соответствующих математических моделей, пространственно смоделировать типовое развитие патологического процесса при конкретном заболевании. Уже сейчас, на современном этапе развития медицины, информационные нагрузки достигают пределов человеческих возможностей. Возникает дилемма: либо приходится жертвовать полнотой анализа информации, либо необходимо шире использовать различные методы компьютерной поддержки принятия решений.

Содержание

Введение 3
Глава 1. Определение экспертных систем. Главное достоинство и назначение экспертных систем. 5
1.1. Определение экспертных систем. 5
1.2. Отличие ЭС от других программных продуктов. 6
1.3. Отличительные особенности. Экспертные системы первого и второго поколения. 10
1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы. 10
Глава 2. Области применения экспертных систем. 11
2.1. Медицинская диагностика. 11
2.2. Прогнозирование. 12
2.3. Планирование. 12
2.4. Интерпретация. 13
2.5. Контроль и управление. 13
2.6. Диагностика неисправностей в механических и электрических устройствах. 13
2.7. Обучение. 14
Глава 3. Экспертные системы в области медицины 15
3.1. Самообучающиеся интеллектуальные системы 17
Заключение 23
Список использованной литературы 24

Работа состоит из 1 файл

экспертные системы в области медицины.doc

Кафедра прикладной информатики и информационных систем

Факультет экономики менеджмента и информационных технологий

Выполнила: студентка гр.2341

Проверил: доц. Сысоев Д.В.

Введение

В последнее время неуклонно возрастает значение информационного обеспечения различных медицинских технологий. Использование современных информационных технологий становится критическим фактором развития большинства отраслей знания и областей практической деятельности, поэтому разработка и внедрение информационных систем является одной из самых актуальных задач.

В медицинских учреждениях большинство персональных компьютеров применяется лишь для обработки текстовой документации, хранения и обработки баз данных, ведения статистики и выполнения финансовых расчетов. Отдельная, специализированная часть машин используется совместно с различными диагностическими и лечебными приборами.

Во многих лечебно-диагностических технологиях возможности современных компьютеров практически не используются. Прежде всего, это диагностика, назначение лечебных мероприятий, прогнозирование течения заболеваний и их исходов. Основными причинами недостаточно полного использования современных компьютерных технологий в медицине являются слабо развитая техническая база, недостаточный уровень подготовки участников этих технологий в области современного аппаратного и программного обеспечения, плохая оснащенность специализированными пакетами прикладных программ и др. Большое значение имеет психологический аспект применения компьютерных приложений. Это серьезная причина, связанная с особенностями работы врача. Врач является исследователем, его работа носит творческий характер, однако он несет прямую ответственность за результат своей деятельности. Принимая решение о диагнозе или лечении, он опирается на знания и опыт – свои собственные и коллег, являющихся для него авторитетом. Очень важно при этом обоснование решения, особенно если оно подсказывается со стороны.

Современные технические возможности позволяют выйти на качественно новый уровень представления течения заболевания, а именно визуально, на основе соответствующих математических моделей, пространственно смоделировать типовое развитие патологического процесса при конкретном заболевании. Уже сейчас, на современном этапе развития медицины, информационные нагрузки достигают пределов человеческих возможностей. Возникает дилемма: либо приходится жертвовать полнотой анализа информации, либо необходимо шире использовать различные методы компьютерной поддержки принятия решений.

Глава 1. Определение экспертных систем. Главное достоинство и назначение экспертных систем.

Экспертные системы (ЭС)- это яркое и быстро прогрессирующее направление в области искусственного интеллекта(ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или по крайней мере, такие попытки не предпринимались бы.

ЭС- это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.

ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы). Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Главное достоинство ЭС- возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.

Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на ЭС, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.

1.2. Отличие ЭС от других программных продуктов.

Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов.

У полностью оформленной экспертной системы присутствуют 4 основных компонента (блока):

База знаний содержит факты или утверждения и правила. Факты являются краткосрочной информацией, они могут изменяться в ходе одного сеанса работы. Правила составляют долговременную информацию о том, как порождать новые факты на основе известных данных. Отличие базы знаний от базы данных состоит в механизме пополнения информации недостающими фактами. Распространенным методом отображения знаний являются правила продукций. При этом правила имеют вид ЕСЛИ — ТО, например, ЕСЛИ у пациента высокая температура, ТО вероятность того, что у него ОРВИ, следует умножить на 5. Кроме правила продукций используются деревья решений, семантические сети и исчисление предикатов.

Машина вывода — это высокоуровневый интерпретатор, который осуществляет цепочку рассуждений на основе фактов и правил базы знаний, и который приводит к конечному решению. Машина вывода обычно имеет дело с ненадежными знаниями. Одна из проблем — работа с ненадежной информацией. В настоящее время найдены способы решения этой задачи: нечеткая логика, байесовская логика, коэффициенты уверенности. Эти способы дают на практике вполне приемлемые результаты.

Извлечение знаний является трудоемким процессом. Знания сами по себе — дорогой ресурс, который сложно представить в простой для использования в компьютере форме. Обычный способ извлечения знаний состоит в том, что специалист по технологии экспертных систем опрашивает специалистов, знания которых добавляются в экспертную систему, добиваясь правильного представления их знаний в компьютере. Это долгий и дорогой процесс. В настоящее время ведутся интенсивные работы по автоматизации процесса извлечения знаний. Появилось новое поколение систем — самообучающиеся системы, которые уже нельзя назвать экспертными системами в точном понимании этого слова, т. к. они уже не используют знания экспертов. Процесс принятия решения в таких системах трудно понять человеку (не удается построить блок объяснения решения). Сейчас интенсивно развиваются системы, основанные на технологии нейронных сетей, которые используют этот принцип.

Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов (рис.1). Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

рис.1 Схема работы ЭС.

В любой момент времени в системе существуют три типа знаний:

- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.

- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.

- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний.

1.3. Отличительные особенности. Экспертные системы первого и второго поколения.

1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы.

2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульманологии путем замены базы знаний, используемой с тем же самым механизмом вывода.

4. Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему ?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.

5. Выходные результаты являются качественными (а не количественными).

6. Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.

Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.

В экспертных системах первого поколения знания представлены следующим образом:

1) знаниями системы являются только знания эксперта, опыт накопления знаний не предусматривается.

2) методы представления знаний позволяли описывать лишь статические предметные области.

3) модели представления знаний ориентированы на простые области.

Представление знаний в экспертных системах второго поколения следующее:

1) используются не поверхностные знания, а более глубинные. Возможно дополнение предметной области.

Медицинские экспертные системы ( реферат , курсовая , диплом , контрольная )

Белорусский Государственный Университет Информатики и Радиоэлектроники Кафедра электронных вычислительных средств

Контрольная работа

Медицинские экспертные системы

Содержание

1. Арифметические операции над нечеткими множествами

2. Активационная функция искусственного нейрона

3. Назначение и особенности экспертных систем

1. Арифметические операции над нечеткими множествами

ОБЪЕДИНЕНИЕ: создается новое множество из элементов исходных множеств, причем для одинаковых элементов принадлежность берется максимальной (критерий максимума).

ПЕРЕСЕЧЕНИЕ: создается новое множество из одинаковых элементов исходных множеств, принадлежность которых берется минимальной (критерий минимуима).

ДОПОЛНЕНИЕ: инвертируется принадлежность каждого элемента.

СТЕПЕНЬ: принадлежность каждого элемента возводится в степень.

CON — концентрация, степень=2 (уменьшает степень нечеткости)

DIN — растяжение, степень=½ (увеличивает степень нечеткости) РАЗНОСТЬ: новое множество состоит из одинаковых элементов исходных множеств.

Ma-b (x) = Ma (x)-Mb (a), если Ma (x)>Mb (x)

НОСИТЕЛЬ: состоит из элементов исходного множества, принадлежности которых больше нуля.

УМНОЖЕНИЕ НА ЧИСЛО: принадлежности элементов домножаются на число.

СУПРЕМУМ: Sup — точная верхняя грань (максимальное значение принадлежности, присутствующее в множестве).

НОРМАЛИЗАЦИЯ: нечеткое множество нормально если супремум множества равен единице. Для нормализации перечитывают принадлежности элементов:

M’a (x) = Ma (x)/(Sup Ma (x))

АЛЬФА-СРЕЗ: множество альфа уровня — те элементы исходного множества, принадлежность которых выше или равна заданного порога. Порог, равный ½, называют точкой перехода.

НЕЧЕТКОЕ ВКЛЮЧЕНИЕ: степень включения нечеткого множества

V (A1,A2) = (Ma1(x0)->Ma2(x0))&(Ma1(x1)->Ma2(x1))&.

Ma1(x)->Ma2(x) = (1-Ma1(x)) / Ma2(x)

НЕЧЕТКОЕ РАВЕНСТВО: степень нечеткого равенства

R (A1,A2) = V (A1,A2) & V (A2,A1)

2. Активационная функция искусственного нейрона

Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией

где К — постоянная, пороговой функции

OUT = 1, если NET > T,

OUT = 0 в остальных случаях, где Т — некоторая постоянная пороговая величина, или же является функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.

По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.

Другой широко используемой активационной функцией является гиперболический тангенс. По форме она сходна с логистической функцией и часто используется биологами в качестве математической модели активации нервной клетки.

В качестве активационной функции искусственной нейронной сети она записывается следующим образом:

Подобно логистической функции гиперболический тангенс является S-образной функцией, но он симметричен относительно начала координат, и в точке NET = 0 значение выходного сигнала OUT равно нулю. В отличие от логистической функции гиперболический тангенс принимает значения различных знаков, что оказывается выгодным для ряда сетей.

3. Назначение и особенности экспертных систем

Экспертная система (ЭС) — компьютерная программа, способная заменить специалиста-эксперта в разрешении проблемной ситуации. ЭС начали разрабатываться исследователями искусственного интеллекта в 1970;х годах, а в 1980;х получили коммерческое подкрепление.

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.

Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (15, "https://referat.bookap.info").

ЭС может функционировать в 2-х режимах.

Режим ввода знаний — в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС.

Режим консультации — пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах.

ЭС предназначены для так называемых неформализованных задач, т. е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач. Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма). Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Особенности экспертных систем

1. ЭС ограничена определенной предметной областью.

2. ЭС способна рассуждать при сомнительных исходных данных.

3. ЭС способна объяснить цепочку сделанных ею рассуждений.

4. Факты и механизм (программа) формирования выводов четко отделены друг от друга.

5. ЭС строится так, чтобы имелась возможность постепенного ее наращивания (расширения) и модернизации.

6. В результате работы ЭС формируется диагноз, рекомендация, совет, как нужно поступать в конкретной ситуации, или предположение о том, что произошло с исследуемым объектом.

Экспертные системы имитируют процессы принятия решения людьми-экспертами, и в состоянии компетентно решать сложные проблемы.

1. Пивкин В. Я. и др., Нечеткие множества в системах управления, Учебное пособие. Томск: Томский гос. университет, 2001.

2. Яхъяева Г. Э Нечеткие множества и нейронные сети: Уч. пособие для вузов, М.: Мир, 2006.

3. Попов Э. В. и др. Статические и динамические экспертные системы.М.: Финансы и статистика, 1996.

В последнее время неуклонно возрастает значение информационного обеспечения различных медицинских технологий. Использование современных информационных технологий становится критическим фактором развития большинства отраслей знания и областей практической деятельности, поэтому разработка и внедрение информационных систем является одной из самых актуальных задач.

Файлы: 1 файл

экспертные системы в области медицины.doc

Кафедра прикладной информатики и информационных систем

Факультет экономики менеджмента и информационных технологий

Выполнила: студентка гр.2341

Проверил: доц. Сысоев Д.В.

Введение

В последнее время неуклонно возрастает значение информационного обеспечения различных медицинских технологий. Использование современных информационных технологий становится критическим фактором развития большинства отраслей знания и областей практической деятельности, поэтому разработка и внедрение информационных систем является одной из самых актуальных задач.

В медицинских учреждениях большинство персональных компьютеров применяется лишь для обработки текстовой документации, хранения и обработки баз данных, ведения статистики и выполнения финансовых расчетов. Отдельная, специализированная часть машин используется совместно с различными диагностическими и лечебными приборами.

Во многих лечебно-диагностических технологиях возможности современных компьютеров практически не используются. Прежде всего, это диагностика, назначение лечебных мероприятий, прогнозирование течения заболеваний и их исходов. Основными причинами недостаточно полного использования современных компьютерных технологий в медицине являются слабо развитая техническая база, недостаточный уровень подготовки участников этих технологий в области современного аппаратного и программного обеспечения, плохая оснащенность специализированными пакетами прикладных программ и др. Большое значение имеет психологический аспект применения компьютерных приложений. Это серьезная причина, связанная с особенностями работы врача. Врач является исследователем, его работа носит творческий характер, однако он несет прямую ответственность за результат своей деятельности. Принимая решение о диагнозе или лечении, он опирается на знания и опыт – свои собственные и коллег, являющихся для него авторитетом. Очень важно при этом обоснование решения, особенно если оно подсказывается со стороны.

Современные технические возможности позволяют выйти на качественно новый уровень представления течения заболевания, а именно визуально, на основе соответствующих математических моделей, пространственно смоделировать типовое развитие патологического процесса при конкретном заболевании. Уже сейчас, на современном этапе развития медицины, информационные нагрузки достигают пределов человеческих возможностей. Возникает дилемма: либо приходится жертвовать полнотой анализа информации, либо необходимо шире использовать различные методы компьютерной поддержки принятия решений.

Глава 1. Определение экспертных систем. Главное достоинство и назначение экспертных систем.

Экспертные системы (ЭС)- это яркое и быстро прогрессирующее направление в области искусственного интеллекта(ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или по крайней мере, такие попытки не предпринимались бы.

ЭС- это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.

ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы). Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Главное достоинство ЭС- возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.

Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на ЭС, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.

1.2. Отличие ЭС от других программных продуктов.

Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов.

У полностью оформленной экспертной системы присутствуют 4 основных компонента (блока):

База знаний содержит факты или утверждения и правила. Факты являются краткосрочной информацией, они могут изменяться в ходе одного сеанса работы. Правила составляют долговременную информацию о том, как порождать новые факты на основе известных данных. Отличие базы знаний от базы данных состоит в механизме пополнения информации недостающими фактами. Распространенным методом отображения знаний являются правила продукций. При этом правила имеют вид ЕСЛИ — ТО, например, ЕСЛИ у пациента высокая температура, ТО вероятность того, что у него ОРВИ, следует умножить на 5. Кроме правила продукций используются деревья решений, семантические сети и исчисление предикатов.

Машина вывода — это высокоуровневый интерпретатор, который осуществляет цепочку рассуждений на основе фактов и правил базы знаний, и который приводит к конечному решению. Машина вывода обычно имеет дело с ненадежными знаниями. Одна из проблем — работа с ненадежной информацией. В настоящее время найдены способы решения этой задачи: нечеткая логика, байесовская логика, коэффициенты уверенности. Эти способы дают на практике вполне приемлемые результаты.

Извлечение знаний является трудоемким процессом. Знания сами по себе — дорогой ресурс, который сложно представить в простой для использования в компьютере форме. Обычный способ извлечения знаний состоит в том, что специалист по технологии экспертных систем опрашивает специалистов, знания которых добавляются в экспертную систему, добиваясь правильного представления их знаний в компьютере. Это долгий и дорогой процесс. В настоящее время ведутся интенсивные работы по автоматизации процесса извлечения знаний. Появилось новое поколение систем — самообучающиеся системы, которые уже нельзя назвать экспертными системами в точном понимании этого слова, т. к. они уже не используют знания экспертов. Процесс принятия решения в таких системах трудно понять человеку (не удается построить блок объяснения решения). Сейчас интенсивно развиваются системы, основанные на технологии нейронных сетей, которые используют этот принцип.

Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов (рис.1). Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

рис.1 Схема работы ЭС.

В любой момент времени в системе существуют три типа знаний:

- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.

- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.

- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний.

1.3. Отличительные особенности. Экспертные системы первого и второго поколения.

1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы.

2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульманологии путем замены базы знаний, используемой с тем же самым механизмом вывода.

4. Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему ?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.

5. Выходные результаты являются качественными (а не количественными).

6. Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.

Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.

В экспертных системах первого поколения знания представлены следующим образом:

1) знаниями системы являются только знания эксперта, опыт накопления знаний не предусматривается.

2) методы представления знаний позволяли описывать лишь статические предметные области.

3) модели представления знаний ориентированы на простые области.

Представление знаний в экспертных системах второго поколения следующее:

1) используются не поверхностные знания, а более глубинные. Возможно дополнение предметной области.

Пример готового реферата по предмету: Интеллектуальные информационные сети

Введение 3

1. Обзор медицинских экспертных систем 5

1.1. Экспертные системы в диагностике заболеваний 5

1.2. Экспертные системы для мониторинга состояния здоровья пациента 11

1.3. Экспертные системы по планированию лечения 12

1.4. Экспертные системы для прогнозирования развития заболеваний 14

1.5. Экспертные системы для распознавания образов и сигналов 15

2. Методы используемые в медицинских экспертных системах 17

Список литературы 22

Выдержка из текста

Второй класс ЭС используется в ситуациях, когда отсутствуют какие-либо явные связи и закономерности между элементами знаний, а сами знания представлены в виде списков примеров, описывающих реализации тех или иных событий.

Актуальность данной темы обусловлена тем, что человеческая деятельность в любой сфере постепенно автоматизируется. Внедрение IT – технологий в управление рабочими процессами позволяет предприятиям экономить на штате, а также достигать постоянного уровня качества работы. Разработка экспертных систем является очередным шагом по данному пути. Роботизация и автоматизация – это шаг в сторону будущего.

  • умение работать с различными моделями представления знаний и обосновывать выбор той или иной модели в зависимости от характера предметной области и специфики решаемых задач, компоновать структуру прикладной ИИС;

Формирование современной кредитной системы в Российской Федерации , её предыстория ,позитивные моменты и недостатки

Роль банковской системы здесь крайне велика. Если банковская система активно будет участвовать в этом процессе, то темпы инвестиционной активности могут значительно возрасти, что создаст основу для долговременного высокого экономического роста в ближайшие годы, который, возможно, будет измеряться двузначным числом. Это вполне реально. Однако явных свидетельств того, что банковская система справляется или готова ответить на эти мощные вызовы реальной экономики, пока нет. К сожалению, и доля кредитов реальному сектору в обшей структуре активов банков снизилась, и этот показатель, исчисленный как процент от ВВП, также снизился и составляет около 12 %. Если сравнить этот уровень с показателями других стран, даже европейских стран с переходной экономикой (около 100%), то окажется, что мы находимся в самом начале пути к эффективному финансовому посредничеству, только обретаем банковскую систему, которая должна ответить на финансовые потребности растущей экономики, уже достаточно острые и требующие активности финансовых посредников.

В качестве методологической основы исследования были использованы: метод анализа – изучение литературы отечественных и зарубежных авторов, электронных ресурсов для анализа и характеристики современных информационных систем в финансовой деятельности; наблюдение – выявление факторов, влияющих на развитие информационных систем в финансовой деятельности.

Данный курсовой проект является необходимым и важным компонентом образовательной дисциплины, в ходе проектирования студенты не только систематизируют полученные знания, но и приобретают конкретные навыки и умения Это позволяет им подготовиться к более профессиональному подходу при выполнении предстоящих учебных и производственных задач.

Проблемой исследования являются проблемы в обеспечении требуемого качества продукции, которые заключаются в недостатках системы принятия управленческих решений при определении возможности повышения качества выпускаемой продукции.Совершенствование структуры управления предприятия должно быть направлено на приведение ее в соответствие с изменяющимися условиями реформирования. Производство на предприятиях УИС должно быть гибким и способным быстро переориентироваться на более конкурентоспособную продукцию, обладать возможностью анализа и бизнес-планирования, поэтому создание и внедрение экспертной системы управления качеством для предприятия такого типа очень эффективное направление.

Проблемой исследования являются проблемы в обеспечении требуемого качества продукции, которые заключаются в недостатках системы принятия управленческих решений при определении возможности повышения качества выпускаемой продукции.Совершенствование структуры управления предприятия должно быть направлено на приведение ее в соответствие с изменяющимися условиями реформирования. Производство на предприятиях УИС должно быть гибким и способным быстро переориентироваться на более конкурентоспособную продукцию, обладать возможностью анализа и бизнес-планирования, поэтому создание и внедрение экспертной системы управления качеством для предприятия такого типа очень эффективное направление.

В связи с этим возникает необходимость в разработке и внедрении экспертных систем в области совершенствования ИБ. На сегодняшний день экспертные технологии могут достигать значительных результатов, функционируя и взаимодействуя совместно с человеком, поскольку именно человек, в отличие от искусственного интеллекта, умеет анализировать и мыслить нестандартно.Предмет исследования – эффективность использования экспертных технологий в приложениях ИБ.

Экспертные системы позволяют решить данную проблему, поэтому применение информационных технологий в государственном и муниципальном управлении обеспечивает более эффективное использование средств и выполнение обязанностей, повышение прозрачности их деятельности, экономию времени.

Список литературы

1. Кобринский, Б.А. Медицинская информатика: Учебник для студентов учреждений высшего профессионального образования / Б.А. Кобринский, Т.В. Зарубина. — М.: ИЦ Академия, 2012. — 192 c.

2. Крошилин А.В. Применение нечеткой кластеризации для эффективного мониторинга статистической информации в системах неопределенности // Вестник РГРТУ. – 2010. – № 2(32).

– С.71-76.

3. Ле, Нгуен Виен Интеллектуальная медицинская система дифференциальной диагностики на основе экспертных систем / Ле Нгуен Виен // Вестник Саратовского гос. техн. ун-та. – 2014. – № 2. – C. 167-179.

– С. 23-28.

5. Подлипский, О. К. О методах выявления экспертного знания для создания прикладных консультационных и обучающих систем / О. К. Подлипский // Труды МФТИ, 2011. – т.3. – № 1. – С. 112-116.

6. Хаптахаева, Н. Б. Введение в теорию нечетких множеств: учеб. пособие – часть I. / Н. Б. Хаптахаева, С. В. Дамбаева, Н. Н. Аюшеева.– Улан-Удэ: Изд-во ВСГТУ, 2004. – 68 с.

7. Курейчик, В. В. Анализ современного состояния автоматизированных систем приобретения и представления знаний / В. В. Курейчик, П. В. Сороколетов, П. С. Щеглов ; ЮФУ // Известия ЮФУ. Технические науки. – 2008. – № 9. – С. 120-125.

8. Дюк В.А., Курапеев Д.И. Применение методов интеллектуального анализа данных для оценки риска оперативного вмешательства в кардиохирургии. // Труды СПИИРАН. СПб.: Наука, 2009. С.187– 196.

10. Информационный сайт экспертной системы Чтоболит.ру [Электронный ресурс]

Читайте также: