Математика в древней греции реферат

Обновлено: 05.07.2024

Умственное развитие, а вместе с ним и развитие науки никогда не шло во всём человечестве равномерно. В то время как одни народы стояли во главе умственного движения человечества, другие оказывались едва вышедшими из первобытного состояния. Когда у последних вместе с улучшением условий их жизни, появлялись, под действием внутренних или внешних импульсов, стремления к приобретению знаний, тогда они должны были прежде всего догонять передовые племена.

Содержимое работы - 1 файл

Математика в Древней Греции.docx

Математика в Древней Греции

Умственное развитие, а вместе с ним и развитие науки никогда не шло во всём человечестве равномерно. В то время как одни народы стояли во главе умственного движения человечества, другие оказывались едва вышедшими из первобытного состояния. Когда у последних вместе с улучшением условий их жизни, появлялись, под действием внутренних или внешних импульсов, стремления к приобретению знаний, тогда они должны были прежде всего догонять передовые племена. Если в то же время передовые племена, достигнув высшей доступной им по их способностям или по созданным для них историей условиям жизни степени развития, вырождались и падали, в умственном развитии всего человечества происходил застой или даже видимый временный упадок: приобретение новых знаний прекращалось и умственная работа человечества сводилась единственно к упомянутому усвоению отставшими племенами знаний, уже приобретённых человечеством. Только по достижении этого усвоения отставшие племена получали возможность вести далее дело приобретения новых знаний и через это, в свою очередь, становиться во главе умственного движения человечества. Таким образом, в истории умственной деятельности каждого народа, когда-нибудь занимавшего место в ряду передовых деятелей человечества и затем свершившего весь свой жизненный цикл, исследователь должен различать три периода: период усвоения знаний, уже приобретённых человечеством; период самостоятельной деятельности в общей всему человечеству области приобретения новых знаний и, наконец, период упадка и умственного вырождения. Обращаясь от этого общего рассмотрения хода умственного развития человечества к той из отдельных его областей, которая представляется развитием М., мы находим, что при современном состоянии историко-математических знаний нам доступно изучение вполне завершённого цикла деятельности отдельного народа в области развития М. только на одной нации, на древних греках.

Усвоение приобретённых человечеством знаний греками, как нацией, далеко отставшей от передовых народов, началось с особенно усилившегося, после изгнания гиксов из Египта, перехода егип. знаний к народам Малой Азии и в самую Грецию. В течение очень большого промежутка времени, от 1700 г. и ранее и до 600 г. до н.э., эти знания были исключительно практического характера, относящиеся к потребностям обыденной жизни и к необходимейшим промыслам, ремёслам и искусствам.

В области М. переход научных знаний из Египта в Грецию начался с возвращения, около 590 г. до н.э., Фалеса Милетского на родину, в Милет, после долговременного пребывания в Египте. Принесённые им оттуда геометрические и астрономически сведения составляли первое время почти исключительное достояние основанной им ионийской школы. Но это время было очень непродолжительно, так как труд перенесения египетских, а затем и халдейских математических знаний скоро взяли на себя и другие лица: Пифагор Самосский, Энопид Хиосский и Демокрит из Абдеры.

Особенно много сделал в этом направлении Пифагор, что и было главной причиной широкого развития занятий М. в основанной им пифагорейской школе. Так как последовательные стадии развития человечества никогда не сменяют друг друга резко, то в этой школе ещё до окончания периода усвоения исследователь встречается уже с проявлениями самостоятельной деятельности греков в области М. Различить однако же в том, что нам известно о математических знаниях пифагорейцев, принадлежащее им самим от заимствованного у египтян и халдеев, в настоящее время нет пока никакой возможности. После разрушения, около 450 г. до н.э., представляемого этою школой религиозного братства, её математические знания, строго оберегаемые наравне со всеми другими знаниями от распространения между лицами, не принадлежащими к союзу, сделались общим достоянием греческой нации.

Особенно широкое распространение получили они на родине пифагорейского союза, в греческих колониях Южной Италии, или в так называемой Великой Греции, и в Афинах. В Италии это распространение создало италийскую математическую школу, крупнейшими представителями которой в последующее время были Архит Тарентский, Эвдокс Книдский и Архимед. В Афинах распространение пифагорейских математических знаний выразилось в деятельности математиков V стол., крупнейшим представителем которых был пифагореец Гиппократ Хиосский. Деятельность эта была посвящена главным образом попыткам решения трёх знаменитых задач: трисекции угла, квадратуры круга и удвоения куба. Этому же столетию принадлежит и первая попытка составления свода геометрических знаний в научной обработке, сделанная Гиппократом Хиосским.

С деятельностью математиков V ст., кроме значительного усиления самостоятельности математических работ греческих учёных, связываются в истории М. два важных момента: начало дедуктивного периода развития М., которое в действительности, может быть, относится к ещё более раннему времени, напр. к пифагорейской школе или даже к самому Египту, и полное выяснение направления и характера математического гения греческой нации, который с этого времени начал проявлять такую исключительную склонность к геометрическим исследованиям, что на них, можно сказать, сосредоточилась вся деятельность греческой нации в области математики до самого наступления периода упадка. С началом дедуктивного периода закончился в истории развития математики во всем человечестве первоначальный, донаучный период.

Период усвоения греками математических знаний, приобретённых человечеством, можно считать закончившимся ко времени деятельности Платона, который хотя и ездил в Египет с целью непосредственного ознакомления с египетскими науками, но, по высокому сравнительно состоянию математических знаний в пифагорейской школе и у математиков V ст., он едва ли мог найти в египетской математике что-нибудь, оставшееся для греков неизвестным. Итак, период вполне самостоятельной деятельности греков в области М. начинается с деятельности Платона и основанной им в 389 г. Философской школы, известной под именем Академии, или даже ещё ранее, с работ математиков V ст. С этого времени последующее развитие, если не всей М. вообще, то, несомненно, геометрии, сосредоточивается исключительно в руках одной греческой нации, которая и ведёт его, пока находит в своём распоряжении необходимые средства.

Аналитический метод состоит в образовании цепи предложений, из которых каждое вытекает из следующего за ним, как непосредственное следствие. Первым звеном этой цепи служит доказываемое предложение, последним — предложение уже доказанное. Схема метода такова: требуется доказать существование D. Доказательство: D существует, если С существует; С существует, если В существует; В существует, если А существует, но существование А есть уже доказанная истина, следовательно, и существование D доказано, так как правильно выведенное следствие предложения, представляющего истину, всегда есть истина. Если между двумя следующими одно за другим предложениями цепи существует обратимость, т.е. если при следовании справедливости первого предложения из справедливости второго, также следует обратно и справедливость второго из справедливости первого, то отыскивание этого второго предложения при составлении цепи, как предложения, из которого первое вытекает как следствие, может быть заменено более лёгким действием вывода второго предложения, как следствия первого. Если обратимость предложений распространяется на всю цепь, то аналитический метод принимает более лёгкую частную форму, состоящую в образовании цепи предложений, из которых каждое есть непосредственное следствие предыдущего. Эту частную форму обыкновенно и принимают за выраженную определением Эвклида, хотя неопределённость его выражения и не даёт для этого достаточного основания. Если же принять во внимание, что, при непонимании значения обратимости предложений, греческие геометры, употребляя эту форму, должны были беспрестанно приходить к ложным выводам, то придётся заключить, что путём горького опыта они должны были прийти к употреблению общей формы анализа, как никогда не обманывающей возлагаемых на неё надежд.

Синтетический метод есть обращение аналитического и поэтому состоит в образовании цепи предложений, из которых первое есть доказанная истина, а каждое из последующих есть следствие ему предшествующего.

Аналогический метод есть собственно видоизменение аналитического, в котором первым звеном цепи предложений вместо доказываемого предложения является его отрицание, а последним какое-нибудь заведомо ложное или нелепое предложение. Учёные математики, принадлежавшие к Академии во все время её существования, распадались на две группы: на учёных, получивших своё математическое образование независимо от Академии и находившихся только в более или менее тесных сношениях с ней, и на бывших учеников Академии. К числу первых принадлежали Теэтет Афинский, Леодам Фасосский, Архит Тарентский и позднее Эвдокс Книдский; к числу вторых — Неоклид, Леон, Амикл из Гераклеи, братья Менехм и Динострат, и во время старости Платона —Теюдий из Магнезии, Кизикен Афинский, Гермотим Колофонский, Филипп Мендейский и Филипп Опунтский.

Старшим современником Эратосфена и Аполлония Пергского был самый крупный математик своей эпохи, представитель италийской школы, Архимед. Из его работ особенно важное значение должно быть признано за исследованиями, относящимися к коническим сечениям, к происходящим от них телам вращения и к спиралям. Во всех этих исследованиях, так же как и при решении некоторых вопросов планиметрии и стереометрии, он широко пользовался методом исчерпывания, который в его руках достиг наибольшей доступной ему высоты развития.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

По математике на тему

Джумалиева Лида

Волкова Ольга

учитель математики

Костенко Наталья Николаевна

Греция hello_html_m7d90e23b.jpg
Ученые Греции

Греческая наука. Нет сомнений в научности математики Древней Греции . Ни один народ древности не сделал столько для развития математики , как жители Греции . Человеческой природе свойственно уважение к прошлому.

Архимед – вершина научной мысли древнего мира. Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Герона. Учился Архимед в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали самую большую в мире библиотеку. Основные работы Архимеда касались различных практических приложений математики, физики, гидростатики и механики. В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" – отношение длины окружности к диаметру – и доказал, что оно одинаково для любого круга. Архимед, погибший при захвате римлянами его родного города Сиракузы в то время, когда пришел римский солдат. По преданию, Архимед был увлечен решением геометрической задачи, чертеж которой был выполнен на песке. Солдат, убивший Архимеда, или не знал о приказе военачальника сохранить жизнь Архимеду, или не узнал Архимеда. В наше время имя Архимеда связывают главным образом с его замечательными математическими работами, однако в античности он прославился также как изобретатель различного рода механических устройств и инструментов, о чем сообщают авторы, жившие в более позднюю эпоху. Считается, что Архимед был изобретателем т.н. архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов.

Вызывает сомнение и подлинность истории, что будто бы царь поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. “Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: “Эврика! Эврика!” (греч. “Нашел! Нашел!”)”.

При обороне Сиракуз от осаждавших этот город римских войск Архимед создал подъемные и метательные машины, а “зажигательное зеркало”, с помощью которого он якобы сжег корабли доныне остается загадкой, волнующей умы исследователей.

Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты “ О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы”. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион.

Евклид . Древнегреческий ученый Евклиду принадлежат сочинения по механике, оптике, музыке. Известны его заслуги и в астрономии. Евклиду приписываются также несколько теорем и новых доказательств

Из дошедших до нас сочинений Евклида наиболее знамениты “Начала”, состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. При построении правильных многоугольников опять звучит это имя Евклида. XIII книга "Начал" посвящена платоновым телам – правильным многогранникам, красотой которых восхищаемся на уроках стереометрии. Рассматривая вопросы дифференциального и интегрального исчислений на уроках анализа, говорим о том, что идеи, положенные в их основу Ньютоном и Лейбницем в XVII в., уходят своими корнями к методу исчерпывания, открытому еще Евклидом и Архимедом.

Фалес из Милета (ок.625 – ок.547 до н.э.) древнегреческий ученый и государственный деятель, первый из семи мудрецов. Во время путешествий он посетил Египет, где и познакомился с астрономией и геометрией. Легенда рассказывает о том, что Фалес привел в изумление египетского царя Амазиса, измерив высоту одной из пирамид по величине отбрасываемой ею тени Задача. Измерить высоту пирамиды по отбрасываемой ею тени. (Размеры даны в локтях; 1 локоть = 7 ладоням = 466 мм.)

Зачинатель и родоначальник греческой философии и науки. Считается, что Фалес первым доказал несколько геометрических теорем, а именно:

вертикальные углы равны;

треугольники с равной одной стороной и равными углами, прилегающими к ней, равны;

углы при основании равнобедренного треугольника равны;

диаметр делит круг пополам;

угол, вписанный в полуокружность, всегда будет прямым.

Фалес определял высоту предмета по его тени, расстояния до кораблей, используя подобие треугольников.

Он сделал ряд открытий в области астрономии, установил время равноденствий и солнцестояний, Определил продолжительность года. Фалес был причислен к группе “семи мудрецов”.

Понятие древнегреческая математика охватывает достижения грекоязычных математиков, живших в период между VI веком до н.э. и V веком н.э.

Математика родилась в Греции. Это, конечно, преувеличение, но не слишком большое. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов. Греки подошли к делу с другой стороны: они выдвинули дерзкий тезис "Числа правят миром". Или, как сформулировали эту же мысль два тысячелетия спустя: "Природа разговаривает с нами на языке математики".

Греки проверили справедливость этого тезиса в тех областях, где сумели: астрономия, оптика, музыка, геометрия, позже - механика. Всюду были отмечены впечатляющие успехи.

Создание новых и дальнейшее развитие существующих математических теорий связано обычно с уточнением (обобщением) их исходных основных понятий и посылок и основанных на них методов. Математики нередко встречались с трудностями, преодолеть которые им удавалось только после продолжительных поисков.

Глава I. Школа пифагорейцев

1.1 Развитие математики как теории

Математика как теория получила развитие в школе Пифагора (571-479 гг. до н.э.).

Главной заслугой пифагорейцев в области науки является существенное развитие математики как по содержанию, так и по форме. По содержанию - открытие новых математических фактов. По форме - построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах.

Дедуктивное построение геометрии явилось мощным стимулом её дальнейшего роста.

Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга.

Наличие у пифагорейцев учения о параллельных линиях говорит о том, что они владели методом доказательства от противного и впервые доказали теорему о сумме углов треугольника. Вершиной достижений пифагорейцев в планиметрии является доказательство теоремы Пифагора. Последняя за много столетий раньше была сформулирована вавилонскими, китайскими и индийскими учеными, однако её доказательство им не было известно.

Успехи пифагорейцев в стереометрии были значительными. Они занимались изучением свойств шара, открыли построение четырех правильных многоугольников - тетраэдра, куба, октаэдра и додекаэдра (икосаэдр исследовал впоследствии Геэтет).

Пифагорейцы знали также дробные числа и в этой связи разработали теорию арифметической и геометрической пропорций. Они владели понятиями среднего арифметического, среднего геометрического и среднего гармонического.

1.2 Поворотный пункт в истории античной математики

Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики.

По поводу этого открытия Аристотель говорил, что Пифагор показал, что если бы диагональ квадрата была бы соизмерима с его стороной, то четное равнялось бы нечетному.

Это замечание Аристотеля ясно показывает, что при доказательстве несоизмеримости диагонали квадрата с его стороной Пифагор использовал метод от противного.

В конце V века до н.э. Феодор из Кирены установил, что несоизмеримость диагонали квадрата с его стороной не является исключением. Он показал, что стороны квадратов, площади которых равны 3, 5, 6, …, 17 несоизмеримы со стороной единичного квадрата. Пифагор учил, что сущность всех вещей есть число; число - сами вещи; гармония чисел - гармония самих вещей. Аристотель говорил, что у пифагорейцев числа принимались за начало и в качестве материи и в качестве [выражения для] их состояния и свойств.

Открытие несоизмеримых величин сначала “вызвало удивление" (Аристотель). Это естественно: до открытия Пифагора древнегреческие математики считали, что любые два отрезка имеют общую меру, хотя, может быть, и очень малую. Когда, однако, пифагорейцы убедились, что доказательство существования несоизмеримых величин безупречно, они поняли, что их философия оказалась в затруднительном положении.

Пифагорейцы знали только положительные целые и дробные числа. Следуя своей философской установке, они, по сути дела, считали, что каждая вещь может быть охарактеризована положительным целым или дробным числом, которое “выражает сущность” этой вещи. На деле это означало, что геометрия строилась на базе арифметики. Открытие несоизмеримых отрезков знаменовало, поэтому начало кризиса пифагорейской философии и методологических основ развиваемой ими системы математики. После обнаружения существования несоизмеримых величин перед пифагорейцами открылись две возможности. Можно было попытаться расширить понятие числа за счет присоединения к рациональным числам чисел иррациональных, охарактеризовать несоизмеримые величины числами иной природы и таким образом восстановить силу философского принципа “все есть число".

Математика в Древней Греции ( реферат , курсовая , диплом , контрольная )

  • Введение
    • Глава I . Школа пифагорейцев
    • 1.1 Развитие математики как теории
    • 1.2 Поворотный пункт в истории античной математики
    • Глава II . Проблема бесконечности
    • Глава III . Период Академии
    • 3.1 Период самостоятельной деятельности греков
    • 3.2 Период упадка
    • Заключение
    • Список литературы

    Понятие древнегреческая математика охватывает достижения грекоязычных математиков, живших в период между VI веком до н.э. и V веком н.э.

    Греки проверили справедливость этого тезиса в тех областях, где сумели: астрономия, оптика, музыка, геометрия, позже — механика. Всюду были отмечены впечатляющие успехи.

    Создание новых и дальнейшее развитие существующих математических теорий связано обычно с уточнением (обобщением) их исходных основных понятий и посылок и основанных на них методов. Математики нередко встречались с трудностями, преодолеть которые им удавалось только после продолжительных поисков.

    Глава I. Школа пифагорейцев

    1.1 Развитие математики как теории

    Математика как теория получила развитие в школе Пифагора (571−479 гг. до н.э.).

    Главной заслугой пифагорейцев в области науки является существенное развитие математики как по содержанию, так и по форме. По содержанию — открытие новых математических фактов. По форме — построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах.

    Дедуктивное построение геометрии явилось мощным стимулом её дальнейшего роста.

    Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга.

    Наличие у пифагорейцев учения о параллельных линиях говорит о том, что они владели методом доказательства от противного и впервые доказали теорему о сумме углов треугольника. Вершиной достижений пифагорейцев в планиметрии является доказательство теоремы Пифагора. Последняя за много столетий раньше была сформулирована вавилонскими, китайскими и индийскими учеными, однако её доказательство им не было известно.

    Успехи пифагорейцев в стереометрии были значительными. Они занимались изучением свойств шара, открыли построение четырех правильных многоугольников — тетраэдра, куба, октаэдра и додекаэдра (икосаэдр исследовал впоследствии Геэтет).

    Пифагорейцы знали также дробные числа и в этой связи разработали теорию арифметической и геометрической пропорций. Они владели понятиями среднего арифметического, среднего геометрического и среднего гармонического.

    1.2 Поворотный пункт в истории античной математики

    Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики.

    По поводу этого открытия Аристотель говорил, что Пифагор показал, что если бы диагональ квадрата была бы соизмерима с его стороной, то четное равнялось бы нечетному.

    Это замечание Аристотеля ясно показывает, что при доказательстве несоизмеримости диагонали квадрата с его стороной Пифагор использовал метод от противного.

    В конце V века до н.э. Феодор из Кирены установил, что несоизмеримость диагонали квадрата с его стороной не является исключением. Он показал, что стороны квадратов, площади которых равны 3, 5, 6, …, 17 несоизмеримы со стороной единичного квадрата. Пифагор учил, что сущность всех вещей есть число; число — сами вещи; гармония чисел — гармония самих вещей. Аристотель говорил, что у пифагорейцев числа принимались за начало и в качестве материи и в качестве [выражения для] их состояния и свойств.

    Однако этот путь столь естественный и простой с современной точки зрения, для пифагорейцев был закрыт. В этом случае надо было построить достаточно строгую арифметическую теорию действительных чисел, что при уровне пифагорейской математики было делом невыполнимым. Поэтому надо было идти по другому пути — по пути определенного пересмотра исходных принципов, например, принять, что геометрические объекты являются величинами более общей природы, чем дробные и целые числа, и пытаться строить всю математику не на арифметической, а на геометрической основе. Именно этот второй путь и избрали пифагорейцы, а вслед за ними большинство древнегреческих математиков, вплоть до Архимеда и Аполлония.

    Глава II. Проблема бесконечности

    В древнегреческой философии понятие бесконечности появилось впервые у материалистов милетской школы. Анаксимандр (610−546 гг. до н.э.), преемник Фалеса, учил: материя бесконечна в пространстве и во времени; вселенная бесконечна, число миров бесконечно. Анаксимен (546 г. до н.э. — расцвет деятельности) говорил: вечный круговорот материи — это и есть бесконечность.

    Бесконечность для Анаксигора — потенциальная; она существует в двух формах: как бесконечно малое и бесконечно большое. В математике точка зрения Анаксагора нашла благоприятную почву благодаря открытию несоизмеримых величин — величин, которые не могут быть измерены любой, какой угодно малой, общей мерой.

    Демокрит (около 560−570 гг. до н.э.), по-видимому, изучал так называемые роговидные углы (углы, образуемые дугой окружности и касательной к ней).

    Аристотель (384−322 гг. до н.э.) отчетливо различает два вида бесконечности: потенциальную и актуальную. Понятие актуальной бесконечности в древней Греции не получило развития как в философии, так и в математике.

    Понятие бесконечности подвергалось серьезной критике со стороны Зенона

    Элейского (около 490−430 гг. до н.э.). Зенон был учеником Парменида, главы элейской школы. Парменид утверждал, что бытие едино, неподвижно и неизменно. Движение, изменение — это только видимость, обусловленная несовершенством наших органов чувств. Мир (бытие) может быть познан только разумом, но не чувствами.

    Зенон Элейский выдвинул 45 апорий (антиномий), имея при этом целью развить и лучше обосновать учение Парменида. Из этих антиномий до нашего времени дошло только 9.

    Заслуга Зенона Элейского в развитии философии и математики состоит в том, что он выявил реальную противоречивость времени, движения и пространства, а значит и бесконечность. В. И. Ленин писал, что Зенон не отрицал чувственную достоверность движения; его интересовал вопрос, как выразить сущность движения в логике понятий.

    Глава III. Период Академии

    3.1 Период самостоятельной деятельности греков

    Период вполне самостоятельной деятельности греков в области математики начинается с деятельности Платона и основанной им в 389 г. Философской школы, известной под именем Академии. С этого времени последующее развитие, если не всей математики вообще, то, несомненно, геометрии, сосредоточивается исключительно в руках одной греческой нации, которая и ведёт его, пока находит в своём распоряжении необходимые средства.

    Аналитический метод состоит в образовании цепи предложений, из которых каждое вытекает из следующего за ним, как непосредственное следствие. Первым звеном этой цепи служит доказываемое предложение, последним — предложение уже доказанное.

    Синтетический метод есть обращение аналитического и поэтому состоит в образовании цепи предложений, из которых первое есть доказанная истина, а каждое из последующих есть следствие ему предшествующего.

    Учёные математики, принадлежавшие к Академии распадались на две группы: на учёных, получивших своё математическое образование независимо от Академии и находившихся только в более или менее тесных сношениях с ней, и на бывших учеников Академии. К числу первых принадлежали Теэтет Афинский, Леодам Фасосский, Архит Тарентский и позднее Евдокс Книдский; к числу вторых — Неоклид, Леон, Амикл из Гераклеи, братья Менехм и Динострат, и во время старости Платона — Теюдий из Магнезии, Кизикен Афинский, Гермотим Колофонский, Филипп Мендейский и Филипп Опунтский.

    Создание в школе Платона философии математики должно было повести необходимым образом к разработке необходимой для неё истории математики. Дело этой разработки взяла на себя основанная учеником Платона, Аристотелем, школа перипатетиков в лице двух своих представителей, Эвдема Родосского и Теофраста Лесбосского. Нельзя не заметить, что в трудах по истории математики этих учёных заключается всё крупное, что было сделано школой перипатетиков для развития наук математических. Покровительство наук, оказываемое династией Птолемеев, царей новой греко-египетской монархии, возникшей после смерти Александра Македонского на почве древнего Египта, сделало, приблизительно с 300 г. до н.э., из столицы этой монархии, Александрии, главный центр умственной и духовной жизни греческого мира.

    3.2 Период упадка

    В деятельности Евклида, Аполлония Пергейского и особенно Архимеда период самостоятельной деятельности греков в области математики достиг момента наибольшей высоты математических исследований как в количественном, так и в качественном отношении. Затем начинается период упадка. Работы греческих математиков мельчают. Дело идёт уже не о создании новых отраслей науки и решении её труднейших вопросов, а о пополнении тех, говоря относительно, неважных пробелов, которые были оставлены предыдущим быстрым развитием науки. В этой первой фазе упадка деятельность представителей математики: Никомеда, Диоклеса, Персея, Зенодора, Гипсикла Александрийского, астронома Гиппарха, всё ещё остаётся верной прежнему направлению, которое, как продукт характеристических свойств и особенностей греческой нации, может быть названо национальным.

    В следующую за тем фазу упадка, начавшуюся около 100 г. до н.э., прежняя стойкость греческого гения в удержании национального направления оказывается совершенно утраченной, и если работы греческих математиков могут считаться греческими, то только по языку, а никак не по духу. Первым из чуждых греческому гению направлений, явившихся на смену национального, было прикладное направление, развившееся на почве древнего Египта, бывшее, по всей вероятности, наследием египетской математики, об утилитарном направлении которой во времена составления папируса Ринда уже говорилось ранее.

    Четвёртой, и последней, фазой упадка греческой математики была эпоха византийских учёных, продолжавшаяся от VII века н.э. до взятия турками Константинополя (1453). В эту эпоху произведения древних греческих математиков сделались до того недоступными новым, что о самом их существовании эти последние нередко узнавали от арабов и персов; в то время, когда арабские математики прилагали все усилия к тому, чтобы иметь на своём языке переводы всех сколько-нибудь выдающихся в греческой математической литературе произведений, византийские математики не были в силах справляться даже с самыми незначительными элементарными произведениями арабской математической литературы и для переделок переводов на греческий язык нужных им сочинений обращались уже к совершенно ничтожной математической литературе персов. Особенного развития это пользование персидскими отголосками таких произведений прежней греческой литературы, как Алмагест, достигло в XIV в. в трудах Хиониада Константинопольского, Георга Хризокоццеса, Фёдора Мелитениота и монаха Исаака Аргиры.

    Заключение

    Греческая математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних.

    Пифагорейцы заложили основы геометрической алгебры. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония. Теэтет и Евклид установили классификацию квадратичных иррациональностей. Евдопс развил общую теорию пропорций — геометрический эквивалент теории положительных вещественных чисел — и разработал метод исчерпывания — зачаточную форму теории пределов.

    Эти теории создали прочный каркас здания древнегреческой математики, фундаментом которого была геометрия; тем самым преодолевались трудности, связанные с фактом существования несоизмеримых величин. Чтобы избежать трудностей в обосновании математики, связанных с парадоксами бесконечности (Зенон, Аристотель), большинство ученых древней Греции предпочли отказаться от использования в математике идей бесконечности и движения или свести их применение к минимуму. В качестве такого минимума было принято утверждение о неограниченной делимости геометрических величин.

    Но главное даже не в этом. Два достижения греческой математики далеко пережили своих творцов.

    Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики.

    Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию.

    В этих двух отношениях античная математика вполне современна.

    1) Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Перевод с голландского И. Н. Веселовского — М.: Физматгиз, 1959. — 456 с.

    2) Выгодский М. Я. Арифметика и алгебра в древнем мире — М.: Просвещение, 1967. — 101 с.

    3) Глейзер Г. И. История математики в школе — М.: Просвещение, 1964. — 376 с.

    4) Депман И. Я. История арифметики. Пособие для учителей. Изд. второе — М.: Просвещение, 1965. — 102−103, 236−238 с.

    5) История математики Т 1: С древнейших времен до начала Нового времени / Под редакцией А. П. Юшкевича (в трёх томах): — М.: Наука, 1970. — 321 с.

    6) Клайн М. Математика. Утрата определённости — М.: Мир, 1984. — 231с.

    7) Крыситский В. Шеренга великих математиков — Варшава: Наша Ксенгарня, 1981. — 31−34 с.

    8) Рыбников К. А. История математики — М.: Просвещение, 1994. — 123 — 125 с.

    9) Хрестоматия по истории математики. Арифметика и алгебра. Теория чисел. Геометрия / Под ред. А. П. Юшкевича — М.: Наука, 1976. — 23 с.

    Читайте также: