Крупнейшие обсерватории востока реферат

Обновлено: 05.07.2024

Что такое обсерваторий?
Обсерватория - современный астрономический комплекс, на котором расположены телескопы для наблюдения за небом и небесными телами. Наземные обсерватории оборудованы вращающимся или убирающимся куполом; космические обсерватории - зонтами и защитными щитами.


Так же астрономическая обсерватория — учреждение, предназначенное для проведения систематических наблюдений небесных тел ; возводится обыкновенно на высокой местности, с которой открывался бы большой кругозор во все стороны. Каждая обсерватория оборудована телескопами , как оптическими, так и работающими в других областях спектра ( радиоастрономия ).
История создания

Самые древние обсерватории находятся в Ассирии, Вавилоне, Китае, Египте, Персии, Индии, Мексике, Перу и в других государствах. Древние жрецы, по сути, и были первыми астрономами, потому что они вели наблюдения за звездным небом. Стоунхэндж – обсерватория, созданная ещё в каменном веке.


О бсерватории меняли свой образ вместе с развитием цивилизации. В древние времена, когда люди наблюдали за небосводом без оптических приборов, важно было, чтобы из такого места свободно просматривался горизонт во всех направлениях.

Для этих целей использовались открытые участки местности, естественные (холмы) или искусственные возвышения (насыпи, зиккураты, пирамиды), вокруг которых по линии горизонта имелись или создавались репера-ориентиры (каменные порталы, башни). С помощью этих ориентиров на восходе, закате Солнца или в полдень наблюдатель мог определять момент наступления того или иного астрономического события.

Позднее, с появлением новых измерительных приборов, обсерватории превратились в купольные сооружения, позволяющие наблюдателям сохранять измерительные приборы в непогоду, а оконные проемы использовать как проекционные отверстия для солнечного света.

Позже обсерватории можно было использовать как место, где можно наблюдать за объектами на звездном небе, потребовалось сделать крутящийся купол с проемом для наблюдений.

Самыми первыми обсерваториями были Парижская (1667 год) и Гринвичская (1675 год, до сих пор считающаяся одной из самых крупных обсерваторий мира). Наряду с угломерными инструментами, в этих обсерваториях использовались большие телескопы-рефракторы.

В век научно-технической революции государства мира начали соревнование в сфере постройки обсерваторий. К концу XVIII века государственные обсерватории функционировали по всему миру, и их число достигло 100, а к концу XIX века таких обсерваторий было уже около 400.

Основная часть
Современные наземные обсерватории

Наземные обсерватории - это сооружение, используемое для наблюдения и слежения за различными объектами и явлениями на Земле.

Давайте рассмотрим топ-самых современных и крупнейших обсерваторий.
Китайская астрономическая обсерватория или Небесный глаз

Крупнейшая на сегодняшний момент в мире астрономическая обсерватория располагается в отдалении на юго-западе Китая, что значительно осложнило ее строительство. Строительство началось в 2011 году. Стоимость строительства самого крупного радиотелескопа на нашей планете составила 180 млн долларов.

Инженерам и строителям пришлось годами жить в одном из горных ущелий вдали от цивилизации, где в первое время даже не было электричества. Именно это заброшенное место выбрали из 400 вариантов: природная долина в горах на высоте примерно 1000 м над уровнем моря идеально подходила по размеру и являлась естественной защитой от радиочастотных помех.

При этом, не стоит забывать о том, что работа с FAST не лишена проблем — так, основная проблема заключается в хранении невероятно большого количества данных, которые в ближайшие несколько лет соберет этот радиотелескоп.

Китайский радиотелескоп способен обнаружить даже самые слабые радиоволны, исходящие от небесных объектов, таких как пульсары и целые галактики. Также специалисты не исключают, что он может быть использован для обнаружения далеких миров, на которых может существовать жизнь.



5

Обсерватории Роке-де-лос-Мучачос или Большой Канарский телескоп


Расположена на пике потухшего вулкана Мучачос на высоте около 2400 метров выше уровня моря, на Канарском острове Пальма. Наряду с обсерваториями Гаваев и Чили, является одним из лучших мест на Земле с точки зрения астроклимата. Она расположена выше атмосферного слоя, для которого характерно интенсивное формирование облаков, что позволяет, практически всегда, вести наблюдения на чистом небосводе.

В 2007 году введен в строй Большой Канарский телескоп — оптический телескоп-рефлектор с самым крупным зеркалом в мире. Его первичное шестиугольное зеркало, с эквивалентным диаметром 10,4 метра, составлено из 36 шестиугольных сегментов, изготовленных из ситаллов Zerodur, производства компании Schott AG. Оснащён активной и адаптивной оптикой. Он видит объекты в миллиард раз более слабые, чем те, что видит невооружённый человеческий глаз.
Паранальская обсерватория

Паранальскую обсерваторию открыли в 1999 году в Чили. Она входит в комплекс Европейской Южной обсерватории — одной из старейших организаций по астрономическим исследованиям.

Обсерватория находится в Атакамской пустыне на высоте 2 635 м над уровнем моря, что эквивалентно высоте восьми Эйфелевых башен. Она оснащена несколькими телескопами, в число которых входит и один из самых мощных оптических инструментов наблюдения за космосом. Он состоит из четырех телескопов с зеркалами диаметром 8,2 м и четырех подвижных вспомогательных телескопов диаметром 1,8 м. Все вместе они создают интерферометр, разделяющий пучки электромагнитного светового излучения. С помощью телескопа за один час наблюдений можно получить изображения небесных объектов в 30 звездных
6


величин, что соответствует видимости объектов в 4 млрд раз тусклее, чем может увидеть человеческий глаз.
Этот телескоп уже внес огромный вклад в изучение космического пространства. С помощью него удалось получить первые изображения экзопланет, отследить движение звезд вокруг черной дыры и в 2005 году увидеть послесвечения самого дальнего из известных гамма-всплесков.
На территории обсерватории также есть резиденция для астрономов, работающих на станции. Внутри расположены огромный сад с бассейном, спортзал и ресторан.

Южный полярный телескоп – Антарктида

Южный полярный телескоп — 10 метровый радиотелескоп в обсерватории в Антарктиде на станции Амундсен-Скотт на географическом южном полюсе Земли .

Самый важный критерий расположения обсерваторий миллиметрового диапазона — отсутствие водяного пара , который такое излучение поглощает. Обсерватория SPT находится на большой высоте и в холодном регионе в Антарктиде. Водяной пар в холодном климате просто замерзает, и Антарктида, таким образом, является самым сухим местом на Земле. Кроме того, удалённый от цивилизации телескоп не испытывает сторонних шумов техногенного характера, а во время протяжённой полярной ночи исключается шум от солнечного излучения. Низкая окружающая температура снижает влияние теплового шума приёмников.

Среди минусов стоит отметить невозможность изучать северное полушарие, неустойчивость ледового покрытия под телескопом и трудный доступ к обсерватории.

Первый значительный обзор неба телескоп выполнял с целями обнаружения и исследования скопления галактик . Методика поиска основывалась на эффекте Сюняева — Зельдовича — искажения микроволнового фонового излучения взаимодействием его с межгалактической средой. В результате обзора было обнаружено порядка сотни скоплений галактик в чрезвычайно широком

диапазоне красных смещений. Были оценены массы скоплений галактик и получены ограничения для тёмной энергии .

Также удалось обнаружить популяцию далёких пылевых галактик с гравитационным линзированием.


Заключение
Вывод
Обсерватории имеют большую ценность, без них невозможно изучение космоса и космических тел. Благодаря им мы имеем ценную информацию за пределами нашей планеты. Наука развивается, узнаётся много нового и т.п. Я считаю, что обсерватории вносят огромный вклад в развитие астрономии и других наук.
Источники информации

Одна из крупнейших обсерваторий была создана в 1417- 1420 гг. недалеко от Самарканда в Средней Азии и получила мировую известность благодаря своим потрясающим научным результатам. Ее называют обсерваторией Улугбека - по имени ее основателя.

Сегодня история и научные исследования всячески доказывают, что наши далёкие предки обладали уникальными знаниями в области астрономии.

Обнаруженные по всему миру обсерватории говорят о том, что древние цивилизации вели удивительно точные астрономические наблюдения. Благодаря правильному определению движения небесных светил, учёные прошлого могли вести счёт времени и заниматься астрологическими прогнозами. Древние астрономы также придумали календарь для ведения сельскохозяйственных работ. С помощью самых простых приборов они определяли, что Луна, Солнце и другие космические тела движутся по сложнейшей траектории. Кроме того, отмечались солнечные и лунные затмения, определялись появления новых звёзд и даже предсказывались катастрофы. В прошлых веках, точно как и сейчас, обсерватория служила для сбора информации, была мастерской и хранилищем ценных приборов.

Совсем недавно учёные сделали вывод, что многие памятники древней архитектуры имели цель наблюдать за небесными светилами. Подобные сооружения изучает довольно молодая наука - археоастрономия, совмещающая два направления – археологию и астрономию. Древнейшие солнечные обсерватории были найдены во всём мире: Америке, Азии, Европе и Африке.

На сегодняшний день верхняя часть башни разрушилась, и обсерватория стала напоминать сооружение с куполом. Однако эта постройка была возведена в форме цилиндра и астрономы древности перемещались по обсерватории между смотровыми окошками, наблюдая за звёздным небом.

Учёные, воспользовавшись протонным магнитометром в исследовании, обнаружили, что найденное строение датировалось концом каменного века и имело форму квадрата. В западной и восточной его частях располагались ворота. Все прямые линии, соединяющие выход в восточной стороне квадрата и его южную часть, имеют длину 302 м. Это является числом в 365 мегалитических ярдов, а один ярд равен 0,83 м (средний человеческий шаг). Таким образом, 365 ярдов может указывать на количество дней в году.

Гозекский круг: одна из древнейших обсерваторий планеты

Это древнее сооружение было найдено случайно в 1991 году на территории Германии. Пролетая на самолёте над пшеничными полями, представители земельного управления увидели несколько круглых знаков и сообщили о находке в один из местных университетов. Однако только в 2002 году специалисты приступили к раскопкам сооружения.

Исследуя Гозекский круг, учёные пришли к заключению, что он является уникальным во всех отношениях. Эта масштабная по площади конструкция была нацелена на определение летнего и зимнего солнцестояния. И хотя сегодня об основном предназначении круга известно, всё же остаётся много неразгаданных моментов.

Гозекский круг имеет вид нескольких круговых рвов внушительных размеров с размещёнными по периметру тремя воротами. Через них в определённые дни проходил солнечный свет. Ежегодно в самый короткий день лучи восходящего небесного светила проникали точно по центру небольших ворот обсерватории. Археологи считают, что её построили жители каменного века. В диаметре древнее святилище имеет 75 м и опоясано деревянными кольцами из двух рядов высотой 3 м.

Хотя обсерватория была построена земледельцами, которые населяли эту равнину, всё говорило о них, как о способных личностях, разбирающихся в математике и астрономии. Некоторые учёные утверждают, что найденное сооружение являлось не только обсерваторией. На её территории проводились магические ритуалы, которые современным исследователям не удаётся расшифровать.

Необычная находка изначально состояла из 4 кругов, одного кургана, рвов и ворот, расположенных на северном, юго-восточном и юго-западном направлениях. Однако для наблюдения за движением Солнца жрецы пользовались только двумя воротами. Для каких целей использовались третьи – остаётся загадкой. Фрагменты керамики, найденные на месте раскопок, только подтверждают, что обсерваторию построили около 7 тыс. лет назад. Кроме того, астрономы использовали её для создания лунного календаря, имеющего отношение к земледелию.

Ещё одним интересным фактом стала находка останков зверей и обезглавленных человеческих скелетов, чья плоть была скребками содрана с костей. Возможно, здесь имели место кровавые жертвоприношения. Никаких следов стихийных бедствий, катастроф, войн или эпидемий на месте раскопок не обнаружили. Поэтому для учёных остаются загадкой причины, по которым святилище было брошено.

Спустя некоторое время вблизи Гозека археологи нашли диск, который являл собой отображение космологических представлений о мире того времени. Специалисты не сомневаются, что находка с изображениями космоса является результатом труда древних астрономов, наблюдающих за небесными светилами и другими звёздными объектами не одну сотню лет.

Какие бы цели не преследовали древние астрономы, построившие подобные обсерватории, их сооружения остаются для современного человека настоящим чудом. Простой с архитектурной точки зрения, но в то же время сложный по функциям памятник архитектуры, является гениальным замыслом древних цивилизаций.

Их в России в разное время было более 50. Многие из них основывались как университетские и даже гимназические, например, астрономическая обсерватория гимназии им. А.Л. Кекина в г. Ростове Ярославской области. Некоторые обсерватории стали астрономическими музеями, другие закрылись, но появляются новые.





Вот список всех Российских астрономических обсерваторий:

Алтайский оптико-лазерный центр имени Г. С. Титова
Астрономическая обсерватория гимназии имени А. Л. Кекина
Астрономическая обсерватория имени В. П. Энгельгардта
Астрономическая обсерватория Иркутского государственного университета
Астрономическая обсерватория Казанского университета
Астрономическая обсерватория Петербургской академии наук
Астрономическая обсерватория Санкт-Петербургского университета
Астрономическая обсерватория Саратовского государственного университета
Астрономическая станция ТАУ
Астрофизическая обсерватория КубГУ
Байкальская астрофизическая обсерватория
Баксанская нейтринная обсерватория
Благовещенская широтная станция
БТА (телескоп)
Вега (обсерватория)
Восточный центр дальней космической связи
Государственный астрономический институт им. П. К. Штернберга
Звенигородская обсерватория
Институт земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова РАН
Кёнигсбергская обсерватория

Частные обсерватории


Наш полноприводный минибусик бодро катил вверх по недавно заасфальтированной дороге, серпантином поднимающейся по склонам Заилийского алатау, что на Тянь-Шане.
Равнинный пейзаж Алматинских окрестностей очень быстро сменился на горный. И уже через пару десятков минут мы подъехали к Большому Алматинскому озеру.

В ущелье реки Большая Алматинка, на высоте 2500 м над уровнем моря, во впадине, окруженной со всех сторон четырехкилометровыми вершинами, в результате землетрясения образовалось удивительной красоты горное озеро. Оно интересно тем, что в зависимости от сезона меняет свой цвет — от светло-зелёного до бирюзово-голубого. А близость от столицы (23 км) делает его любимым местом отдыха Алматинцев.

Делаем несколько панорамных снимков и едем дальше.


И уже через несколько минут въезжаем на территорию обсерватории.


А в одну из ночей мне удалось сделать несколько снимков через этот телескоп. Вот так выглядит самая большая планета Солнечной системы — Юпитер.

Западная башня — телескоп, находящийся в ней, еще ждет реконструкции.

Посмотрим на обсерваторию сверху.

Несколько астрономических павильонов на фоне Большого Алматинского озера.

Этот телескоп требует серьезной реконструкции.

Корпус Большого коронографа Никольского. Этот инструмент тоже ждет реконструкции — комплект оптики пока хранится отдельно. В Крымской астрофизической обсерватории аналогичный инструмент установлен под куполом.

Коронографы предназначены для изучения солнечной короны. До изобретения этого прибора люди могли видеть солнечную корону довольно редко — только во время полных затмений.

То, что здесь обитают астрономы видно даже по занавескам:)

Охранник. А традиционного котофото сделать, к сожалению, не удалось, ввиду отсутствия самих котиков)

В одной из комнат висит большая карта звездного неба.

Если приглядеться поближе, увидим забавную ошибку издателей: Венера и Меркурий перепутаны местами. Сколько людей, у которых в школе висела такая карта, считают Венеру ближайшей к Солнцу планетой!?

Обсерватория расположена в горной долине образованной древним ледником. На этой фотографии хорошо видна боковая морена — каменные отвалы, оставленные ледником.

Большая часть Заилийского Алатау включена в Иле-Алатауский национальный парк.

Виды здесь великолепные!

Места эти стоят того, чтобы вернуться сюда снова — здесь есть на что посмотреть! Рекомендую приехать в обсерваторию на несколько дней (здесь есть небольшая гостиница) и неспеша осмотреть окрестности.

Мои посты о Казахстане.

Сегодня история и научные исследования всячески доказывают, что наши далёкие предки обладали уникальными знаниями в области астрономии. Обнаруженные по всему миру обсерватории говорят о том, что древние цивилизации вели удивительно точные астрономические наблюдения. Благодаря правильному определению движения небесных светил, учёные прошлого могли вести счёт времени и заниматься астрологическими прогнозами. Древние астрономы также придумали календарь для ведения сельскохозяйственных работ. С помощью самых простых приборов они определяли, что Луна, Солнце и другие космические тела движутся по сложнейшей траектории. Кроме того, отмечались солнечные и лунные затмения, определялись появления новых звёзд и даже предсказывались катастрофы. В прошлых веках, точно как и сейчас, обсерватория служила для сбора информации, была мастерской и хранилищем ценных приборов.

Совсем недавно учёные сделали вывод, что многие памятники древней архитектуры имели цель наблюдать за небесными светилами. Подобные сооружения изучает довольно молодая наука — археоастрономия, совмещающая два направления – археологию и астрономию. Древнейшие солнечные обсерватории были найдены во всём мире: Америке, Азии, Европе и Африке.

На сегодняшний день верхняя часть башни разрушилась, и обсерватория стала напоминать сооружение с куполом. Однако эта постройка была возведена в форме цилиндра и астрономы древности перемещались по обсерватории между смотровыми окошками, наблюдая за звёздным небом.

Учёные, воспользовавшись протонным магнитометром в исследовании, обнаружили, что найденное строение датировалось концом каменного века и имело форму квадрата. В западной и восточной его частях располагались ворота. Все прямые линии, соединяющие выход в восточной стороне квадрата и его южную часть, имеют длину 302 м. Это является числом в 365 мегалитических ярдов, а один ярд равен 0,83 м (средний человеческий шаг). Таким образом, 365 ярдов может указывать на количество дней в году.

Гозекский круг: одна из древнейших обсерваторий планеты

Это древнее сооружение было найдено случайно в 1991 году на территории Германии. Пролетая на самолёте над пшеничными полями, представители земельного управления увидели несколько круглых знаков и сообщили о находке в один из местных университетов. Однако только в 2002 году специалисты приступили к раскопкам сооружения.

Исследуя Гозекский круг, учёные пришли к заключению, что он является уникальным во всех отношениях. Эта масштабная по площади конструкция была нацелена на определение летнего и зимнего солнцестояния. И хотя сегодня об основном предназначении круга известно, всё же остаётся много неразгаданных моментов.

Гозекский круг имеет вид нескольких круговых рвов внушительных размеров с размещёнными по периметру тремя воротами. Через них в определённые дни проходил солнечный свет. Ежегодно в самый короткий день лучи восходящего небесного светила проникали точно по центру небольших ворот обсерватории. Археологи считают, что её построили жители каменного века. В диаметре древнее святилище имеет 75 м и опоясано деревянными кольцами из двух рядов высотой 3 м.

Хотя обсерватория была построена земледельцами, которые населяли эту равнину, всё говорило о них, как о способных личностях, разбирающихся в математике и астрономии. Некоторые учёные утверждают, что найденное сооружение являлось не только обсерваторией. На её территории проводились магические ритуалы, которые современным исследователям не удаётся расшифровать.

Необычная находка изначально состояла из 4 кругов, одного кургана, рвов и ворот, расположенных на северном, юго-восточном и юго-западном направлениях. Однако для наблюдения за движением Солнца жрецы пользовались только двумя воротами. Для каких целей использовались третьи – остаётся загадкой. Фрагменты керамики, найденные на месте раскопок, только подтверждают, что обсерваторию построили около 7 тыс. лет назад. Кроме того, астрономы использовали её для создания лунного календаря, имеющего отношение к земледелию.

Ещё одним интересным фактом стала находка останков зверей и обезглавленных человеческих скелетов, чья плоть была скребками содрана с костей. Возможно, здесь имели место кровавые жертвоприношения. Никаких следов стихийных бедствий, катастроф, войн или эпидемий на месте раскопок не обнаружили. Поэтому для учёных остаются загадкой причины, по которым святилище было брошено.

Спустя некоторое время вблизи Гозека археологи нашли диск, который являл собой отображение космологических представлений о мире того времени. Специалисты не сомневаются, что находка с изображениями космоса является результатом труда древних астрономов, наблюдающих за небесными светилами и другими звёздными объектами не одну сотню лет.

Какие бы цели не преследовали древние астрономы, построившие подобные обсерватории, их сооружения остаются для современного человека настоящим чудом. Простой с архитектурной точки зрения, но в то же время сложный по функциям памятник архитектуры, является гениальным замыслом древних цивилизаций.

No related links found

Актуальность темы в том, что изучение вселенной ставит сложнейшие задачи не только перед астрономами и астрофизиками. Чтобы наблюдение за удаленными объектами было эффективным, приходится учитывать множество вполне земных факторов. Современные обсерватории представляют собой настоящее чудо инженерной мысли, а результатами совместной деятельности разных ученых зачастую пользуются даже кинематографисты. И действительно, трудно не согласиться с тем, что гигантские телескопы являют взору очень впечатляющую картину.
Создание первых астрономических обсерваторий теряется в глубине веков. Древнейшие обсерватории были построены в Ассирии, Вавилоне, Китае, Египте, Персии, Индии, Мексике, Перу и некоторых других государствах несколько тысячелетий назад. Древние египетские жрецы, которые были по сущес тву и первыми астрономами, вели наблюдения с плоских площадок, специально сделанных на вершинах пирамид.
Степень изученности. В разработке данной темы были использованы работы таких авторов как: Бережной А.А., Быков О. П., Левитан Е.П., Малов И. Ф., Мурзин В. С., Фортов В. Е., Щиголев Б. М., Язев С. А. и др.
Целью данной работы является изучение крупнейших астрономические обсерватории мира, исходя из поставленной цели, были определены следующие задачи:
- Рассмотреть понятие и виды астрономических обсерваторий;
- Исследовать описание крупных обсерваторий в мире.
Структура данной работы состоит из: введения, 2 глав, заключения и списка используемой литературы

Список литературы [ всего 13]

1. Астрономия. Учебное пособие / М.М. Дагаев и др. - М.: Просвещение, 2018. - 384 c.
2. Бережной, А.А. Солнечная система / А.А. Бережной. - М.: ФМЛ, 2017. - 694 c.
3. Быков, О. П. Прямые методы определения орбит небесных тел / О.П. Быков, К.В. Холшевников. - М.: Издательство СПбГУ, 2013. - 152 c.
4. Звездное небо. Карта. - Москва: Огни, 2015. - 164 c.
5. Карта звездного неба. - М.: ДонГис, 2015. - 792 c.
6. Кононович, Э.В. Общий курс астрономии / Э.В. Кононович. - Москва: СПб. [и др.] : Питер, 2017. - 387 c.
7. Левитан, Е.П. Дидактика астрономии / Е.П. Левитан. - Москва: Гостехиздат, 2013. - 987 c.
8. Малов, И. Ф. Механизмы космического излучения. Учебное пособие / И.Ф. Малов. - М.: Либроком, 2014. - 160 c.
9. Мурзин, В. С. Астрофизика космических лучей / В.С. Мурзин. - М.: Логос, 2014. -149 c.
10. Фортов, В. Е. Экстремальные состояния вещества на Земле и в космосе / В.Е. Фортов. - М.: ФИЗМАТЛИТ, 2013. - 264 c.
11. Щиголев, Б. М. Математическая обработка наблюдений / Б.М. Щиголев. - М.: Наука, 2015. - 344 c.
12. Язев, С. А. Лекции о Солнечной системе / С.А. Язев. - М.: Лань, 2013. - 384 c.
13. Янчилина, Фирюза По ту сторону звезд. Что начинается там, где заканчивается Вселенная? / Фирюза Янчилина. - М.: Едиториал УРСС, 2018. - 120 c

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Нажмите, чтобы узнать подробности

Цель работы: знакомство с современными космическими обсерваториями и изучение принципа их действия.

1. Узнать о методах изучения космоса

3. Проанализировать понятие гравитационных волн и использование принципа их действия для создания нового тира телескопов.

Развитие науки и техники в XX-XXI веке в значительной мере направили ученых на создание более современных и мощных средств изучения космоса. Огромный объём информации о космосе целиком остаётся за пределами земной атмосферы. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучикосмического происхождения недоступны для наблюдений с поверхности Земли. Для того чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Таковыми приборами стали космические обсерватории.

Глава 1. Изучение космоса

Вся история изучения Вселенной есть, в сущности, поиски и находки средств, улучшающих человеческое зрение. До начала XVII в. невооруженный глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет. По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.

Вселенная настолько огромна, что астрономы до сих пор не смогли установить, насколько она велика! Однако благодаря последним достижениям науки и техники мы узнали много нового о космосе и нашем месте в нем. В последние 50 лет люди получили возможность покидать Землю и изучать звезды и планеты не только наблюдая их в телескопы, но и получая информацию прямо из космоса. Запускаемые спутники оснащены сложнейшим оборудованием, с помощью которого были сделаны удивительные открытия, в существование которых астрономы не верили, например, черные дыры и новые планеты.

Со времени запуска в открытый космос первого искусственного спутника в октябре 1957 года за пределы нашей планеты было отправлено множество спутников и роботов-зондов. Благодаря им ученые “посетили” почти все основные планеты Солнечной системы, а также их спутники, астероиды, кометы. Подобные запуски осуществляются постоянно, и в наши дни зонды нового поколения продолжают свой полет к другим планетам, добывая и передавая на Землю всю информацию.

Также были запущены и космические обсерватории. Более подробно о них изложено в следующей главе.

Глава 2. Современные космические обсерватории

Для того чтобы более досконально изучать Вселенную , необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была уделом мечтателей. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.

Первые космические обсерватории существовали на орбите недолго, и программы наблюдений на них ограничивались несколькими пунктами. Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами для гарантированной работы в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.

Астрономы собирают заявки на проведение наблюдений, отбирают из них наиболее важные, готовят программу наблюдений, следят за получением и обработкой результатов. Данные, полученные на космических телескопах, в течение некоторого времени доступны лишь авторам программы наблюдений. Потом они поступают в компьютерные сети и агентства новостей, и любой астроном может воспользоваться ими. Также в сети содержится информация о видах телескопах – обсерваторий, их роде деятельности и принципе работы.

Список космических телескопов.

Этот список космических телескопов (астрономических обсерваторий в космосе), сгруппированный по основным диапазонам частот : Гамма-излучение, Рентгеновское излучение, Ультрафиолетовое излучение, Видимое излучение, Инфракрасное излучение, Микроволновое излучение и Радиоизлучение. Телескопы, работающие в различных частотных диапазонах включены во всех соответствующих разделах.

Космические гамма – телескопы

Гамма-телескопы собирают и измеряют высокоэнергическое гамма-излучение от астрофизических источников. Оно поглощается атмосферой, поэтому, чтобы вести наблюдения требуются высотные аэростаты или космические полёты. Гамма-лучи излучаются сверхновыми, нейтронными звёздами, пульсарами и чёрными дырами. Гамма-всплески, с очень высокими энергиями, были также обнаружены, но до сих пор не изучены.

Крупнейшей в своей области обсерваторией, запущенной в космос и работающей по сей день, является обсерватория GLAST.

GLAST (англ. Gamma-ray Large Area Space Telescope), впоследствии названный англ. Fermi Gamma-ray Space Telescope (рус. Космический гамма-телескоп Ферми) в честь физика Энрико Ферми (с 26 августа 2008 года), — космическая обсерватория на низкой земной орбите предназначенная для наблюдения больших областей космоса в диапазоне гамма-излучения. С его помощью астрономы исследуют астрофизические и космологические процессы, происходящие в активных ядрах галактик, пульсарах и других высокоэнергетических источниках; изучают гамма-всплески, ведут поиски тёмной материи.

Научные результаты.

Первым значительным открытием обсерватории была регистрация гамма-пульсара, расположенного в остатке сверхновой CTA 1[4]. Он находится в созвездии Цефей на расстоянии около 4600 световых лет от Земли и совершает полный оборот вокруг своей оси за 316,86 миллисекунд.

15 сентября 2008 года телескоп Ферми зарегистрировал рекордную вспышку гамма-излучения, получившую наименование GRB 080916C[5]. Последующие наблюдения астрономов позволили вычислить расстояние до объекта, которое равняется 12 миллиардам световых лет, и мощность вспышки. Считается, что подобные вспышки возникают при гравитационном коллапсе чрезвычайно массивной звезды. Вычисления показали, что скорость выброса звёздного вещества составляло 99,9999 процента от скорости света.

Гамма-рентгеновские пузыри Ферми

Одним из самых удивительных открытий, сделанных космическим телескопом, стало обнаружение гигантских образований размером до 50 тысяч световых лет, расположенных над и под центром нашей Галактики — Млечного Пути. Точная природа этих структур пока не известна, однако учёные полагают, что они возникли благодаря активности сверхмассивной чёрной дыры, находящейся в центре нашей Галактики. Предположительно, возраст пузырей составляет миллионы лет.

4. Гамма-вспышки новых звёзд

Начиная с 2010 года, телескоп зарегистрировал несколько мощных гамма-вспышек, источником которых являются новые звезды. Первым подобным объектом стала V407 Лебедя (V407 Cygni). Учёные считают, что такие гамма-вспышки возникают в тесно связанных двойных системах, когда вещество аккрецируется с одной звезды на другую.

Космические рентгеновские телескопы

Рентгеновские телескопы воспринимают поток фотонов высоких энергий, именуемый рентгеновским излучением. Оно сильно поглощается атмосферой, а это означает, может наблюдаться только высоко в атмосфере или в космосе. Несколько типов астрофизических объектов испускают рентгеновские лучи: Скопление галактик, чёрные дыры, Активные ядра галактик, остатки сверхновых, звёзды, звёзды в паре с белым карликом (катастрофические переменные звёзды), нейтронной звездой или чёрной дырой (рентгеновские двойные). Некоторые объекты Солнечной системы испускают рентгеновские лучи, в том числе и Луна, хотя большая часть рентгеновского излучения Луны возникает от отражённого солнечного рентгеновского излучения.

В пример можно поставить японскую орбитальную рентгеновскую обсерваторию ASCA.

ASCA — Усовершенствованный спутник для космологии и астрофизики; название до запуска ASTRO-D, четвёртая орбитальная рентгеновская обсерватория Японии, и вторая, в которую значительный вклад внесли США. Обсерватория создана проектной группой под руководством Минору Ода в Институте космических наук и астронавтики совместно с НАСА. Обсерватория была запущена 20 февраля 1993 года японской ракетой-носителем M-3S-II. Через 8 лет работы после геомагнитного шторма контроль над спутником был утерян 14 июля 2000 года, после чего научные наблюдения более не проводились. Спутник вошёл в плотные слои атмосферы и разрушился 2 марта 2001 года.

Основные результаты.

1. Обнаружение широких эмиссионных линий в спектрах аккрецирующих чёрных дыр — указание на влияние на их профиль эффектов общей теории относительности

2. Измерение профилей температур в скоплениях галактик

3. Измерение обилия тяжёлых элементов в спектрах звёзд с активными коронами

4. Обнаружение нетеплового излучения остатка вспышки сверхновой SN 1006

5. Открытие флуоресцентных линий излучения нейтрального железа в области Галактического центра — дополнительного свидетельства прошлой активности сверхмассивной чёрной дыры в центре нашей Галактики

6. Измерение обилия тяжёлых элементов в галактиках и скоплениях галактик

Космические ультрафиолетовые телескопы

Ультрафиолетовые телескопы изучают небо в ультрафиолетовом диапазоне длин волн, то есть примерно между 10 и 320 нм. Свет на этих длинах волн поглощается атмосферой Земли, поэтому наблюдения на этих длинах волн могут быть выполнены из верхних слоев атмосферы или из космоса.

Объекты излучающие ультрафиолетовое излучения включают Солнце, другие звёзды и галактики.

Хорошим представителем в этой области является телескоп GALEX.

1. Космическая обсерватория изучила сотни тысяч галактик. По результатам этих наблюдений было составлено несколько обзоров неба.

2. В 2007 году членом исследовательской команды телескопа Майком Сайбертом вокруг звезды Мира был обнаружен хвост из пыли и газа длиной около 2 градусов (13 световых лет). Это стало возможным благодаря способности детекторов телескопа GALEX фокусироваться на одном типе излучения

Космические оптические телескопы

Самая старая форма астрономии, оптическая или видимого света астрономия простирается примерно от 400 до 700 нм. Позиционирование оптического телескопа в космосе означает, что телескоп не видит атмосферных помех, обеспечивая получение более высокого разрешения. Оптические телескопы используются для наблюдения звезд, галактик, планетарных туманностей и протопланетных дисков, среди многих других вещей.

Конечно же, несомненным лидером среди оптических телескопов является космический телескоп Хаббл.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле

Наиболее значимые наблюдения

1. При помощи измерения расстояний до цефеид в Скоплении Девы было уточнено значение постоянной Хаббла. До наблюдений орбитального телескопа погрешность определения постоянной оценивалась в 50 %, наблюдения позволили снизить погрешность до 10 %.

3. Впервые получены карты поверхности Плутона и Эриды.

4. Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.

5. Получены дополнительные данные о планетах вне солнечной системы, в том числе спектрометрические.

6. Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.

7. Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик; на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.

8. По результатам наблюдений квазаров получена современная космологическая модель, представляющая собой Вселенную, расширяющуюся с ускорением, заполненную тёмной энергией, и уточнён возраст Вселенной — 13,7 млрд лет.

9. Обнаружено наличие эквивалентов гамма-всплесков в оптическом диапазоне.

11. В 2004 году был сфотографирован участок неба (Hubble Ultra Deep Field) с эффективной выдержкой около 106 секунд (11,3 суток), что позволило продолжить изучение отдалённых галактик вплоть до эпохи образования первых звёзд. Впервые были получены изображения протогалактик, первых сгустков материи, которые сформировались менее чем через миллиард лет после Большого взрыва.

12. В 2012 года НАСА опубликовало изображение Hubble Extreme Deep Field (XDF), представляющее собой комбинацию центральной области HUDF и новых данных с выдержкой 2 миллиона секунд.

13. В 2013 году, после изучения сделанных телескопом в 2004—2009 годах снимков, был открыт спутник Нептуна S/2004 N 1.

Космические инфракрасные телескопы

Инфракрасный свет имеет меньшую энергию, чем видимый свет, следовательно, испускают его более холодные объекты. Таким образом, можно рассматривать в инфракрасном свете: холодные звезды (в том числе коричневые карлики), туманности, и очень далекие галактики.

Телескоп предназначен для изучения инфракрасной части излучения от объектов в Солнечной системе, в Млечном пути, а также от внегалактических объектов, находящихся в миллиардах световых лет от Земли (например, новорождённых галактик). Также предполагались исследования по следующим темам:

формирование и развитие галактик в ранней вселенной;

образование звёзд и их взаимодействие с межзвёздной средой;

химический состав атмосфер и поверхности тел Солнечной системы, включая планеты, кометы и спутники планет.

В данной работе была представлена информация о способах изучения космоса, включая новые методы его исследования – современные космические обсерватории.

Читайте также: