Магнитные поля галактики реферат

Обновлено: 02.07.2024

Изучение странной ориентации галактик. Рассмотрение узконаправленных пучков энергии, выбрасываемых из полюсов галактики. Определение вероятности случайного совпадения ориентации джетов галактик. Особенности объяснения одинаковой ориентации джетов.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 14.05.2016
Размер файла 4,3 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Магнитные поля - конструкторы Вселенной

Джет - это узконаправленные пучки энергии, выбрасываемые из полюсов галактики (рис.2). Вероятность случайного совпадения ориентации джетов галактик, расположенных в сотнях миллионов световых лет друг от друга, ничтожно мала. Этому наблюдению также нужно дать какое-то объяснение.

джет галактика полюс энергия

К настоящему моменту предложены следующие объяснения одинаковой ориентации джетов:

1. Одинаковая ориентация галактик образовалась в процессе формирования галактик в ранней Вселенной.

2. Одинаковая ориентация галактик объясняется космическими магнитными полями, связанными с экзотическими частицами (аксионами), или космическими струнами.

Замечание. Аксионы и космические струны относятся к гипотетическим объектам. Поэтому такое объяснение одинаковой ориентации галактик мы также рассматривать не будем.

3. Расс Тейлор, ведущий специалист обсуждаемого наблюдения за радиогалактиками, подозревает, что все эти джеты выстроились вдоль нитей космической паутины.

Замечание. Похоже, что в данном вопросе научная интуиция Расса Тейлора не подвела. Но, к сожалению, кроме подозрения о какой-то связи космической паутины с ориентацией джетов никаких соображений о природе этого явления не высказано.

В настоящее время уже есть возможность объяснить феномен загадочной единообразной ориентации группы галактик. Но для этого нам придётся сделать отступление на 20 лет назад.

К концу прошлого столетия была разработана теория существования силы, действующей на облако космической плазмы, движущееся в слабом магнитном поле, и получены первые её экспериментальные доказательства. Согласно этой теории, при напряжённости магнитного поля Н

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Реферат по астрономии

магнитные поля галактики

Выполнила ученица 11 в класса

Магнитные поля Галактики

Почти сразу же после открытия межзвездной поляризации света, астрономы в 1949 г. пришли к выводу, что в межзвездном пространстве существуют магнитные поля напряженностью око­ло 10 -5 эрстед. Именно они и ориентируют пылинки одинаковым образом. Из теории следует, что каждая пылинка быстро вра­щается вокруг своей малой оси, оставаясь как бы нанизанной на магнитную силовую линию.

Изучение поляризации света звезд стало важным источником информации о геометрии межзвездных магнитных полей. Так, было установлено, что в Галактике имеется магнитное поле, па­раллельное плоскости Млечного Пути и направленное вдоль ее спиральных ветвей. Другой метод исследования магнитного поля Галактики заключается в изучении формы светлых туманностей. Идя таким путем, Г. А. Шайп пришел к выводу, что вытянутость этих туманностей является результатом их расширения в магнитном поле, причем движение вещества происходит вдоль магнитных силовых линий, тогда как поперечные движения тор­мозятся магнитным полем.

Но ведь Солнце не находится в центре Галактики. Поэтому, чтобы объяснить изотропию космического излучения, необходимо было предположить, что траектории космических лучей в Галак­тике сложны и запутаны. Искривить же траекторию быстрой за­ряженной частицы может только магнитное поле. Мы уже виде­ли (см. гл. 5), что в магнитном поле частица движется по спира­ли, радиус которой прямо пропорционален ее энергии и обратно пропорционален напряженности поля. Несложный расчет показывает, что траектория частицы с энергией Е = 10 18 эВ имеет радиус кривизны порядка 1000 пс при напряженности поля 10 -6 эрстед. Этого достаточно, чтобы удержать частицу в Галактике.

Здесь напрашивался вывод, что магнитное поле спиралей не может удержать релятивистскую частицу, которая все же может ускользнуть в межгалактическое пространство. Магнитное поле должно заполнять всю Галактику, он должно быть и в спиралях и вне их, в газовых облаках и между ними, иначе сквозь эти про­межутки происходила бы утечка космических лучей.

В присутствии магнитного поля устанавливается своеобразное динамическое равновесие между полем и движением вещества, происходит равномерное распределение энергий. Это значит, что плотность кинетической энергии газа  2 /2 в стационарном состоянии становится равной плотности энергии поля Н 2 /(8*). Вне спи­ральных ветвей и облаков плотность вещества невелика, поэтому частицы разреженного газа обладают большими скоростями, поз­воляющими им подниматься высоко над плоскостью Галактики. На этом основании С. Б. Пикельнер (СССР) пришел к выводу, что разреженный газ должен образовывать гало Галактики или галактическую корону - сферическую подсистему толщиной в несколько тысяч парсек.

Синхротронное радиоизлучение Галактики.

В 1952 г. И. С. Шкловский установил, что наблюдаемое радиоизлучение Галактики подразделяется на две составляющие, сильно отли­чающиеся по спектру. Первая из них, плоская составляющая — это тепловое излучение ионизованных облаков межзвездной га­зовой среды, обусловленное движениями электронов вблизи ионов. Оно характеризуется яркостной температурой порядка 10000 К. При этом, в полном соответствии с теорией, если излу­чающий газ является оптически тонким, то интенсивность его излучения не зависит от частоты. Если же слой становится опти­чески толстым, эта интенсивность, как и в случае абсолютно черного тела, зависит от частоты.

Интенсивность сферической составляющей радиоизлучения Галактики растет с длиной волны. В частности, при  = 10 м она соответствует температуре 100000 К. Очевидно, что такое излучение не может быть связано с тепловыми движениями электронов в поле атомных ядер. Но какова же природа этого нетеплового радиоизлучения?

В 1950 г. X. Альвеп и Н. Герлофсон (Швеция) и независимо от них К. Киппенхойер (ФРГ) пришли к выводу, что источником этого космического радиоизлучения могут быть релятивистские электроны, движущиеся в межзвездных магнитных полях. Таким образом, нетепловое радиоизлучение Галактики явилось доказа­тельством того, что в межзвездном пространстве существуют маг­нитные поля напряженностью порядка 10 -5 эрстед и реляти­вистские электроны с энергиями, достигающими 10 8 эВ.

Благодаря работам В. Л. Гинзбурга, Г. Г. Гетманцева и М. И. Фрадкина (СССР), гипотеза о синхротронном излучении релятивистских электронов превратилась в стройную теорию, объясняющую интенсивность, спектр и другие основные харак­теристики космического радиоизлучения. Отметим лишь, что наблюдаемый спектральный индекс синхротронного радиоизлучения Галактики несколько различен для разных интервалов частот.

В среднем для частот 30 -8 эрстед. Предполагалось, что в дальнейшем в результате вра­щения Галактики конденсации межзвездного газа, пронизанные магнитными полями, вытягиваются, образуя спиральные ветви. Оостановимся на современных взглядах на об­разование спиральных ветвей галактик как волн плотности. Это вынуждает по-иному рассматривать и проблему происхождения магнитного поля Галактики. Недавно Н. С. Кардашев высказал предположение, что магнитное поле Галактики имеет внегалак­тическое происхождение. Другими словами, слабое поле могло существовать уже в самом веществе, из которого сформировалась Галактика. В процессе эволюции нашей звездной системы оно усиливалось и закручивалось ее вращение.

Почти сразу же после открытия межзвездной поляризации света, астрономы в 1949 г. пришли к выводу, что в межзвездном пространстве существуют магнитные поля напряженностью око­ло 10 -5 эрстед. Именно они и ориентируют пылинки одинаковым образом. Из теории следует, что каждая пылинка быстро вра­щается вокруг своей малой оси, оставаясь как бы нанизанной на магнитную силовую линию.

Изучение поляризации света звезд стало важным источником информации о геометрии межзвездных магнитных полей. Так, было установлено, что в Галактике имеется магнитное поле, па­раллельное плоскости Млечного Пути и направленное вдоль ее спиральных ветвей. Другой метод исследования магнитного поля Галактики заключается в изучении формы светлых туманностей. Идя таким путем, Г. А. Шайп пришел к выводу, что вытянутость этих туманностей является результатом их расширения в магнитном поле, причем движение вещества происходит вдоль магнитных силовых линий, тогда как поперечные движения тор­мозятся магнитным полем.

Здесь напрашивался вывод, что магнитное поле спиралей не может удержать релятивистскую частицу, которая все же может ускользнуть в межгалактическое пространство. Магнитное поле должно заполнять всю Галактику, он должно быть и в спиралях и вне их, в газовых облаках и между ними, иначе сквозь эти про­межутки происходила бы утечка космических лучей.

В присутствии магнитного поля устанавливается своеобразное динамическое равновесие между полем и движением вещества, происходит равномерное распределение энергий. Это значит, что плотность кинетической энергии газа rn 2 /2 в стационарном состоянии становится равной плотности энергии поля Н 2 /(8* p ). Вне спи­ральных ветвей и облаков плотность вещества невелика, поэтому частицы разреженного газа обладают большими скоростями, поз­воляющими им подниматься высоко над плоскостью Галактики. На этом основании С. Б. Пикельнер (СССР) пришел к выводу, что разреженный газ должен образовывать гало Галактики или галактическую корону - сферическую подсистему толщиной в несколько тысяч парсек.

Синхротронное радиоизлучение Галактики.

В 1952 г. И. С. Шкловский установил, что наблюдаемое радиоизлучение Галактики подразделяется на две составляющие, сильно отли­чающиеся по спектру. Первая из них, плоская составляющая — это тепловое излучение ионизованных облаков межзвездной га­зовой среды, обусловленное движениями электронов вблизи ионов. Оно характеризуется яркостной температурой порядка 10000 К. При этом, в полном соответствии с теорией, если излу­чающий газ является оптически тонким, то интенсивность его излучения не зависит от частоты. Если же слой становится опти­чески толстым, эта интенсивность, как и в случае абсолютно черного тела, зависит от частоты.

Интенсивность сферической составляющей радиоизлучения Галактики растет с длиной волны. В частности, при l = 10 м она соответствует температуре 100000 К. Очевидно, что такое излучение не может быть связано с тепловыми движениями электронов в поле атомных ядер. Но какова же природа этого нетеплового радиоизлучения?

В 1950 г. X. Альвеп и Н. Герлофсон (Швеция) и независимо от них К. Киппенхойер (ФРГ) пришли к выводу, что источником этого космического радиоизлучения могут быть релятивистские электроны, движущиеся в межзвездных магнитных полях. Таким образом, нетепловое радиоизлучение Галактики явилось доказа­тельством того, что в межзвездном пространстве существуют маг­нитные поля напряженностью порядка 10 -5 эрстед и реляти­вистские электроны с энергиями, достигающими 10 8 эВ.



Благодаря работам В. Л. Гинзбурга, Г. Г. Гетманцева и М. И. Фрадкина (СССР), гипотеза о синхротронном излучении релятивистских электронов превратилась в стройную теорию, объясняющую интенсивность, спектр и другие основные харак­теристики космического радиоизлучения. Отметим лишь, что наблюдаемый спектральный индекс синхротронного радиоизлучения Галактики несколько различен для разных интервалов частот.

В среднем для частот 30 -8 эрстед. Предполагалось, что в дальнейшем в результате вра­щения Галактики конденсации межзвездного газа, пронизанные магнитными полями, вытягиваются, образуя спиральные ветви. Оостановимся на современных взглядах на об­разование спиральных ветвей галактик как волн плотности. Это вынуждает по-иному рассматривать и проблему происхождения магнитного поля Галактики. Недавно Н. С. Кардашев высказал предположение, что магнитное поле Галактики имеет внегалак­тическое происхождение. Другими словами, слабое поле могло существовать уже в самом веществе, из которого сформировалась Галактика. В процессе эволюции нашей звездной системы оно усиливалось и закручивалось ее вращение.

Почти сразу же после открытия межзвездной поляризации света, астрономы в 1949 г. пришли к выводу, что в межзвездном пространстве существуют магнитные поля напряженностью око­ло 10 -5 эрстед. Именно они и ориентируют пылинки одинаковым образом. Из теории следует, что каждая пылинка быстро вра­щается вокруг своей малой оси, оставаясь как бы нанизанной на магнитную силовую линию.

Изучение поляризации света звезд стало важным источником информации о геометрии межзвездных магнитных полей. Так, было установлено, что в Галактике имеется магнитное поле, па­раллельное плоскости Млечного Пути и направленное вдоль ее спиральных ветвей. Другой метод исследования магнитного поля Галактики заключается в изучении формы светлых туманностей. Идя таким путем, Г. А. Шайп пришел к выводу, что вытянутость этих туманностей является результатом их расширения в магнитном поле, причем движение вещества происходит вдоль магнитных силовых линий, тогда как поперечные движения тор­мозятся магнитным полем.

Здесь напрашивался вывод, что магнитное поле спиралей не может удержать релятивистскую частицу, которая все же может ускользнуть в межгалактическое пространство. Магнитное поле должно заполнять всю Галактику, он должно быть и в спиралях и вне их, в газовых облаках и между ними, иначе сквозь эти про­межутки происходила бы утечка космических лучей.

В присутствии магнитного поля устанавливается своеобразное динамическое равновесие между полем и движением вещества, происходит равномерное распределение энергий. Это значит, что плотность кинетической энергии газа rn 2 /2 в стационарном состоянии становится равной плотности энергии поля Н 2 /(8*p). Вне спи­ральных ветвей и облаков плотность вещества невелика, поэтому частицы разреженного газа обладают большими скоростями, поз­воляющими им подниматься высоко над плоскостью Галактики. На этом основании С. Б. Пикельнер (СССР) пришел к выводу, что разреженный газ должен образовывать гало Галактики или галактическую корону - сферическую подсистему толщиной в несколько тысяч парсек.

Синхротронное радиоизлучение Галактики.

В 1952 г. И. С. Шкловский установил, что наблюдаемое радиоизлучение Галактики подразделяется на две составляющие, сильно отли­чающиеся по спектру. Первая из них, плоская составляющая — это тепловое излучение ионизованных облаков межзвездной га­зовой среды, обусловленное движениями электронов вблизи ионов. Оно характеризуется яркостной температурой порядка 10000 К. При этом, в полном соответствии с теорией, если излу­чающий газ является оптически тонким, то интенсивность его излучения не зависит от частоты. Если же слой становится опти­чески толстым, эта интенсивность, как и в случае абсолютно черного тела, зависит от частоты.

Интенсивность сферической составляющей радиоизлучения Галактики растет с длиной волны. В частности, при l = 10 м она соответствует температуре 100000 К. Очевидно, что такое излучение не может быть связано с тепловыми движениями электронов в поле атомных ядер. Но какова же природа этого нетеплового радиоизлучения?

В 1950 г. X. Альвеп и Н. Герлофсон (Швеция) и независимо от них К. Киппенхойер (ФРГ) пришли к выводу, что источником этого космического радиоизлучения могут быть релятивистские электроны, движущиеся в межзвездных магнитных полях. Таким образом, нетепловое радиоизлучение Галактики явилось доказа­тельством того, что в межзвездном пространстве существуют маг­нитные поля напряженностью порядка 10 -5 эрстед и реляти­вистские электроны с энергиями, достигающими 10 8 эВ.

Благодаря работам В. Л. Гинзбурга, Г. Г. Гетманцева и М. И. Фрадкина (СССР), гипотеза о синхротронном излучении релятивистских электронов превратилась в стройную теорию, объясняющую интенсивность, спектр и другие основные харак­теристики космического радиоизлучения. Отметим лишь, что наблюдаемый спектральный индекс синхротронного радиоизлучения Галактики несколько различен для разных интервалов частот.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Почти сразу же после открытия межзвездной поляризации света, астрономы в 1949 г. пришли к выводу, что в межзвездном пространстве существуют магнитные поля напряженностью око­ло 10 -5
эрстед. Именно они и ориентируют пылинки одинаковым образом. Из теории следует, что каждая пылинка быстро вра­щается вокруг своей малой оси, оставаясь как бы нанизанной на магнитную силовую линию.

Изучение поляризации света звезд стало важным источником информации о геометрии межзвездных магнитных полей. Так, было установлено, что в Галактике имеется магнитное поле, па­раллельное плоскости Млечного Пути и направленное вдоль ее спиральных ветвей. Другой метод исследования магнитного поля Галактики заключается в изучении формы светлых туманностей. Идя таким путем, Г. А. Шайп пришел к выводу, что вытянутость этих туманностей является результатом их расширения в магнитном поле, причем движение вещества происходит вдоль магнитных силовых линий, тогда как поперечные движения тор­мозятся магнитным полем.

Здесь напрашивался вывод, что магнитное поле спиралей не может удержать релятивистскую частицу, которая все же может ускользнуть в межгалактическое пространство. Магнитное поле должно заполнять всю Галактику, он должно быть и в спиралях и вне их, в газовых облаках и между ними, иначе сквозь эти про­межутки происходила бы утечка космических лучей.

В присутствии магнитного поля устанавливается своеобразное динамическое равновесие между полем и движением вещества, происходит равномерное распределение энергий. Это значит, что плотность кинетической энергии газа rn 2
/2 в стационарном состоянии становится равной плотности энергии поля Н 2
/(8*
p
).
Вне спи­ральных ветвей и облаков плотность вещества невелика, поэтому частицы разреженного газа обладают большими скоростями, поз­воляющими им подниматься высоко над плоскостью Галактики. На этом основании С. Б. Пикельнер (СССР) пришел к выводу, что разреженный газ должен образовывать гало
Галактики или галактическую корону -
сферическую подсистему толщиной в несколько тысяч парсек.

Синхротронное радиоизлучение Галактики.

В 1952 г. И. С. Шкловский установил, что наблюдаемое радиоизлучение Галактики подразделяется на две составляющие, сильно отли­чающиеся по спектру. Первая из них, плоская составляющая — это тепловое излучение ионизованных облаков межзвездной га­зовой среды, обусловленное движениями электронов вблизи ионов. Оно характеризуется яркостной температурой порядка 10000 К. При этом, в полном соответствии с теорией, если излу­чающий газ является оптически тонким, то интенсивность его излучения не зависит от частоты. Если же слой становится опти­чески толстым, эта интенсивность, как и в случае абсолютно черного тела, зависит от частоты.

Интенсивность сферической составляющей радиоизлучения Галактики растет с длиной волны. В частности, при l = 10 м она соответствует температуре 100000 К. Очевидно, что такое излучение не может быть связано с тепловыми движениями электронов в поле атомных ядер. Но какова же природа этого нетеплового радиоизлучения?

В 1950 г. X. Альвеп и Н. Герлофсон (Швеция) и независимо от них К. Киппенхойер (ФРГ) пришли к выводу, что источником этого космического радиоизлучения могут быть релятивистские электроны, движущиеся в межзвездных магнитных полях. Таким образом, нетепловое радиоизлучение Галактики явилось доказа­тельством того, что в межзвездном пространстве существуют маг­нитные поля напряженностью порядка 10 -5
эрстед и реляти­вистские электроны с энергиями, достигающими 10 8
эВ.

Благодаря работам В. Л. Гинзбурга, Г. Г. Гетманцева и М. И. Фрадкина (СССР), гипотеза о синхротронном излучении релятивистских электронов превратилась в стройную теорию, объясняющую интенсивность, спектр и другие основные харак­теристики космического радиоизлучения. Отметим лишь, что наблюдаемый спектральный индекс синхротронного радиоизлучения Галактики несколько различен для разных интервалов частот.

В среднем для частот 30 -8
эрстед. Предполагалось, что в дальнейшем в результате вра­щения Галактики конденсации межзвездного газа, пронизанные магнитными полями, вытягиваются, образуя спиральные ветви. Оостановимся на современных взглядах на об­разование спиральных ветвей галактик как волн плотности. Это вынуждает по-иному рассматривать и проблему происхождения магнитного поля Галактики. Недавно Н. С. Кардашев высказал предположение, что магнитное поле Галактики имеет внегалак­тическое происхождение. Другими словами, слабое поле могло существовать уже в самом веществе, из которого сформировалась Галактика. В процессе эволюции нашей звездной системы оно усиливалось и закручивалось ее вращение.

Читайте также: