Квантовая природа света реферат

Обновлено: 04.07.2024

Весьма наивными были первые представления древних ученых о свете. Они думали, что зрительные впечатления возникают при ощупывании предметов особыми тонкими щупальцами, которые выходят из глаз. Оптика была наука о зрении, именно так наиболее точно можно перевести это слово.
Постепенно в средние века оптика из науки о зрении превратилась в науку о свете, способствовало этому изобретение линз и камеры-обскуры. На настоящий момент времени оптика - это раздел физики, исследующий испускание света и его распространение в различных средах, а также взаимодействие его с веществом. Вопросы, связанные со зрением, устройством и функционированием глаза, выделились в отдельное научное направление - физиологическая оптика.

Содержание

1. Введение……………………………………………………3
2. Явления, связанные с отражением света……………….. 3
3. Явления, связанные с преломлением света……………. 5
4. Полярные сияния………………………………………. 11
Список литературы……………………………………

Прикрепленные файлы: 1 файл

реферат физика.docx

2. Явления, связанные с отражением света……………….. 3

3. Явления, связанные с преломлением света……………. 5

Весьма наивными были первые представления древних ученых о свете. Они думали, что зрительные впечатления возникают при ощупывании предметов особыми тонкими щупальцами, которые выходят из глаз. Оптика была наука о зрении, именно так наиболее точно можно перевести это слово.

Постепенно в средние века оптика из науки о зрении превратилась в науку о свете, способствовало этому изобретение линз и камеры-обскуры. На настоящий момент времени оптика - это раздел физики, исследующий испускание света и его распространение в различных средах, а также взаимодействие его с веществом. Вопросы, связанные со зрением, устройством и функционированием глаза, выделились в отдельное научное направление - физиологическая оптика.

Но английский физик Джеймс Максвелл в 1864 году создал электромагнитную теорию света, по которой волны света – это электромагнитные волны с соответствующим диапазоном длин.

А уже в начале XX века, новые проведенные исследования показали, что для объяснения некоторых явлений, например, фотоэффекта, существует необходимость представить световой пучок в виде потока своеобразных частиц – световых квантов. Исаак Ньютон имел аналогичную точку зрения на природу света еще 200 лет назад в своей “теории истечения света”. Сейчас этим занимается квантовая оптика.

Алмазы и самоцветы

В Кремле существует выставка алмазного фонда России.

В зале свет слегка приглушен. В витринах сверкают творения ювелиров. Здесь можно увидеть такие алмазы, как “Орлов”, “Шах”, “Мария”, “Валентина Терешкова”.

Секрет прелестной игры света в алмазах, заключается в том, что этот камень имеет высокий показатель преломления (n=2,4173) и вследствие этого малый угол полного внутреннего отражения (α=24˚30′) и обладает большей дисперсией, вызывающей разложение белого света на простые цвета.

Кроме того, игра света в алмазе зависит от правильности его огранки. Грани алмаза многократно отражают свет внутри кристалла. Вследствие большой прозрачности алмазов высокого класса свет внутри них почти не теряет своей энергии, а только разлагается на простые цвета, лучи которых затем вырываются наружу в различных, самых неожиданных направлениях. При повороте камня меняются цвета, исходящие из камня, и кажется, что сам он является источником многих ярких разноцветных лучей.

Встречаются алмазы, окрашенные в красный, голубоватый и сиреневый цвета. Сияние алмаза зависит от его огранки. Если смотреть сквозь хорошо ограненный водяно-прозрачный бриллиант на свет, то камень кажется совершенно непрозрачным, а некоторые его грани выглядят просто черными. Это происходит потому, что свет, претерпевая полное внутреннее отражение, выходит в обратном направлении или в стороны.

Если смотреть на верхнюю огранку со стороны света, она сияет многими цветами, а местами блестит. Яркое сверкание верхних граней бриллианта называют алмазным блеском. Нижняя сторона бриллианта снаружи кажется как бы посеребренной и отливает металлическим блеском.

Наиболее прозрачные и крупные алмазы служат украшением. Мелкие алмазы находят широкое применение в технике в качестве режущего или шлифующего инструмента для металлообрабатывающих станков. Алмазами армируют головки бурильного инструмента для проходки скважин в твердых породах. Такое применение алмаза возможно из-за большой отличающей его твердости. Другие драгоценные камни в большинстве случаев являются кристаллами окиси алюминия с примесью окислов окрашивающих элементов – хрома (рубин), меди (изумруд), марганца (аметист). Они также отличаются твердостью, прочностью и обладают красивой окраской и “игрой света”. В настоящее время умеют получать искусственным путем крупные кристаллы окиси алюминия и окрашивать их в желаемый цвет.

Явления дисперсии света объясняют многообразием красок природы. Целый комплекс оптических экспериментов с призмами в XVII веке провел английский ученый Исаак Ньютон. Эти эксперименты показали, что белый свет не является основным, его надо рассматривать как составной (“неоднородный”); основными же являются различные цвета (“однородные” лучи, или “монохроматические” лучи). Разложение белого света на различные цвета происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Эти выводы, сделанные Ньютоном, согласуются с современными научными представлениями.

Некоторые виды миражей. Из большего многообразия миражей выделим несколько видов: “озерные” миражи, называемые также нижними миражами, верхние миражи, двойные и тройные миражи, миражи сверхдальнего видения.

Нижние (“озерные”) миражи возникают над сильно нагретой поверхностью. Верхние миражи возникают, наоборот, над сильно охлажденной поверхностью, например над холодной водой. Если нижние миражи наблюдают, как правило, в пустынях и степях, то верхние наблюдают в северных широтах.

Верхние миражи отличаются разнообразием. В одних случаях они дают прямое изображение, в других случаях в воздухе появляется перевернутое изображение. Миражи могут быть двойными, когда наблюдаются два изображения, простое и перевернутое. Эти изображения могут быть разделены полосой воздуха (одно может оказаться над линией горизонта, другое под ней), но могут непосредственно смыкаться друг с другом. Иногда возникает еще одно – третье изображение.

Особенно удивительны миражи сверхдальнего видения. К. Фламмарион в своей книге “Атмосфера” описывает пример подобного миража: “Опираясь на свидетельства нескольких лиц, заслуживающих доверия, я могу сообщить про мираж, который видели в городе Вервье (Бельгия) в июне 1815 г. Однажды утром жители города увидели в небе войско, и так ясно, что можно было различить костюмы артиллеристов и даже, например, пушку со сломанным колесом, которое вот-вот отвалится… Это было утро сражения при Ватерлоо!” Описанный мираж изображен в виде цветной акварели одним из очевидцев. Расстояние от Ватерлоо до Вервье по прямой линии составляет более 100км. Известны случаи, когда подобные миражи наблюдались и на больших расстояниях – до 1000км. “Летучего голландца” следует отнести именно к таким миражам.

Объяснение нижнего (“озерного”) миража. Если воздух у самой поверхности земли сильно нагрет и, следовательно, его плотность относительно мала, то показатель преломления у поверхности будет меньше, чем в более высоких воздушных слоях. Изменение показателя преломления воздуха n с высотой h вблизи земной поверхности.

В соответствии с установленным правилом, световые лучи вблизи поверхности земли будут в данном случае изгибаться так, чтобы их траектория была обращена выпуклостью вниз. Пусть в точке A находится наблюдатель. Световой луч от некоторого участка голубого неба попадет в глаз наблюдателя, испытав указанное искривление. А это означает, что наблюдатель увидит соответствующий участок небосвода не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним изображение голубого неба. Если представить себе, что у линии горизонта находятся холмы, пальмы или иные объекты, то наблюдатель увидит и их перевернутыми, благодаря отмеченному искривлению лучей, и воспримет как отражения соответствующих объектов в несуществующей воде. Так возникает иллюзия, представляющая собой “озерный” мираж.

Простые верхние миражи. Можно предположить, что воздух у самой поверхности земли или воды не нагрет, а, напротив, заметно охлажден по сравнению с более высокими воздушными слоями; изменение n с высотой h. Световые лучи в рассматриваемом случае изгибаются так, что их траектория обращена выпуклостью вверх. Поэтому теперь наблюдатель может видеть объекты, скрытые от него за горизонтом, причем он будет видеть их вверху как бы висящими над линией горизонта. Поэтому такие миражи называют верхними.

Верхний мираж может давать как прямое, так и перевернутое изображение. Прямое изображение возникает, когда показатель преломления воздуха уменьшается с высотой относительно медленно. При быстром уменьшении показателя преломления образуется перевернутое изображение. В этом можно убедится, рассмотрев гипотетический случай – показатель преломления на некоторой высоте h уменьшается скачком. Лучи объекта, прежде чем попасть к наблюдателю А испытывают полное внутреннее отражение от границы ВС ниже которой в данном случае находится более плотный воздух. Видно, что верхний мираж дает перевернутое изображение объекта. В действительности нет скачкообразной границы между слоями воздуха, переход совершается постепенно. Но если он совершается достаточно резко, то верхний мираж даст перевернутое изображение.

Мираж сверхдальнего видения. Природа этих миражей изучена менее всего. Ясно, что атмосфера должна быть прозрачной, свободной от водяных паров и загрязнений. Но этого мало. Должен образоваться устойчивый слой охлажденного воздуха на некоторой высоте над поверхностью земли. Ниже и выше этого слоя воздух должен быть более теплым. Световой луч, попавший внутрь плотного холодного слоя воздуха, как бы “запертым” внутри него и распространяется в нем как по своеобразному световоду. Траектория луча на все время обращена выпуклостью в сторону менее плотных областей воздуха.

Возникновение сверхдальних миражей можно объяснить распространением лучей внутри подобных “световодов”, которые иногда создает природа.

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще мало знали об окружающем мире, радугу считали “небесным знамением”. Так, древние греки думали, что радуга – это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, а иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.

Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя – на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42º.

В момент восхода солнца противосолнечная точка (точка М) находится на линии горизонта, и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52º и обратным расположением цветов.

При высоте Солнца 41º главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца более 52º не видна и побочная радуга. Поэтому в средних экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги различают семь основных цветов, плавно переходящих один в другой.

Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Партнером.

Можно рассмотреть простейший случай: пусть на капли, имеющих форму шара, падает пучок параллельных солнечных лучей . Луч, падающий на поверхность капли в точке А, преломляется внутри нее по закону преломления:

n sin α=n sin β , где n=1, n≈1,33 –

соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Внутри капли идет по прямой луч АВ. В точке В происходит частичное преломление луча и частичное его отражение. Надо заметить, что , чем меньше угол падения в точке В, а следовательно и в точке А, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча.

Луч АВ после отражения в точке В происходит под углом β`= β b попадает в точку С, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под углом γ, а отраженный может пройти дальше, в точку D и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу, и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, вышедший из капли в точке В. Но наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей. Лучи же, преломленные в точке С, создают в совокупности на фоне темной тучи первичную радугу, а лучи, испытывающие преломление в точке D дают вторичную радугу, которая менее интенсивна, чем первичная.

Цель работы – проанализировать квантовую теорию света.
В соответствии с поставленными целью решались следующие основные задачи:
- рассмотреть развитие представление о природе света;
- изучить квантовые свойства света: фотоэффект и эффект Комтона;
- проанализировать квантовую теорию Планка.

Вложенные файлы: 1 файл

Kvantovaja_teorija_sveta.doc

КВАНТОВАЯ ТЕОРИЯ СВЕТА

ВВЕДЕНИЕ

Не так давно, в декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытие новой фундаментальной физической константы – постоянной Планка.

Планку удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, проблему, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора, несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики, что и обусловило актуальность нашего исследования.

Цель работы – проанализировать квантовую теорию света.

В соответствии с поставленными целью решались следующие основные задачи:

- рассмотреть развитие представление о природе света;

- изучить квантовые свойства света: фотоэффект и эффект Комтона;

- проанализировать квантовую теорию Планка.

-обработка, анализ научных источников;

-анализ научной литературы, учебников и пособий по исследуемой проблеме.

Объект исследования – квантовая теория света

1. Развитие представлений о свете

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:

где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений1.

Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.

Рис. 1. Построения Гюйгенса для определения направления преломленной волны.

Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу:

Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: υ c.

Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ

Рис. 2. Шкала электромагнитных волн. Границы между различными диапазонами условны

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):

1 нм = 10–9 м = 10–7 см = 10– 3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм3.

Электромагнитная теория света позволила объяснить многие оптические явления, такие как интерференция, дифракция, поляризация и т. д. Однако, эта теория не завершила понимание природы света. Уже в начале XX века выяснилось, что эта теория недостаточна для истолкования явлений атомного масштаба, возникающих при взаимодействии света с веществом. Для объяснения таких явлений, как излучение черного тела, фотоэффект, эффект Комптона и др. потребовалось введение квантовых представлений

2. Квантовые свойства света: фотоэффект. Эффект Комтона

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (Д. Томсон, 1897 г.), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 3.

Рис. 3. Схема экспериментальной установки для изучения фотоэффекта

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ, и при неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения4. На рис. 4 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Рис. 4.Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения Iн прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU|. Если напряжение на аноде меньше, чем –Uз, фототок прекращается. Измеряя Uз, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина Uз оказалась не зависящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5).

Рис. 5. Зависимость запирающего потенциала Uз от частоты ν падающего света.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1) Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2) Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.

3) Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4) Фотоэффект практически безинерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели невозможно было также понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока, пропорциональность максимальной кинетической энергии частоте света5.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = hν, где h – постоянная Планка Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Как обычно бывает, революцию вначале нс осознали — формулы Планка соглашались рассматривать лишь в качестве математического приема, за которым нет физической реальности (точно так же в свое время отнеслись к преобразованиям Лоренца, идеям Максвелла и Эйнштейна). Действительно, на фоне всего многовекового опыта дискретное изменение энергии осцилляторов выглядело несуразно. В механике… Читать ещё >

Квантовая природа света ( реферат , курсовая , диплом , контрольная )

Законами теплового излучения пользовались, как и некогда термометром (см. параграф 4.2): что такое температура, никто не понимал. Почему функция Кирхгофа имеет именно такой вид, а не иной?

Наиболее значимую попытку получить ее на кончике пера предприняли английские физики Д. Рэлей (1842—1919) и Д. Джинс (1877—1946). Однако их безупречные рассуждения привели к совпадению с экспериментальной кривой только в самом ее начале. Более того, полученная ими кривая 1 (см. рис. 9.1, б) оказалась квадратичной функцией v.

ВОПРОС. Реальна ли квадратичная функция v?

ОТВЕТ. Нет: интеграл от такой функции, т. е. излучаемая телом мощность, стремится к бесконечности.

Проблема выглядела столь удручающей, что в ее название включили несвойственный науке эмоциональный компонент: ультрафиолетовая катастрофа. Все попытки разрешить противоречие оказались безуспешными, пока немецкий физик Макс Планк (1858—1947) не решился на очень смелый шаг. Он допустил, что энергия теплового (электромагнитного) излучения изменяется дискретно'.

Квантовая природа света.

Исторический экскурс В студенческие годы университетский профессор не советовал студенту Планку посвящать свою жизнь физике: наука малонерснективная — за исключением некоторых мелких деталей, почти все в ней известно. Как говорил У. Томсон, на ясном небосводе физики есть только два облачка — опыты А. Майкельсона и излучение абсолютно черного тела. Профессор ошибся и в физике, и в своем студенте. День 14.12.1900, когда М. Планк изложил свою работу (Нобелевская премия 1918 г.), стал днем рождения новой, современной> квантовой физики. Она определила новый стиль мышления, приведший человека к ядерной энергии, лазерам, микроэлектронике, компьютерам и т. д.

Как обычно бывает, революцию вначале нс осознали — формулы Планка соглашались рассматривать лишь в качестве математического приема, за которым нет физической реальности (точно так же в свое время отнеслись к преобразованиям Лоренца, идеям Максвелла и Эйнштейна). Действительно, на фоне всего многовекового опыта дискретное изменение энергии осцилляторов выглядело несуразно. В механике, электромагнетизме и термодинамике энергия всегда изменялась непрерывно. Первым, кто отнесся к идее Планка всерьез, был А. Эйнштейн: если она позволила разрешить противоречия теории теплового излучения, то ие поможет ли она разобраться с теориями теплоемкости твердого тела и внешнего фотоэффекта, в которых также были проблемы?

Вы можете изучить и скачать доклад-презентацию на тему Квантовая природа света. Презентация на заданную тему содержит 29 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Основные свойства фотона Является частицей электромагнитного поля. Движется со скоростью света. Существует только в движении. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

Эффект Пойнтинга — Робертсона Сила Пойнтинга – Робертсона равна: W – мощность излучения, v – скорость частицы, c – скорость света. Для круглой частицы где r – радиус частицы, G – гравитационная постоянная, Ms – масса Солнца, Ls – светимость Солнца, R – расстояние до частицы.

Серии излучения атомов водорода 1. Серия Лаймана. Открыта Т. Лайманом в 1906 году. Все линии серии находятся в ультрафиолетовом диапазоне. Линия Lα = 1216 Å является резонансной линией водорода. Граница серии — 911,8 Å. 2. Серия Бальмера. Открыта И. Я. Бальмером в 1885 году. Первые четыре линии серии находятся в видимом диапазоне и были известны задолго до Бальмера, который предложил эмпирическую формулу для их длин волн и на её основе предсказал существование других линий этой серии в ультрафиолетовой области. Линия Hα = 6565 Å, граница серии — 3647 Å.

Серии излучения атомов водорода 3. Серия Пашена Предсказана Ритцем в 1908 году на основе комбинационного принципа. Открыта Ф. Пашеном в том же году. Все линии серии находятся в инфракрасном диапазоне. иния Pα = 18 756 Å, граница серии — 8206 Å. 4. Серия Брэккета 5. Серия Пфунда 6. Серия Хэмпфри 7. Серия Хансена — Стронга

Фотоэффект Законы внешнего фотоэффекта: 1. Сила фототока насыщения прямо пропорциональна интенсивности светового излучения. 2. Максимальная кинетическая энергия вырываемых светом электронов возрастает с частотой света и не зависит от его интенсивности. 3. Для каждого вещества при определённом состоянии его поверхности существует граничная частота света, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая длина волны называется красной границей фотоэффекта. Кроме того, фотоэффект обладает свойством практической безынерционности. Он немедленно возникает при освещении поверхности тела, при условии, что частота света выше или равна красной границе фотоэффекта и эффект существует.

Абсолютно черное тело Мощность, излучаемой телом энергии (она же светимость) L Энергетическая светимость Спектральная плотность потока излучения (Янские)

Предельные случаи Приближение Релея-Джинса (малые частоты, большие длины волн) Формула Вина (большие частоты, малые длины волн)

Читайте также: