Кротовые норы в космосе реферат

Обновлено: 20.05.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное бюджетное общеобразовательное учреждение

Березовская средняя общеобразовательная школа

Карачевского района Брянской области

Тема исследовательской работы:

Предметное направление: астрономия

Номинация : Безграничные тайны космоса

Хромова Анастасия Сергеевна, 10 класс

Руководитель: Карсекина Ольга Владимировна,

учитель физики (астрономии) и математики

МБОУ Березовская СОШ Карачевского района

1. Введение. Актуальность вопроса

3. История вопроса

5. Заключение. Описание методики сбора материала

1. Введение. Актуальность вопроса

Тема космоса является одной из самых неизученных областей человеческой жизни. У ученых всегда возникает много вопросов, решить которые пока что трудно или вообще не представляется возможным.

Цель данной работы:

1.Изучить литературу по данному вопросу;

2.Собрать материал по теории;

3.Найти примеры и доказательства по этой теме;

4.Выяснить значение незнакомых терминов;

5.Проанализировать полученные результаты исследований и сделать собственные выводы.

3. История вопроса

Еще в 1916 году Эйнштейн высказывал предположение о существовании подобных явлений в космосе. Согласно исследованиям великого физика, кротовина – это способ пронзания пространства и времени таким образом, что возможно объединить две точки в космосе вместе, мгновенно переместившись из одной в другую, оказавшись за миллиарды световых лет от места старта.

Научно-обоснованная теория “кротовых нор” зародилась в астрофизике еще в 1935 году вместе с пионерской работой Эйнштейна и Розена. Но в той работе “кротовая нора” была названа авторами “мостом” между различными частями Вселенной. Ученые вывели математически выявили возможность существования кротовых нор (червоточин).

Попав в одну область входа червоточины, мгновенно объект окажется в области выхода. Раньше считалось, что пространство несгибаемое. Но после Общей относительности Эйнштейна оказалось, пространство искажается от воздействия массивных объектов.

Англоязычным термином, который с 90-ых годов прижился для “кротовых нор” стал “wormhole” (вормхол), но первыми предложили этот термин еще в 1957 году американские астрофизики Мизнер и Уилер (это тот самый Уилер, который считается “отцом” американской водородной бомбы). На русский язык “wormhole” переводится как “червячная дыра”. Такой термин не нравился многим русскоговорящим астрофизикам, и в 2004 году было принято решение провести голосование по различным предложенным терминам для таких объектов. В результате этого голосования победил термин “кротовая нора”.

Более того, согласно утверждению Эйнштейна, любая чёрная дыра — это кротовая нора. Подобного мнения придерживается ученый и исследователь Пабло Буэно. По его мнению , можно соотнести понятие червоточины и черной дыры. Его группе удалось зафиксировать гравитационные волны, исходящие от дыр, которые могут быть неправильно понятыми видами кротовых нор. И если ученым удастся поймать эхо в этих сигналах, это будет означать, что можно будет смело отменять существование черных дыр.

Буэно также считает, что так как у кротовых нор отсутствует горизонт событий, то они представляют собой пространственно-временной коридор, по которому действительно можно спокойно перемещаться, в конце концов попав в абсолютно другую Вселенную. Что такое горизонт событий? Для примера можно представить вид из окна многоэтажки, где не видно происходящее вне горизонта. Следовательно, оказавшись в черной дыре, невозможно рассмотреть, что творится внутри ее границ.

4. Так что же принято называть кротовой норой?

Можно дать разные определения кротовым норам, но общим для всех определений является свойство, согласно которому кротовая нора должна соединять между собой две неискривленных области пространства. Место соединения и называется кротовой норой, а его центральный участок – горловиной кротовой норы. Пространство вблизи горловины кротовой норы достаточно сильно искривлено.

Кротовая нора может соединять либо две разные вселенные, либо одну и ту же вселенную в разных частях. В последнем случае расстояние через кротовую нору (между входами в нее) может оказаться короче, чем расстояние между входами, измеренное снаружи (хотя это вовсе и необязательно).

Строго говоря, понятия времени и расстояния в искривленном пространстве-времени перестают быть абсолютными величинами, т.е. такими, какими мы подсознательно всегда привыкли их считать. Речь идет о собственном времени, измеряемым наблюдателем, который свободно двигается (без ракетных или каких-либо других двигателей) почти со световой скоростью.

Кротовые норы, через которые может проходить свет и другая материя в обе стороны называются проходимыми кротовыми норами. Исходя из слова “проходимые” напрашивается вопрос: а есть-ли непроходимые кротовые норы? Да – есть. Это такие объекты, которые внешне (на каждом из входов) являются как-бы черной дырой, но внутри такой черной дыры нет сингулярности (сингулярностью в физике называют бесконечную плотность материи, которая разрывает и уничтожает любую другую материю, попадающую в нее). При этом свойство сингулярности обязательно для обычных черных дыр. А сама черная дыра определяется наличием у неё поверхности (сферы), из под которой наружу не может вырваться даже свет. Такая поверхность называется горизонтом черной дыры (или горизонтом событий).

Таким образом, материя может попасть внутрь непроходимой кротовой норы, но выйти из нее уже не может (очень похоже на свойство черной дыры). Более того, могут быть еще и полупроходимые кротовые норы, в которых материя или свет может проходить по кротовой норе только в одну сторону, но не может проходить в другую.

Рисунок 3. Схематичное изображение искривления двумерного пространства. Цифрами обозначены последовательные стадии перехода: от стадии неискривленного пространства (1) до стадии двумерной кротовой норы (7).

Как понять в какую сторону будет искривление?

Искривление будет одинаково для любой плоскости, проведенной через точку “O”, а направление тут не при чем. Само геометрическое свойство пространства меняется так, что и отношение длины окружности к радиусу меняется также! Некоторые ученые считают, что искривление пространства происходит в направлении нового (четвертого) измерения. Но сама теория относительности не нуждается в дополнительном измерении, ей хватает трех пространственных и одного временного измерения. Обычно временному измерению приписывают индекс нуль, а пространство-время обозначают как 3+1.

Рисунок 4.
Схематичное изображение искривления двумерного пространства в двумерной кротовой норе. Показано падение двумерного объекта (круга) на двумерную кротовую нору.

Чтобы ответить на этот вопрос обратимся к двумерной аналогии – см. рисунок 4.

Предположим, что тело является двумерной фигурой (рисунок, вырезанный из бумаги или другого материала), и этот рисунок скользит по поверхности, которая является воронкой. Причем скользит наш рисунок в направлении горловины воронки так, что прижимается к поверхности воронки всей своей поверхностью. Очевидно, что по мере приближения рисунка к горловине кривизна поверхности воронки нарастает, и поверхность рисунка начинает деформироваться в соответствии с формой воронки в данном месте рисунка. Наш рисунок (хоть он и бумажный), так же как и любое физическое тело обладает свойствами упругости, которые препятствуют его деформации.

В то же время материал рисунка оказывает физическое воздействие на материал, из которого сделана воронка. Можно сказать, что и воронка, и рисунок воздействуют силами упругости друг на друга.

Далее в принципе возможны четыре варианта:

1. Рисунок деформируется настолько, что проскочит через воронку, при этом он может и разрушиться (разорваться).
2. Рисунок и воронка деформируются недостаточно, чтобы рисунок проскочил (для этого нужно, чтобы рисунок имел достаточно большие размеры и прочность). Тогда рисунок застрянет в воронке и перекроет ее горловину для других тел.
3. Рисунок (точнее материал рисунка) разрушит (разорвет) материал воронки, т.е. такая двумерная кротовая нора будет разрушена.
4. Рисунок проскочит мимо горловины воронки (возможно задев ее при этом своим краем). Но это будет только в том случае, если вы недостаточно точно прицелили ваш рисунок на направление горловины.

Эти же четыре варианта возможны и для падения трехмерных физических тел в трехмерные кротовые норы. Вот так иллюзорно, на примере игрушечных моделей, можно описать кротовую нору в виде тоннеля без стенок.

Рисунок 5. (рисунок взят из книги А.Д. Линде “Инфляционная космология”)
Слева – модель хаотической инфляционной многоэлементной Вселенной без кротовых нор, справа – тоже, но с кротовыми норами.

Сегодня модель “хаотической инфляции” является основой современной космологии. Эта модель работает в рамках теории Эйнштейна и предполагает существование (кроме нашей) бесконечного количества других вселенных, возникающих после “большого взрыва”, образуя во время “взрыва” так-называемую “пространственно-временную пену”. Первые мгновения во время и после этого “взрыва” и являются основой модели “хаотической инфляции”.

В эти мгновения могут возникать первичные пространственно-временные тоннели (кротовые норы), которые, вероятно, сохраняются и после инфляции. Далее эти кротовые норы связывают различные районы нашей и других вселенных. Таким образом, эта модель открывает уникальную возможность исследования многоэлементной Вселенной и обнаружения нового типа объектов -– входов в кротовые норы.

Топология и кротовые норы

Кротовые норы могут соединять разные участки одной и той же вселенной или соединять разные вселенные. Как ни странно, но второй случай (соединения разных вселенных) оказывается математически гораздо более простым, чем случай соединения в одной и той же вселенной. Связано это вот с чем: математически гораздо проще описывать симметричную модель, чем модель с нарушенной симметрией.

Рисунок 6. (рисунок взят из Интернета)
Схематичное изображение двух разных топологий кротовых нор: слева – топология сферы и справа – топология тора.

Топология изучает свойства пространств разных типов.

Как должна выглядеть кротовая нора в мощный телескоп

Если кротовая нора является непроходимой, то отличить ее от черной дыры будет очень непросто. Зато если она проходима, то через нее можно наблюдать объекты и звезды в другой вселенной.

Рисунок 7.
На левой панели показан участок звездного неба, наблюдаемый через круглое отверстие в одной и той же вселенной (1 миллион одинаковых, равномерно-распределенных звезд). На средней панели показано звездное небо другой вселенной, наблюдаемое через статичную кротовую нору (1 миллион разных изображений от 210 069 одинаковых и равномерно-распределенных звезд в другой вселенной). На правой панели показано звездное небо другой вселенной, наблюдаемое через черно-белую дыру (1 миллион разных изображений от 58 892 одинаковых и равномерно-распределенных звезд в другой вселенной).

Рассмотрим простейшую (гипотетическую) модель звездного неба: на небе есть достаточно много одинаковых звезд, и все эти звезды равномерно распределены по небесной сфере. Тогда картина этого неба, наблюдаемая через круглое отверстие в одной и той же вселенной, будет такая, как показано на левой панели рисунка 7. На этой левой панели видно 1 миллион одинаковых, равномерно-распределенных звезд, поэтому изображение кажется почти однородным круглым пятном.

Если же мы наблюдаем такое же звездное небо (в другой вселенной) через горловину кротовой норы (из нашей вселенной), то картина изображений этих звезд будет выглядеть примерно так, как показано на центральной панели рисунка 7.

На правой панели рисунка 7 – аналогичная предыдущему случаю картина звездного неба другой вселенной, но наблюдаемая в нашей вселенной через черно-белую дыру.
Обратим внимание, что за счет эффектов, называемых в астрофизике гравитационным рассеянием, видимые нам на средней и правой панели рисунка 9 звезды меняют свою яркость (несмотря на то, что все они одинаковые и равномерно-распределены в другой вселенной) в зависимости от угла (по отношению к направлению на центр кротовой норы), под которым эти звезды видимы нам. Кроме этого, эффекты гравитационного рассеяния изменяют и среднюю плотность звезд вблизи конкретной точки. Причем изменение видимой яркости и средней плотности звезд оказываются связаны друг с другом: произведение видимой яркости на среднюю плотность звезд оказывается константой (не зависящей от угла).

5. Заключение. Почему это необходимо изучать?

Сегодня общая теория относительности является основой стандартной модели космологии, но ученые до конца еще не уверены в справедливости этой теории и этой модели для всех явлений космоса. Так вот, лишний раз подтвердить эти предположения (или их опровергнуть) можно только на космологических (вселенских) масштабах или с помощью изучения физических эффектов вблизи самой границы черных дыр или кротовых нор. Эта часть науки о космосе называется ультрарелятивистской астрофизикой.

Во-вторых, черные дыры (черно-белые дыры) являются одним из основных источников энергии в активных ядрах галактик во Вселенной. В частности, это основные источники, дающие энергию для квазаров. То есть, материя из аккреционного диска вокруг центральной в галактике сверхмассивной черной дыры засасывается внутрь, при этом в результате сложных и разнообразных промежуточных процессов выделяется энергия, часть которой мы наблюдаем в виде светящейся струи от квазара (джета).

В-третьих, черные дыры и кротовые норы, возможно, является единственным типом объектов с нетривиальной топологией, которые связывают нашу Вселенную с другими вселенными, а также могут быть причиной существования сингулярностей. При этом без изучения черных дыр невозможно изучение и кротовых нор.

6. Литература и использованные материалы.

6. Интернет - ресурсы

7. Приложения

https://avatars.mds.yandex.net/get-zen_doc/1898242/pub_5ce78e70276b9000b35fb500_5ce7c49ca3183300b229ca17/scale_1200

Рисунок 3. Схематичное изображение искривления двумерного пространства. Цифрами обозначены последовательные стадии перехода: от стадии неискривленного пространства (1) до стадии двумерной кротовой норы (7).

https://aboutspacejornal.net/wp-content/uploads/2018/11/R_curv_1-640x289.jpg

Рисунок 4.
Схематичное изображение искривления двумерного пространства в двумерной кротовой норе. Показано падение двумерного объекта (круга) на двумерную кротовую нору.

https://aboutspacejornal.net/wp-content/uploads/2018/11/wh1-640x300.jpg

Рисунок 5. (рисунок взят из книги А.Д. Линде “Инфляционная космология”)
Слева – модель хаотической инфляционной многоэлементной Вселенной без кротовых нор, справа – тоже, но с кротовыми норами.

https://aboutspacejornal.net/wp-content/uploads/2018/11/R_rel_1-640x450.jpg

Рисунок 6. (рисунок взят из Интернета)
Схематичное изображение двух разных топологий кротовых нор: слева – топология сферы и справа – топология тора.

https://aboutspacejornal.net/wp-content/uploads/2018/11/R_topol-640x158.jpg

Рисунок 7.
На левой панели показан участок звездного неба, наблюдаемый через круглое отверстие в одной и той же вселенной (1 миллион одинаковых, равномерно-распределенных звезд). На средней панели показано звездное небо другой вселенной, наблюдаемое через статичную кротовую нору (1 миллион разных изображений от 210 069 одинаковых и равномерно-распределенных звезд в другой вселенной). На правой панели показано звездное небо другой вселенной, наблюдаемое через черно-белую дыру (1 миллион разных изображений от 58 892 одинаковых и равномерно-распределенных звезд в другой вселенной).

Фото: Shutterstock

РБК Тренды разобрались в одном из самых таинственных феноменов астрофизики и постарались приблизиться к пониманию, как сегодня изучают и открывают новые грани возможных путешествий во времени и пространстве

Кротовая нора — это гипотетический астрофизический объект с искажением пространства и времени, в теории дающий возможность путешествовать даже сквозь разные вселенные. Как ее можно представить?

По-научному

Первая диаграмма кротовой норы (Джон Уилер,1955)

По-простому

Как объясняет профессор Государственного астрономического института имени Штернберга Владимир Липунов, представить кротовую нору можно, сложив листок бумаги пополам, а затем проткнув его. Получившееся отверстие будет подобием кротовой норы.

Как работает кротовая нора?

Кротовые норы описываются уравнениями общей теории относительности. Для их возникновения и стабильного существования необходима экзотическая материя, например, с отрицательной энергией. Такое вещество не должно дать горловине кротовой норы схлопнуться под воздействием гравитации. Нора соединяет разные области пространства-времени.

А что с черной дырой?

Кротовые норы и черные дыры — два типа объектов, которые в зависимости от характеристик могут как быть очень похожими, так и сильно отличаться.

Какими бывают кротовые норы?

Согласно исследованиям, существующие кротовые норы можно разделить на несколько подвидов:

Они внешне напоминают черную дыру, но внутри такой дыры нет сингулярности, то есть бесконечной плотности материи, которая разрывает и уничтожает любую другую материю, попадающую в нее. В теории у таких нор даже нельзя поймать сигнал — они разрушаются слишком быстро.

Эти норы можно пересекать в обе стороны, что дает возможность для путешествий на большие расстояния без нарушения скоростного предела. Чтобы быть проходимой, кротовая нора должна быть заполнена темной материей.

Если один из входов в кротовую нору движется относительно другого, или если он находится в мощном гравитационном поле, где замедляется временной поток, то такая нора способна стать настоящей машиной времени.

Почему кротовые норы до сих пор не обнаружены?

Принцип функционирования кротовых нор теоретически обоснован, но экспериментально они пока не наблюдаются. Есть мнение, что микроскопические кротовые норы существуют в космическом пространстве на уровне взаимодействия элементарных частиц высоких энергий. Есть ли в природе широкие кротовые туннели, еще неизвестно. Современные технические устройства пока не позволяют увидеть эти объекты, но технологии развиваются.

Фото:Pexels

Стоит ли вообще искать кротовую нору?

Конечно, каждому писателю-фантасту или же режиссеру фильма о космосе подвластно создать кротовую нору любых размеров и проявлений. Однако ученые, порой, под сомнение ставят не только вопрос целесообразности изучения кротовой норы, но и сам факт ее существования.

Однако, по мнению Эмиля Ахмедова, не все так просто и категорично. Однозначно утверждать, что кротовые норы существуют только математически и на бумаге, нельзя. По словам ученого, уравнения Эйнштейна не очень ограничительные — это значит, что у них много различных решений, и не все из них обязаны реализоваться в природе. Например, белые дыры существуют как решения уравнений гравитации, но вполне вероятно, что в природе их нет. При этом черные дыры регистрируются, и уже есть их фото. Еще один важный факт — некоторые из этих гипотетических объектов неустойчивы, т.е. живут достаточно короткое время, как поставленная на ребро монета, которая может упасть при малейшем дуновении ветра.

Фото:Pierre Châtel-Innocenti / Unsplash

Можно ли создать кротовую нору искусственно?

В теории, в далеком будущем и при должном уровне развития ускорительной техники — да.

Возможны ли путешествия сквозь кротовые норы?

Пока что идея кротовой норы — единственная надежда человечества на путешествия на очень большие расстояния за разумное время.

Фото:Shutterstock

Иллюстрация “внутримировой” черной дыры

Кротовая нора или червоточина — это гипотетическая топологическая особенность пространства-времени, представляющая собой “туннель” в пространстве в каждый момент времени (пространственно-временной туннель). Тем самым кротовая нора позволяет перемещаться в пространстве и времени. Области, которые связывает кротовая нора, могут представлять собой области единого пространства или быть полностью разъединенными. Во втором случае кротовая нора является единственным связующим звеном двух областей. Первый вид кротовых нор часто называют “внутримировыми”, а второй вид “межмировыми“.

Гипотетические частицы Тахионы

Как известно Общая теория относительности (ОТО) запрещает перемещение во Вселенной со скоростью превышающей скорость света. С другой стороны ОТО допускает существование пространственно-временных туннелей, но при этом необходимо, чтобы туннель был заполнен экзотической материей с отрицательной плотностью энергии, создающей сильное гравитационное отталкивание и препятствующей схлопыванию туннеля.

Материалы по теме


К подобным частицам экзотической материи чаще всего относят тахионы. Тахионы – это гипотетические частицы, которые движутся быстрее скорости света. Для того чтобы такие частицы не нарушали ОТО предполагается, что масса тахионов является отрицательной.

В настоящее время нет достоверных экспериментальных подтверждений существования тахионов в лабораторных экспериментах или астрономических наблюдениях. Физики могут похвастаться лишь “псевдоотрицательной“ массой электронов и атомов, которые получают при высокой плотности электрических полей, особой поляризации лазерных лучей или сверхнизких температурах. В последнем случае эксперименты проводились с конденсатом Бозе – Эйнштейна, агрегатным состоянием вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях, и квантовые эффекты начинают проявляться на макроскопическом уровне. За получение конденсата Бозе-Эйншейна в 2001 году была вручена Нобелевская премия по физике.

Конденсат Бозе-Эйншейна

Впрочем, ряд специалистов предполагают, что тахионами могут являться нейтрино. Эти элементарные частицы обладают ненулевой массой, что было доказано с помощью обнаружения нейтринных осцилляций. Последнее открытие даже удостоилось Нобелевской премии по физике за 2015 год. С другой стороны точное значение массы нейтрино до сих пор определить не удалось. Ряд экспериментов по измерению скорости нейтрино показали, что их скорость может незначительно превышать скорость света. Эти данные постоянно подвергаются сомнению, но в 2014 году вышла новая работа по этому поводу.

Теория струн

Фундаментальная структура Вселенной по теории струн

Фундаментальная структура Вселенной по теории струн

Параллельно некоторые теоретики предполагают, что в ранней Вселенной могли сформироваться особые образования (космические струны) с отрицательной массой. Длина реликтовых космических струн может достигать как минимум несколько десятков парсек при толщине меньше диаметра атома при средней плотности 10 22 грамм на см 3 . Существует несколько работ о том, что подобные образования наблюдались в событиях гравитационного линзирования света далеких квазаров. В целом же теория струн в настоящее время является наиболее вероятным кандидатом на “теорию всего“ или единую теорию поля, которая объединяет теорию относительности и квантовую теорию поля. Согласно ей все элементарные частицы представляют собой колеблющиеся нити энергии длиной около 10 -33 метра, что сравнимо с планковской длиной (минимальным возможным размером объекта во Вселенной).

Теория единого поля предполагает, что в пространственно-временных измерениях существуют ячейки с минимальной длиной и временем. Минимальная длина должна быть равна планковской длине (примерно 1,6·10 −35 метров).

Комплексное n-мерное пространство Калаби-Яу

Комплексное n-мерное пространство Калаби-Яу

В то же время наблюдения удаленных гамма-всплесков говорят о том, что если зернистость пространства существует, то размер этих зерен не больше 10 −48 метров. Кроме того БАК не смог подтвердить некоторые следствия теории струн, что стало серьезным аргументом ошибочности этой фундаментальной теории современной физики.

Квантовая запутанность

Потенциально большим значением на пути к созданию единой теории поля и пространственно-временных туннелей является обнаружение в 2014 году теоретической связи между квантовой запутанностью и кротовыми норами. В новой теоретической работе было показано, что создание пространственно-временного туннеля возможно не только между двумя массивными черными дырами, но и между двумя квантово запутанными кварками.

Квантовая запутанность

Квантовая запутанность – это явление в квантовой механике, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий. Измерение параметра одной частицы приводит к мгновенному (выше скорости света) прекращению запутанного состояния другой, что находится в логическом противоречии с принципом локальности (при этом теория относительности не нарушается и информация не передаётся).

Перспективы гравитационно-волновой и нейтринной астрономии

Теоретическая модель рождения нашей Вселенной

Теоретическая модель рождения нашей Вселенной

Наибольшими перспективами в изучении свойств материи на самом микроскопическом и высокоэнергетическом уровне для лучшего понимания квантовой гравитации обладает гравитационно-волновая и нейтринная астрономия за счет того что она изучает волны и частицы с наибольшей проникающей способностью. Так если микроволновое реликтовое излучение Вселенной образовалось через 380 тысяч лет после Большого взрыва, то реликтовые нейтрино в первые несколько секунд, а реликтовые гравитационные волны всего через 10 -32 секунд! Кроме того большими перспективами обладают регистрации подобных излучений и частиц с горизонта событий черных дыр или у катастрофических событий (слияния нейтронных звезд и черных дыр, коллапсов массивных звезд).

Материалы по теме


С другой стороны активно развиваются традиционные астрометрические обсерватории, которые сейчас охватывают весь электромагнитный спектр. Подобные обсерватории могут обнаружить неожиданные объекты или явления в ранней Вселенной (первые межзвездные облака, звезды и галактики), в случаях гравитационного линзирования или во время наблюдений экстремальных объектов (черных дыр и нейтронных звезд). Астрономия продолжает являться наиболее эффективным направлением современной физики, так как способна изучать материю в экстремальных условиях, которые не доступны в земных лабораториях и ускорителях. В частности, существующие астрономические наблюдения в электромагнитном диапазоне привели к открытию загадочной темной материи и энергии, которые на данный момент не способна описать Стандартная модель (современная физическая теория, описывающая электромагнитное, слабое и сильное взаимодействие всех известных элементарных частиц). Другими примерами важности астрономических наблюдений в истории физики являются открытия аномального движения Меркурия, астрометрического смещения света звезд рядом с диском Солнца, а так же двойных нейтронных звезд. Эти открытия стали мотивом для создания и проверки теории относительности, а так же позволили предсказать существование гравитационных волн.

Кадр из фильма “Интерстеллар”

Кадр из фильма “Интерстеллар”

Пространственно-временные туннели или кротовые норы являются в научной фантастике самым популярным способом перемещения к другим звездам. Можно назвать наиболее популярные фильмы на эту тему: “Интерстеллар” (2014), “Контакт” (1997), “Сквозь горизонт” (1997), франшиза “Звездные войны” (1977-2017 годы). Первым начал широко использовать термины “черная дыра” и “кротовая дыра” американский физик Джон Уилер (1911-2008 годы). Советско-российский радиоастроном Николай Кардашев первым выдвинул идею, что черные дыры в центрах галактик являются входами в кротовые норы.

Звездная вселенная таит в себе множество загадок. Согласно общей теории относительности (ОТО), созданной Эйнштейном, мы живем в четырехмерном пространстве-времени. Оно искривлено, а гравитация, знакомая всем нам, является проявлением этого свойства. Материя искривляет, "прогибает" пространство вокруг себя, и тем больше, чем она плотнее. Космос, пространство и время - все это очень интересные темы. Прочитав эту статью, вы наверняка узнаете что-то новое о них.

Идея кривизны

изучение космоса

Множество других теорий тяготения, которых существует сегодня целые сотни, в деталях отличается от ОТО. Однако все эти астрономические гипотезы сохраняют основное – идею кривизны. Если пространство кривое, то можно предположить, что оно могло принять, например, форму трубы, соединяющей области, которые разделены множеством световых лет. А возможно, даже эпохи, далекие друг от друга. Ведь мы ведем речь не о пространстве, привычном нам, а о пространстве-времени, когда рассматриваем космос. Дыра в нем может появиться лишь при определенных условиях. Предлагаем вам поближе познакомиться с таким интересным явлением, как кротовые норы.

Первые идеи о кротовых норах

кротовые норы в космосе

Далекий космос и его загадки манят к себе. Мысли об искривлении появились сразу же после того, как была опубликована ОТО. Л. Фламм, австрийский физик, уже в 1916 году говорил о том, что пространственная геометрия может существовать в виде некоей норы, которая соединяет два мира. Математик Н. Розен и А. Эйнштейн в 1935 году заметили, что простейшие решения уравнений в рамках ОТО, описывающие изолированные электрически заряженные или нейтральные источники, создающие гравитационное поля, обладают пространственной структурой "моста". То есть они соединяют две вселенные, два почти плоских и одинаковых пространства-времени.

Позднее эти пространственные структуры стали именоваться "кротовыми норами", что является довольно вольным переводом с английского языка слова wormhole. Более близкий его перевод – "червоточина" (в космосе). Розен и Эйнштейн даже не исключали возможности использования этих "мостов" для описания с их помощью элементарных частиц. Действительно, в этом случае частица является сугубо пространственным образованием. Следовательно, необходимости моделировать источник заряда или массы специально не появится. А удаленный внешний наблюдатель в случае, если кротовая нора имеет микроскопические размеры, видит лишь точечный источник с зарядом и массой при нахождении в одном из этих пространств.

"Мосты" Эйнштейна-Розена

С одной стороны в нору входят электрические силовые линии, а с другой они выходят, не заканчиваясь и не начинаясь нигде. Дж. Уилер, американский физик, по этому поводу сказал, что получается "заряд без заряда" и "масса без массы". Вовсе не обязательно в этом случае считать, что мост служит для соединения двух разных вселенных. Не менее уместным будет и предположение о том, что у кротовой норы оба "устья" выходят в одинаковую вселенную, однако в разные времена и в разных ее точках. Получается что-то, напоминающее пустотелую "ручку", если ее пришить к практически плоскому привычному миру. Силовые линии входят в устье, которое можно понимать как отрицательный заряд (допустим, электрон). Устье, из которого они выходят, имеет положительный заряд (позитрон). Что же касается масс, они с обеих сторон будут одинаковыми.

Условия образования "мостов" Эйнштейна-Розена

звездная вселенная

Эта картина, при всей своей привлекательности, не получила распространение в физике элементарных частиц, на что было множество причин. Нелегко приписать "мостам" Эйнштейна-Розена квантовые свойства, без которых в микромире не обойтись. Такой "мост" и вовсе не образуется при известных значениях зарядов и масс частиц (протонов или электронов). "Электрическое" решение вместо этого предсказывает "голую" сингулярность, то есть точку, где электрическое поле и кривизна пространства делаются бесконечными. В таких точках понятие пространства-времени даже в случае искривления теряет смысл, так как невозможно решать уравнения, имеющие бесконечное множество слагаемых.

Когда не работает ОТО?

далекий космос

Сама по себе ОТО определенно заявляет, когда именно она прекращает работать. На горловине, в наиболее узком месте "моста", наблюдается нарушение гладкости соединения. И оно, следует сказать, достаточно нетривиально. С позиции удаленного наблюдателя на этой горловине останавливается время. То, что Розен и Эйнштейн считали горловиной, в настоящее время определяется как горизонт событий черной дыры (заряженной или нейтральной). Лучи или частицы с разных сторон "моста" попадают на различные "участки" горизонта. А между левой и правой его частями, условно говоря, находится нестатическая область. Для того чтобы пройти область, нельзя не преодолеть ее.

Невозможность пройти через черную дыру

Космический корабль, который приближается к горизонту довольно крупной относительно него черной дыры, как будто застывает навеки. Все реже и реже доходят сигналы от него… Напротив, горизонт по корабельным часам достигается за конечное время. Когда корабль (луч света или частица) минует его, он вскоре упрется в сингулярность. Это место, где кривизна делается бесконечной. В сингулярности (еще на подходе к ней) протяженное тело неизбежно будет разорвано и раздавлено. Такова реальность устройства черной дыры.

Дальнейшие исследования

В 1916-17 гг. были получены решения Райснера-Нордстрема и Шварцшильда. В них сферически описываются симметричные электрически заряженные и нейтральные черные дыры. Однако физики смогли до конца разобраться в непростой геометрии данных пространств только на рубеже 1950-60-х годов. Именно тогда Д. А. Уилер, известный благодаря своим работам в теории гравитации и ядерной физике, предложил термины "кротовая нора" и "черная дыра". Выяснилось, что в пространствах Райснера-Нордстрема и Шварцшильда действительно существуют кротовые норы в космосе. Они полностью не видны удаленному наблюдателю, как и черные дыры. И, подобно им, кротовые норы в космосе вечны. А вот если путешественник проникнет за горизонт, они схлопываются настолько быстро, что через них не сможет пролететь ни луч света, ни массивная частица, а не то что корабль. Чтобы пролететь к другому устью, минуя сингулярность, нужно двигаться быстрее света. В настоящее время физики считают, что сверхновые скорости перемещения энергии и материи принципиально невозможны.

Черные дыры Шварцшильда и Райснера-Нордстрема

Черная дыра Шварцшильда может считаться непроходимой кротовой норой. Что касается черной дыры Райснера-Нордстрема, она устроена несколько сложнее, однако также непроходима. Тем не менее придумать и описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так уж сложно. Стоит лишь подобрать необходимый вид метрики. Метрический тензор, или метрика, - набор величин, используя который, можно вычислить четырехмерные интервалы, существующие между точками-событиями. Этот набор величин полностью характеризует также и поле тяготения, и геометрию пространства-времени. Геометрически проходимые кротовые норы в космосе даже проще, нежели черные дыры. В них нет горизонтов, которые ведут к катаклизмам с ходом времени. В различных точках время может идти а разном темпе, однако оно не должно при этом бесконечно останавливаться или ускоряться.

Два направления исследования кротовых нор

червоточина в космосе

Природа поставила барьер на пути появления кротовых нор. Однако человек устроен так, что если находится препятствие, всегда будут желающие его преодолеть. И ученые не исключение. Труды теоретиков, которые занимаются исследованием кротовых нор, условно можно разделить на два направления, дополняющих друг друга. Первое занимается рассмотрением их следствий, заранее предполагая то, что кротовые норы действительно существуют. Представители второго направления пытаются понять, из чего и как они могут появиться, какие условия необходимы для их возникновения. Работ этого направления больше, чем первого и, пожалуй, они более интересны. К данному направлению можно отнести поиск моделей кротовых нор, а также исследование их свойств.

Достижения российских физиков

астрономические гипотезы

Как выяснилось, свойства материи, являющейся материалом для строительства кротовых нор, могут реализоваться за счет поляризации вакуума квантовых полей. Российские физики Сергей Сушков и Аркадий Попов совместно с испанским исследователем Давидом Хохбергом, а также Сергей Красников недавно пришли к этому выводу. Вакуум в этом случае не является пустотой. Это квантовое состояние, характеризующееся наименьшей энергией, то есть поле, в котором отсутствуют реальные частицы. В этом поле постоянно возникают пары частиц "виртуальных", исчезающие до того, как их обнаруживают приборы, однако оставляющие свой след в виде тензора энергии, то есть импульса, характеризующегося необычными свойствами. Несмотря на то что квантовые свойства материи в основном проявляются в микромире, кротовые норы, рождаемые ими, при некоторых условиях способны достигать значительных размеров. Одна из статей Красникова, кстати, называется "Угроза кротовых нор".

Вопрос философии

космос пространство и время

Если кротовые норы когда-нибудь все-таки удастся построить или обнаружить, область философии, связанная с интерпретацией науки, столкнется с новыми задачами и, нужно сказать, весьма непростыми. При всей, казалось бы, абсурдности временных петель и нелегких проблемах, касающихся причинности, данная область науки, вероятно, когда-нибудь с этим разберется. Так же, как разобрались в свое время с проблемами квантовой механики и созданной Эйнштейном теории относительности. Космос, пространство и время - все эти вопросы во все века интересовали людей и, видимо, будут интересовать нас всегда. Познать их полностью едва ли удастся. Изучение космоса вряд ли когда-либо будет завершено.

Читайте также: