Математическое моделирование в строительстве реферат

Обновлено: 06.07.2024

Математическое моделирование в строительно- технологических задачах

Другие рефераты по предмету

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В СТРОИТЕЛЬНО-ТЕХНОЛОГИЧЕСКИХ ЗАДАЧАХ

ст. гр. СТ-01-2С.В. Рожнёв

к.т.н. профессорА.А. Зиновьев

1. Выбор и описание объекта исследования4

1.1 Материалы для приготовления бетона5

1.1.1 Жидкое стекло5

1.1.4. Кремнефтористый натрий (КФН)5

1.2 Свойства бетонной смеси и определяющие их факторы6

1.3 Свойства бетона и определяющие их факторы6

1.3.1 Прочность при 60 ºC6

1.3.2 Прочность при 800 ºC6

2. Планирование и проведение эксперимента7

2.1 Выбор варьируемых факторов и интервалов их варьирования7

2.1 План проведения эксперимента7

2.3 Результаты эксперимента8

3. Обработка полученных данных9

4. Анализ объекта исследования по полученным данным19

Список используемой литературы22

Статистические методы планирования эксперимента и обработки данных широко используются в решении технологических задач и научных исследованиях. Они позволяют значительно интенсифицировать труд исследователя, сократив срок и затраты на эксперимент, повысить достоверность выводов по результатам исследования.

Целью данного курсового проекта является получение навыков планирования, проведения эксперимента и построения по его данным математической модели, отражающей изменение свойств композиционного строительного материала в зависимости от рецептурных и технологических факторов его изготовления.

В производстве строительных материалов и конструкций в связи с ускорением научно-технического прогресса как в народном хозяйстве в целом, так и непосредственно в этой отрасли происходит интенсивный процесс информатизации производства, направленный на решение технических задач, оптимизацию технико-экономических условий и решений, обеспечивающих производительность труда, ресурсосбережение, гарантированное качество продукции.

Современные строительные материалы в большинстве это композитные многокомпонентные системы, качество которых зависит от огромного количества факторов. На примере тяжелого бетона это качество и количество компонентов бетонной смеси: песка, цемента, щебня, воды и модифицирующих добавок, а также технологические параметры: способы дозирования, методы формования, условия твердения и др.

Для создания новых материалов, методов их изготовления или использования новых видов сырья, технологий, с целью оптимизации характеристик материалов, должен учитывать влияние всех факторов на конечное качество. Усложнение основных объектов (материалов как конечной продукции, собственно технологических процессов и реализующих их аппаратов, технологических линий и комплексов) приводит к прогрессирующему росту потерь от ошибочных или ненадежных решений по развитию и функционированию этих объектов. Для уменьшения вероятности таких ошибок необходимо, с одной стороны, основывать решения на рекомендациях фундаментальных и прикладных наук при системном подходе к объектам, с другой использовать возможности вычислительной техники для всестороннего анализа объекта и выбора путей оптимизации его структуры, свойств, поведения и прочего. Диалектическая связь между этими сторонами процесса принятия инженерных решений обеспечивается математическими моделями объекта и программным обеспечением ЭВМ. Метод моделирования является одной из обязательных сторон научного исследования, без которого не обходится ни одна конструкторская или исследовательская работа. Приступая к изучению явления или процесса, исследователь заменяет его схематической моделью, которая выбирается тем более сложной, чем подробнее и точнее нужно изучить данное явление. В модели сохраняется только самые существенные стороны изучаемого явления, а все мало существенные свойства и закономерности отбрасываются. Какие стороны изучаемого явления необходимо сохранить в модели, и какие отбросить, зависит от постановки задачи исследования. Формальное абстрактно-знаковое описание системы (в виде набора чисел, графиков, уравнений, неравенств), позволяющее судить о некоторых чертах поведения системы, можно назвать математической моделью. Критерием истинности модели служит инженерная или технико-экономическая полезность новой информации, полученной по модели при последующей проверке.

1. Выбор и описание объекта исследования

Объектом исследования является химически и жаростойкий бетон на основе жидкого стекла. Далее просто бетон.

Жаростойкие бетоны - это бетоны, способные длительно выдерживать нагревание до температуры свыше 1000 ºC. В процессе нагревания обычного бетона при температуре более 100 ºC происходит постепенное снижение прочности сначала (150…400 ºC) из-за дегидратации алюминатов кальция, а затем (400…600 ºC) в результате дегидратации гидроокиси кальция. Образцы, подогретые до 600…900 ºC, разрушаются при последующем выдерживании их в воздушно-сухих условиях вследствие вторичной гидратации окиси кальция. В связи с этим обычный тяжелый цементный бетон применяют для изготовления строительных конструкций, подвергающих длительному воздействию температур лишь до 200 ºC. При более высоких рабочих температурах (200…1800 ºC) используют жаростойкие бетоны.

Жаростойкие бетоны различают в зависимости от огнеупорности, вида применяемого вяжущего и плотности. При огнеупорности ниже 1600 ºC бетоны называют жароупорными, от 1600…1800 ºC огнеупорными и свыше 1800 ºC высокоогнеупорными.

В зависимости от допустимой температуры применения и остаточной прочности при температурном воздействии в качестве вяжущих используют: ортофосфорную кислоту, жидкое стекло, высокоглиноземистый и глиноземистый, а также обычные портландцементы и шлакопортландцементы. В качестве заполнителей применяют щебень и песок из корунда, циркония, муллитокорунда, шамота, керамзита, вермикулита, боя шамотных или высокоглиноземистых огнеупоров и кирпича. Кроме того, в состав бетона обязательно вводят тонкомолотые добавки. В качестве тонкомолотой добавки могут использоваться хромитовая руда, бой шамотного или обычного кирпича, андезит, пемза, лессовидный суглинок, гранулированный доменный шлак, топливный шлак и зола-унос.

Жидкое стекло является наиболее распространённым и широко освоенным связующем для жаростойких бетонов. Оно зарекомендовало себя экономически эффективным, по свойствам не уступающим, а по многим показателям превосходящее традиционные вяжущие.

Для обеспечения твердения бетона на жидком стекле по всему объему в него добавляют кремнефтористый натрий Na2SiF6 в количестве до 12% от массы жидкого стекла.

Жаростойкий бетон на жидком стекле с кварцитом, в качестве химически стойкой добавки, характеризуется высокой стойкостью в расплавах натриевых солей (NaCl и др.), а также к действию некоторых агрессивных газов, например хлора сернистого, окислов азота и др.

1.1 Материалы для приготовления бетона

1.1.1 Жидкое стекло

1.1.3 Кварцит

Основными свойствами кварцита являются высокая огнеупорность (до 1710 - 1770 ºC) и высокая прочность на сжатие (100 - 455 МПа). Кварциты применяются в качестве кислотоупорных материалов. В соответствии со стандартом (ГОСТ 9854-81.) по химическому составу и содержанию примесей кварциты должны отвечать требованиям: SiO2 не менее 96%; Fe2O3 не более 1,1%; Al2O3 не более 0,6%.

В данной курсовой работе использовался отсев кварцитов (побочный продукт) Братского завода ферросплавов. Он представляет собой некондиционный материал фракции 0 - 5, с преобладанием фракции 0 - 2 мм (80%), не пригодный для производства кристаллического кремния из-за большого количества примесей.

В последнее десятилетие экономически и методически целесообразно проведение исследований сложных сооружений с применением расчетных моделей.
Моделирование - построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

Содержание

Введение……………………………………………………………………….3
Математическое моделирование……………………………………………..3
Характеристика программно-расчетных комплексов………………………5
Примеры практической реализации…………………………………………8
Учет дефектов в расчетах строительных конструкций….…………………10
Оценка адекватности модели………………………………………………. 11
Используемая литература…………………………………………………….12

Вложенные файлы: 1 файл

модель1.docx

МИНОБРНАУКИ
УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Выполнил: студент группы СТ(м)-12

Проверил: доцент, д.т.н.

Математическое моделирование…… ………………………………………..3

Характеристика программно- расчетных комплексов………………………5

Примеры практической реализации…………………………………………8

Учет дефектов в расчетах строительных конструкций….…………………10

Оценка адекватности модели………………………………………………. 11

Используемая литература………………… ………………………………….12

В последнее десятилетие экономически и методически целесообразно проведение исследований сложных сооружений с применением расчетных моделей.

Моделирование - построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя. Существует два основных метода моделирования – физическое (инженерное) и математическое.Физическое моделирование, основанное на теории простого или расширенного подобия, по мере усложнения задач исследований все менее целесообразно, так как не решает задач снижения трудоемкости и стоимости изготовления моделей, соблюдения планируемых сроков эксперимента. Поэтому в последнее время более целесообразно применять математические модели строительных конструкций, используя множество различных программных-комплексов. Сочетание при исследовании сложных строительных конструкций методов физического и математического моделирования обусловливает целесообразность применения принципа декомпозиции (членения) объекта исследований на более простые элементы, раздельные испытания которых потребуют гораздо меньше ресурсов по сравнению с испытаниями всей системы. Особенно этот принцип эффективен при исследовании сооружений, состоящих из большого количества однотипных элементов и узлов.Рассматривая процесс исследования строительных конструкций как некоторую систему, необходимо выделить в ней три основные подсистемы:

- экспериментальные исследования на физических моделях;

- расчетные исследования на математических моделях;

-связь между экспериментом и расчетом, включающая идентификацию некоторых параметров расчетной модели, проверку ее адекватности и корректировку.

Любое математическое моделирование строится на формировании расчетной схемы сооружения. Формирование расчетной схемы сооружения – это переход от реального объекта или конструкции к расчетной модели путем отбора наиболее существенных (значимых для конкретной ситуации) особенностей, их идеализация и схематизация, допускающая последующую алгоритмизацию и математическую обработку. При изучении поведения сложной системы её расчленяют на более простые подсистемы: плоские или пространственные рамы, несущие стены и их фрагмен-ты, плиты перекрытий, фундаменты.

Однако при выборе расчетной схемы следует придерживаться следующих правил:

1. Аппроксимирующая модель работы проектируемого объекта должна правильно и полно отражать работу реального объекта, т.е. соответствовать механизмам его деформирования и разрушения.

Например: при расчетах на прочность изгибаемая балка должна противостоять моменту и поперечной силе, а при оценке жесткости для балки определяется прогиб; подпорная стенка рассчитывается на устойчивость против опрокидывания и на прочность основания по сжимающим напряжениям; сваи рассчитываются на вдавливание/ выдергивание по грунту и на прочность по материалу (при внецентренном сжатии/расстяжении), кроме того, для изгибаемой сваи проверяется заделка в основание, а при расчете по перемещениям для фундамента определяется осадка.

2. Принимаемая расчетная гипотеза должна ставить рассчитываемую конструкцию в менее благоприятные условия, чем те в которых находится действительная конструкция.

3. Расчетная модель работы сооружения должна быть достаточно простой. Целесообразно иметь не одну модель, а систему аппроксимирующих моделей, каждая из которых имеет свои границы применения.

Инженерная схематизация строительного объекта связана с использованием допущений ( гипотез), позволяющих математически описать учитываемые реальные свойства конструкций и материалов. Приемы схематизации – общепринятые постулаты: закон Гука, закон Кулона, гипотеза плоских сечений, расчет по недеформированной схеме, замена реальной конструкции стержнем (колонн, балок перекрытий), пластинкой или оболочкой (плит покрытий, перекрытий, несущих стен).

Формирование расчетной схемы в строительном проектировании включает три группы допущений:

1. схематизация геометрической формы проектируемого объекта, назначение граничных условий.

2. схематизация свойств материалов.

3. схематизация нагрузок.

Реальный объект заменяется идеализированным деформируемым телом с изученными топологическими свойствами: стержень (балка), стержневой набор (рама, ферма), арка, плоская стенка, деформируемая в своей плоскости, изгибаемая пластинка, пространственное массивное тело и определенностью предполагаемого вида напряженно- деформированного состояния: плоское напряженное состояние, плоское деформированное состояние, трехмерное напряженное состояние.

Характеристика программно-расчетных комплексов

В настоящее время существует множество программно-расчетных комплексов, позволяющих моделировать строительные объекты различной сложности. Ниже представлена краткая характеристика некоторых таких программных комплексов.

Вычислительный комплекс SCAD – универсальная вычислительная система, предназначенная для прочностного анализа строительных конструкций различного назначения на статические и динамические воздействия, а также ряда функций проектирования элементов конструкций. В основе программы лежит метод конечных элементов.

SCAD включает развитую библиотеку конечных элементов для моделирования стержневых, пластинчатых, твердотелых и комбинированных конструкций, модули анализа устойчивости, формирования расчетных сочетаний усилий, проверки напряженного состояния элементов конструкций по различным теориям прочности, определения усилий взаимодействия фрагмента с остальной конструкцией, вычисления усилий и перемещений от комбинации загружений.

SCAD office содержит несколько компонентов, при помощи которых является возможным конструировать различные типы сечений конструкций:

Конструктор сечений – формирование произвольных составных сечений из стальных прокатных профилей и листов, а также расчет их геометрических характеристик, необходимых для выполнения расчета конструкций;

Вест – определение нагрузок и воздействий на строительные конструкции;

Кросс – определение коэффициентов постели при расчете фундаментных конструкций на упругом основании на основе моделирования работы многослойного грунтового массива по данным инженерно-геологических изысканий;

Арбат – для проверки несущей способности или подбора арматуры в элементах железобетонных конструкций;

Монолит – проектирование железобетонных монолитных ребристых перекрытий, образованных системой плит и балок, опирающихся на колонны и стены;

Камин – для проверки несущей способности конструктивных элементов каменных и армокаменных конструкций и т.д.

Возможности ПК "SCAD Office" позволяют решать проектные задачи не только в традиционной для настоящего времени прямой постановке: архитектурная идея —> пространственное моделирование —> расчет —> проект —> строительство объекта; но и в обратной: объект —> идея

реконструкции —> обследование —> пространственное моделирование —> итерационный расчет —> оценка физического износа —> проект реконструкции —> реконструкция объекта.

В рассматриваемой цепочке неопределенным звеном является оценка физического износа несущих конструкций.

Решение вопроса о физическом износе несущих строительных конструкций зданий можно представить в виде следующей последовательности:

1. Проведение технического обследования несущих конструкций здания с выявлением его реальных технических характеристик: типа конструктивной схемы, жесткостных характеристик материалов, характеристик узлов закрепления и т.д. (использование данных обследования здания с внесением надлежащих корректив и дополнений к техническому отчету и при необходимости - проведение дополнительного обследования).

2. Проведение анализа конструктивной схемы здания и создание эталонных (без учета дефектов, деформаций, повреждений) пространственных моделей: архитектурной модели с помощью программных комплексов архитектурно- строительного проектирования (ArchiCAD, AutoCAD) и расчетной модели с помощью ПК;

3. Комплексный расчет эталонной модели здания в ПК с учетом свойств существующего грунтового основания. Выявление зон повышенных деформаций конструкций, напряжений, просадок грунтов, несоответствий данным проекта (при его наличии) и сопоставление результатов первичного расчета с натурными исследованиями.

4. Внесение корректировок в расчетную модель здания: дополнительные зафиксированные осадки, деформации, отклонения конструкций от вертикали, моделирование трещин, уточнение свойств грунтового основания на локальных участках и др.

5. Итерационный комплексный расчет модели здания в ПК с учетом внесенных корректив в расчетную схему и сопоставление результатов расчета с натурными исследованиями.

6. Выявление наиболее опасных зон перенапряжений и сверхнормативных деформаций; зон, требующих дополнительного обследования, уточнения технических параметров пространственной модели, усиления или замены несущих строительных конструкций.

7. Оценка степени физического износа несущих строительных конструкций.

ЛИР-ВИЗОР – формирование конечно-элементной моделей рассчитываемых объектов, описание физико-механических свойств материалов, налагаемых связей, нагрузок и воздействий, а также взаимосвязей между нагрузками с целью определения их наиболее опасных сочетаний; расчет напряженно-деформированного состояния.

ЛИР-АРМ – подсистема конструирования ж/б конструкций (подбор площадей сечений арматуры элементов колонн, балок, плит и оболочек по первому и второму предельным состояниям).

ЛИР-СТК – подбор сечений элементов стальных конструкций (фермы, колонны и балки).

УСТОЙЧИВОСТЬ – модуль проверки общей устойчивости рассчитываемого сооружения с определением коэффициента запаса и формы потери устойчивости.

ЛИТЕРА – модуль, реализующий вычисление главных и эквивалентных напряжений по различным теориям прочности.

СЕЧЕНИЕ – модуль, позволяющий сформировать сечения произвольной конфигурации, вычислить их осевые, изгибные, крутильные и сдвиговые характеристики.

Современное строительство - это очень сложная система, в деятельности которой принимает большое количество участников: заказчик, генподрядные и субподрядные строительно-монтажные и специализированные организации; коммерческие банки и финансовые органы и организации; проектные, а нередко и научно-исследовательские институты; поставщики строительных материалов, конструкций, деталей и полуфабрикатов, технологического оборудования; организации и органы, осуществляющие различные виды контроля и надзора за строительством; подразделения, эксплуатирующие строительную технику и механизмы, транспортные средства и т.д.

Для того, чтобы построить объект, необходимо организовать согласованную работу всех участников строительства.

Строительство протекает в непрерывно меняющихся условиях. Элементы такого процесса связаны между собой и взаимно влияют друг на друга, что усложняет анализ и поиск оптимальных решений.

На стадии проектирования строительной, любой другой производственной системы, устанавливаются ее основные технико-экономические параметры, организационно-управленческая структура, ставится задача определения состава и объема ресурсов - основных фондов, оборотных средств, потребности в инженерных, рабочих кадрах и т.д.

Чтобы вся система строительства действовала целесообразно, эффективно использовала ресурсы, т.е. выдавала готовую продукцию - здания, сооружения, инженерные коммуникации или их комплексы в заданные сроки, высокого качества и с наименьшими затратами трудовых, финансовых, материальных и энергетических ресурсов, надо уметь грамотно, с научной точки зрения, осуществлять анализ всех аспектов ее функционирования, находить наилучшие варианты решений, обеспечивающих ее эффективную и надежную конкурентоспособность на рынке строительных услуг.

В ходе поиска и анализа возможных решений по созданию оптимальной структуры предприятия, организации строительного производства и т.д. всегда появляется желание (требуется) отобрать лучший (оптимальный) вариант. Для этой цели приходится использовать математические расчеты, логические схемы (представления) процесса строительства объекта, выраженные в виде цифр, графиков, таблиц и т.д. - другими словами, представлять строительство в виде модели, используя для этого методологию теории моделирования.

В основе любой модели лежат законы сохранения. Они связывают между собой изменение фазовых состояний системы и внешние силы, действующие на нее.

Любое описание системы, объекта (строительного предприятия, процесса возведения здания и т.д.) начинается с представления об их состоянии в данный момент, называемом фазовым.

Успех исследования, анализа, прогнозирования поведения строительной системы в будущем, т.е. появления желаемых результатов ее функционирования, во многом зависит от того, насколько точно исследователь "угадает" те фазовые переменные, которые определяют поведение системы. Заложив эти переменные в некоторое математическое описание (модель) этой системы для анализа и прогнозирования ее поведения в будущем, можно использовать достаточно обширный и хорошо разработанный арсенал математических методов, электронно-вычислительную технику.

Описание системы на языке математики называется математической моделью, а описание экономической системы – экономико-математической моделью.

Многочисленные виды моделей нашли широкое применение для предварительного анализа, планирования и поиска эффективных форм организации, планирования и управления строительством.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методами и моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

Мы считаем, что каждый инженер, менеджер, работающий в сфере строительства - на возведении конкретного объекта, в проектном или научно-исследовательском институте, должен иметь представление об основных классах моделей, их возможностях и областях применения

Так как формулировка любой задачи, включая алгоритм ее решения, является в некотором смысле своеобразной моделью и более того, создание любой модели начинается с постановки задачи, мы сочли возможным начать тему моделирования с перечня основных задач, стоящих перед строителями.

Сами математические методы не являются объектом рассмотрения в данном учебном пособии, а конкретные модели и задачи приводятся с учетом их значимости и частоты применения в практике организации , планирования и управления строительством.

В случае создания модели сложных строительных объектов к процессу моделирования и анализа моделей привлекаются программисты, математики, инженеры-системотехники, технологи, психологи, экономисты, менеджеры и другие специалисты, а также используются электронно-вычислительная техника.


Математическое моделирование в строительстве. Учебно-методическое пособие/ Сост. Иванова С.С. – Ижевск: Изд-во ИжГТУ, 2012. – 100 с.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методами и моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

 Иванова С.С 2012

 Издательство ИжГТУ, 2012

Содержание:

Обзор применения моделей в экономике

Развитие моделирования в России

Основные виды задач, решаемых при организации, планировании и управлении строительством

Задачи массового обслуживания или задачи очередей

Задачи управления запасами (создание и хранение)

Задачи теории расписаний

Моделирование в строительстве

Виды экономико-математических моделей в области организации, планирования и управления строительством

Модели линейного программирования

Модели динамического программирования

Оптимизационные модели (постановка задачи оптимизации)

Модели управления запасами

Цифровое моделирование (метод перебора)

Вероятностно - статистические модели

Модели теории игр

Модели итеративного агрегирования

Организационное моделирование систем управления строительством

Основные направления моделирования систем управления строительством

Аспекты организационно-управленческих систем (моделей)

Деление организационно-управленческие моделей на группы

Модели первой группы

Модели второй группы

Виды моделей первой группы

Модели принятия решений

Информационные модели коммуникационной сети

Компактные информационные модели

Интегрированные информационно-функциональные модели

Виды моделей второй группы

Модели организационно-технологических связей

Модель организационно-управленческих связей

Модель факторного статистического анализа управленческих связей

Детерминированные функциональные модели

Организационные модели массового обслуживания

Основные этапы и принципы моделирования

Методы корреляционно-регрессивного анализа зависимости между факторами, включаемые в экономико-математические модели

Виды корреляционно-регрессивного анализа

Требования к факторам, включаемым в модель

Парный корреляционно-регрессивный анализ

Множественный корреляционный анализ

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Читайте также: