Кристаллическое состояние вещества реферат

Обновлено: 08.07.2024

Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография.

2. Монокристаллы и кристаллические агрегаты…………..5-6

3.Симметрия в кристаллах………………………………….6-9

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

5. Закон постоянства двугранных углов . Отклонения

6. Как определить вещество по форме его кристалла….15-17

7. Атомная структура кристаллов…………..……………17-20

8. Теория плотнейших шаровых упаковок…..……….…20-23

9. Есть ли беспорядок в кристалле?………………………23-27

10. О некоторых свойствах кристаллов..………………..27-28

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

12. Как растет кристалл……………………………………30-32

13. Атомы блуждают по кристаллу……………………….32-34

14. О прочности кристаллов………………………………34-35

V. Список используемой литературы……..………………………………37

Данная работа посвящена кристаллам. Даны наиболее общие сведения о форме, структуре и симметрии кристаллов. Также раскрыт механизм роста. Отдельные главы посвящены теории плотнейших шаровых упаковок, закону о сохранении двугранных углов и прочности кристаллов. Работа содержит сведения о беспорядке и дефектах в кристалле. Для более наглядного описания классификации и свойств кристаллов приведены две таблицы.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Словно волшебный скульптор,

Светлые грани кристаллов

Лепит бесцветный раствор.

Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллическое вещество. Данная работа также посвящена кристаллам и их свойствам.

В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов — явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники известняк — кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза.

В настоящее время кристаллы имеют большое распространение в науке и техники, так как обладают особыми свойствами. Такие области использования кристаллов, как полупроводники, сверхпроводники, пьезо- и сегнетоэлектрики, квантовая электроника и многие другие требуют глубокого понимания зависимости физических свойств кристаллов от их химического состава и строения.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В настоящее время известны способы искусственного выращивания кристаллов. Кристалл можно вырастить в обыкновенном стакане, для этого требуется лишь определенный раствор и аккуратность с которой необходимо ухаживать за растущим кристаллом.

Что такое кристалл.

В школьных учебниках кристаллами обычно называют твердые тела, образующихся в природных или лабораторных условиях и имеющие вид многогранников, которые напоминают самые непогрешимо строгие геометрические построения. Поверхность таких фигур ограничена более или менее совершенными плоскостями- гранями , пересекающимися по прямым линиям- ребрам. Точки пересечения ребер образуют вершины. Сразу же следует оговорится, что приведенное выше определение требует существенных поправок. Вспомним, например, всем известную горную породу границ, состоящую из зерен полевого шпата, слюды и кварца. Все эти зерна являются кристаллами, однако, их извилистые зерна не сохранили прежней прямолинейности и плоскогранности, а следовательно не подходят к вышеуказанному описанию. Одновременный рост всех составляющих гранит кристаллов, мешавших друг другу развиваться, и привел к тому, что отдельные кристаллы не смогли получить свойственную им правильную многогранную форму. Итак, для образования правильно ограненных кристаллов необходимо, чтобы ничто не мешало им свободно развиваться, не теснило бы их и не препятствовало их росту.

Кристаллов в природе существует великое множество и так же много существует различных форм кристаллов. В реальности, практически невозможно привести определение, которое подходило бы ко всем кристаллам. Здесь на помощь можно привлечь результаты рентгеновского анализа кристаллов. Рентгеновские лучи дают возможность как бы нащупать атомы внутри кристаллического тела и определяет их пространственное расположение. В результате было установлено, что решительно все кристаллы построены из элементарных частиц, расположенных в строгом порядке внутри кристаллического тела. Упорядоченность расположения таких частиц и отличает кристаллическое состояние от некристаллического, где степень упорядоченности частиц ничтожна.

Во всех без исключения кристаллических постройках из атомов можно выделить множество одинаковых атомов, расположенных наподобие узлов пространственной решетки. Чтобы представить такую решетку, мысленно заполним пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет собой кладка из одинаковых кирпичиков. Если внутри кирпичиков выделить соответственные точки, например, их центры или вершины, то мы и получим модель пространственной решетки. Для всех без исключения кристаллических тел характерно решетчатое строение.

Монокристаллы и кристаллические агрегаты.

В отличие от других агрегатных состояний, кристаллическое состояние многообразно. Одни и те же по составу молекулы могут быть упакованы в кристаллах разными способами. От способа же упаковки зависят физические и химические свойства вещества. Таким образом одни и те же по химическому составу вещества на самом деле часто обладают различными физическим свойствами. Для жидкого состояния такое многообразие не характерно, а для газообразного- невозможно.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Если взять, например, обычную поваренную соль, то легко увидеть даже без микроскопа отдельные кристаллики. Каждый кристаллик есть вещество NaCl, но одновременно он имеет черты индивидуума. Он может быть большим или малым кубическим или прямоугольно-параллелепипедальным, по-разному ограненным и т.д.

В жидкости нельзя увидеть отдельные индивидуумы- капельки, в кристаллическом же веществе они видимы.

Если мы хотим подчеркнуть, что имеем дело с одиночным, отдельным кристаллом, то называем его монокристаллом, чтобы подчеркнуть что речь идет о скоплении многих кристаллов, используется термин кристаллический агрегат. Если в кристаллическом агрегате отдельные кристаллы почти не огранены, это может объяснятся тем, что кристаллизация началась одновременно во многих точках вещества и скорость ее была достаточно высока. Растущие кристаллы являются препятствием друг другу и мешают правильному огранению каждого из них.

В данной работе речь пойдет в основном о монокристаллах, а так как они являются составными частями кристаллических агрегатов, то их свойства будут схожи со свойствами агрегатов.

Симметрия в кристаллах.

Рассматривая различные кристаллы мы видим ,что все они разные по форме, но любой из них представляет симметричное тело. И действительно симметричность это одно из основных свойств кристаллов. К понятию о симметрии мы привыкли с детства. Симметричными мы называем тела, которые состоят из равных одинаковых частей. Наиболее известными элементами симметрии для нас являются плоскость симметрии (зеркальное отображение), ось симметрии (поворот вокруг оси, перпендикулярной к плоскости ). По углу поворота различают порядок оси симметрии, поворот на 180о – ось симметрии 2-ого порядка, 120о – 3-его порядка и так далее. Есть и еще оди элемент симметрии — центр симметрии. Представьте себе зеркало, но не большое, а точечное: точку в которой все отображается как в зеркале. Вот эта точка и есть центр симметрии. При таком отображении отражение поворачивается не только справа налево , но и с лица на изнанку.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центры симметрии и другие элементы симметрии так, чтобы совместились друг с другом одинаковые части многогранника. Введем еще одно понятие относящиеся к симметрии полярность. Представим конус и цилиндр, у обоих объектов есть по одной оси симметрии бесконечного порядка, но они различаются полярностью, у конуса ось полярна (представим центральную ось в виде стрелочки, указывающей к вершине), а у цилиндра ось неполярна.

Поговорим о видах симметрии в кристалле. Прежде всего в кристаллах могут быть оси симметрии только 1, 2, 3, 4 и 6 порядков. Представим плоскость, которую надо полностью покрыть семи-,восьсми-, девятиугольниками и т.д., так чтобы между фигурами не оставалось пространства, это не получится, пятиугольниками покрыть плоскость так же нельзя. Очевидно, оси симметрии 5, 7-го и выше порядков не возможны, потому что при такой структуре атомные ряды и сетки не заполнят пространство непрерывно, возникнут пустоты, промежутки между положениями равновесия атомов. Атомы окажутся не в самых устойчивых положениях и кристаллическая структура разрушится.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В кристаллическом многограннике можно найти разные сочетания элементов симметрии – у одних мало, у других много. По симметрии, прежде всего по осям симметрии, кристаллы делятся на три категории.

К высшей категории относятся самые симметричные кристаллы, у них может быть несколько осей симметрии порядков 2,3 и 4, нет осей 6-го порядка, могут быть плоскости и центры симметрии. К таким формам относятся куб, октаэдр, тетраэдр и др. Им всем присуща общая черта: они примерно одинаковы во все стороны.

У кристаллов средней категории могут быть оси 3, 4 и 6 порядков, но только по одной. Осей 2 порядка может быть несколько, возможны плоскости симметрии и центры симметрии. Формы этих кристаллов: призмы, пирамиды и др. Общая черта: резкое различие вдоль и поперек главной оси симметрии.

У кристаллов низшей категории не может быть ни одной оси симметрии 3 4 и 6 порядков, могут быть только оси 2 порядка, плоскости или центр симметрии. Структура данных кристаллов самая сложная.

Из кристаллов к высшей категории относятся: алмаз, квасцы, гранаты германий, кремний, медь, алюминий, золото, серебро, серое олово вольфрам, железо; к средней категории – графит, рубин, кварц, цинк, магний, белое олово, турмалин, берилл; к низшей – гипс, слюда, медный купорос, сегнетовая соль и др. Конечно в этом списке не были перечислены все существующие кристаллы, а только наиболее известные из них. Категория, к которой принадлежит кристалл характеризует его физический свойства.

Плоскости и центр симметрии могут быть в любой сингонии. Всего сингоний семь.

Каждый кристаллический многогранник обладает определенным набором элементов симметрии. Полный набор всех элементов симметрии, присущих данному кристаллу называется классом симметрии. Сколько же всего таких наборов? Их количество ограничено. Математическим путем было доказано, что в кристаллах существует 32 вида симметрии.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Одна ось 3-ого порядка

Одна ось 4-ого порядка

Изучение внешней формы кристаллов началось прежде изучения симметрии, однако только после вывода 32 видов симметрии появилась надежная основа для создания геометрического учения о внешней форме кристаллов. Основным его понятием является понятие простой формы.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Простые формы могут быть общими и частными в зависимости от того, как расположена исходная грань по отношению к элементам симметрии. Если она расположена косо, то простая форма полученная из нее будет общей. Если же исходная форма расположена параллельно или перпендикулярно к элементам симметрии, то получается частная простая форма. Простые формы так же могут быть закрытыми и открытыми. Закрытая форма может одна образовать кристаллический многогранник, в то время как одна открытая простая форма замкнутого многогранника образовать не может.

Каждая грань кристалла представляет собой плоскость, на которой располагаются атомы. Когда кристалл растет все грани передвигаются параллельно сами себе, так как на них откладываются все новые и новые слои атомов. По этой причине, параллельно каждой грани в структуре кристалла располагается огромное количество атомных плоскостей, которые когда-то в начальных стадиях роста тоже располагались на гранях кристалла, но в процессе роста оказались внутри него.

Ребра кристалла представляют собой прямые, на которых атомы располагаются в ряд. Таких рядов в кристалле тоже огромное количество и они располагаются параллельно действительным ребрам кристалла.

Кристаллический многогранник обычно представляет собой комбинацию нескольких простых форм, грани (или ребра) которых являются действительными гранями (ребрами). Грань, которой на данном кристалле нет, но которая может оказаться на других кристаллах того же вещества, называется возможной гранью. Возможной гранью может быть плоскость, проходящая через два действительных или возможных ребра кристалла. Точно так же, если возьмем две реальные грани, которые на данном кристаллическом многограннике не пересекаются, то линия, параллельная линии их пересечения, будет возможным ребром кристалла.

Совокупность граней, пересекающихся в параллельных ребрах, называется поясом или зоной. А параллельная этим ребрам линия называется осью зоны.

Необходимо упомянуть, что кристаллографами был создан строго математический вывод всех возможных на свете кристаллических форм, и теперь можно не только предположить, какова будет форма кристалла, а с большой уверенностью рассчитать будущую форму.

В течении долгих лет геометрия кристаллов казалась таинственной и неразрешимой загадкой. В 1619 великий немецкий математик и астроном Йоган Кеплер обратил внимание на шестерную симметрию снежинок. Он попытался объяснить ее тем, что кристаллы построены из мельчайших одинаковых шариков, теснейшим образом присоединенных друг к другу (вокруг центрального шарика можно в плотную разложить только шесть таких же шариков). По пути намеченному Кеплером пошли в последствии Роберт Гук и М. В. Ломоносов. Они так же считали, что элементарные частицы кристаллов можно уподобить плотно упакованным шарикам. В наше время принцип плотнейших шаровых упаковок лежит в основе структурной кристаллографии, только сплошные шаровые частицы старинных авторов заменены сейчас атомами и ионами.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Очень часто кристаллы одного и того же вещества срастаются друг с другом закономерным образом, образуя так называемый двойник. При этом обычно возникают дополнительные элементы симметрии, называющиеся в данном случае двойниковые элементы симметрии. Если сросток состоит из многих кристаллов, закономерно чередующихся друг с другом, то он называется полисинтетическим двойником. Двойниковые кристаллы являются очень распространенным явлением в природе. Многие вещества, получаемые в лаборатории, также часто имеют двойники как простые, так и полисинтетические.

Закон постоянства двухгранных углов. Отклонения от закона.

Симметричность кристаллов всегда привлекала внимание ученых. Уже в 79 г. нашего летоисчисления Плиний Старший упоминает о плоскогранности и прямобедренности кристаллов. Этот вывод и может считается первым обобщением геометрической кристаллографии. С тех пор на протяжении многих столетий весьма медленно и постепенно накапливался материал, позволивший в конце XVIII в. открыть важнейший закон геометрической кристаллографии -закон постоянства двугранных углов. Этот закон связывается обычно с именем французского ученого Роме де Лиля, который в 1783г. опубликовал монографию, содержащую обильный материал по измерению углов природных кристаллов. Для каждого вещества (минерала), изученного им, оказалось справедливым положение, что углы между соответственными гранями во всех кристаллах одного и того же вещества являются постоянными.

Итак, все кристаллы обладают тем свойством, что углы между соответственными гранями постоянны. Грани у отдельных кристаллов могут быть развиты по-разному: грани, наблюдающиеся на одних экземплярах, могут отсутствовать на других — но если мы будем измерять углы между соответственными гранями, то значения этих углов будут оставаться постоянными независимо от формы кристалла.

Однако, по мере совершенствования методики и повышения точности измерения кристаллов выяснилось, что закон постоянства углов оправдывается лишь приблизительно. В одном и том же кристалле углы между одинаковыми по типу гранями слегка отличаются друг от друга. У многих веществ отклонения двухгранных углов между соответственными гранями достигает 10 -20′, а в некоторых случаях и градуса.

Грани реального кристалла никогда не представляют собой идеальных плоских поверхностей. Нередко они бывают покрыты ямками или бугорками роста, в некоторых случаях грани представляют собой кривые поверхности, например у кристаллов алмаза. Иногда замечаются на гранях плоские участки, положение которых слегка отклонено от плоскости самой грани, на которой они развиваются. Эти участки называются в кристаллографии вицинальными гранями , или просто вициналями. Вицинали могут занимать большую часть плоскости нормальной грани, а иногда даже полностью заменить последнюю. Иногда на гранях наблюдаются ступеньки имеющие форму пандуса. Таким образом можно говорить о скульптуре граней, являющейся причиной отклонения от равенства двугранных углов. Изучением различных наростов занимается раздел кристаллографии — Морфология внешней формы кристаллов.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Элементами симметрии кристаллов являются поворотные оси разных порядков — второго, третьего, четвертого и шестого, плоскости отражения, центр инверсии и их комбинации. Наличие центра инверсии означает, что объект совпадает с самим собой при переносе каждой его точки через центр по прямой линии на равное расстояние. Наиболее высокой симметрией обладают куб и октаэдр. Рассмотрим куб (рис. 8.2… Читать ещё >

Кристаллическое состояние вещества ( реферат , курсовая , диплом , контрольная )

Истинно твердым, независимо от степени твердости, считается кристаллическое состояние. Для каждого вещества кристаллическое состояние характеризуется внешней формой образуемых им кристаллов и закономерным расположением атомов внутри кристалла. Таким образом, внешняя форма является отражением внутреннего строения.

Раздел науки, изучающий форму кристаллов, называется кристаллографией. Кристаллография тесно связана с химией, минералогией, физикой и математикой. Внутреннее строение кристаллов в химическом аспекте изучается кристаллохимией, но это также пограничный раздел науки, в котором особенно важную роль играет математика. Выше было указано, что начало изучению структуры твердого состояния вещества методом дифракции рентгеновских лучей было положено М. Лауэ в 1912 г. По расположению темных штрихов и точек дифрактограммы, запечатленной на фотопленке, в результате сложной математической обработки, занимавшей на начальном этапе применения метода месяцы, стали определять координаты атомов в кристаллах. Сначала число веществ, изученных рентгеноструктурным методом, росло довольно медленно. Но после широкого внедрения компьютеров и создания необходимых программ определение кристаллических структур необычайно ускорилось. Теперь структурному изучению подвергают почти все новые вещества.

Каждое вещество образует кристаллы совершенно определенной формы. Так, хлорид натрия кристаллизуется в виде кубов, квасцы KA1(S04)212H20 — в виде октаэдров, селитра KN03 — в виде призм (рис. 8.1). Форма кристаллов является одним их характерных свойств вещества.

Форма кристаллов солей.

Рис. 8.1. Форма кристаллов солей:

Крупные, хорошо образованные кристаллы вырастают в подходящих условиях из расплавов и растворов. Важнейшим условием является малая скорость роста. Благодаря большой длительности геологических процессов кристаллы образуются в природе. Разработаны технологические процессы получения монокристаллов, т. е. крупных кристаллов с минимальным числом внутренних дефектов. Монокристаллы могут получаться, например, при зонной плавке вещества. Для большинства технических целей важно совершенство внутренней структуры. Поэтому не имеет значения, что при зонной плавке получается монокристалл цилиндрической формы. Как известно, в случае необходимости кристаллы подвергаются огранке механическими способами.

В простейших лабораторных условиях удается вырастить крупные кристаллы лишь некоторых солей. Например, в отфильтрованном насыщенном растворе квасцов подвешивают на нити небольшой, около 1—2 мм в поперечнике, кристаллик вещества. Раствор защищают от попадания пыли фильтровальной бумагой. По мере испарения воды кристалл растет в течение нескольких дней или даже недель.

Рост кристалла происходит в результате соприкосновения частиц вещества из расплава или раствора с твердой поверхностью. Если частица занимает на поверхности некоторую позицию с минимальной потенциальной энергией, то она как бы закрепляется и становится составной частью кристалла. В любом другом случае связь частицы с поверхностью оказывается не прочной, и она возвращается в жидкую фазу. Эго можно сравнить с собиранием пирамиды из кубиков. Плохо положенный кубик скатывается и не входит в состав постройки. При быстром наращивании поверхности, например в случае быстрого падения температуры в концентрированном растворе, частицы оказываются в случайных позициях, на них оседают новые слои, застревают частицы примесей и получаются кристаллы с множеством внутренних и внешних дефектов (6, "https://referat.bookap.info").

Форма кристаллов может быть очень разнообразной, так как они образуются как в виде простых многогранников, так и в виде всевозможных комбинаций пирамид и призм с разным числом граней. Своеобразие кристаллов заключается в их симметрии.

Симметрия — это свойство геометрического объекта совпадать с самим собой при поворотах и отражениях.

Элементами симметрии кристаллов являются поворотные оси разных порядков — второго, третьего, четвертого и шестого, плоскости отражения, центр инверсии и их комбинации. Наличие центра инверсии означает, что объект совпадает с самим собой при переносе каждой его точки через центр по прямой линии на равное расстояние. Наиболее высокой симметрией обладают куб и октаэдр. Рассмотрим куб (рис. 8.2). Через середины противоположных граней у него проходят три оси четвертого порядка; через противоположные вершины проходят четыре оси третьего порядка и через середины противоположных ребер шесть осей второго порядка. Кроме того, по диагоналям противоположных граней и через середины параллельных ребер проходят 12 плоскостей симметрии. Куб имеет также центр инверсии.

Вещества иногда кристаллизуются в виде тетраэдров, т. е. правильных трехгранных пирамид. В тетраэдре имеются четыре оси третьего порядка, проходящие через вершины и середины противоположных граней, три оси второго порядка, проходящие через середины противоположных ребер, и шесть плоскостей симметрии, проходящих через ребро и медиану противоположной грани. Кроме того, в тетраэдре имеются три инверсионные оси четвертого порядка, проходящие через середины противоположных ребер. Действие этих осей можно разделить на поворот на 90° и последующую инверсию.

Элементы симметрии куба.

Рис. 8.2. Элементы симметрии куба:

показано, но одной оси второго, третьего и четвертого порядков и по одной плоскости; плоскость абвг проходит через середины ребер, плоскость abed — через противоположные ребра Классификация кристаллических форм основана на сочетаниях элементов симметрии. Обычно рассматривают семь кристаллических систем, или сингоний. В порядке понижения симметрии они имеют следующие названия: кубическая, гексагональная, тригональная, тетрагональная, ромбическая, моноклинная, триклинная. Мы уже рассмотрели набор элементов симметрии куба, относящегося к самой высокой по симметрии сингонии — кубической. В триклинной, т. е. низшей сингонии, может быть только один элемент симметрии — центр инверсии. Примеры простейших многогранников для разных сингоний показаны на рис. 8.3.

Природные кристаллы, а также кристаллы, получаемые искусственным путем, редко в точности соответствуют правильным геометрическим формам. Обычно при затвердевании расплавленного вещества происходит срастание мелких кристаллов, что препятствует реализации их правильной формы. Такую структуру почти всегда имеют металлы. Характерен пример олова. При сгибании отлитых из олова палочек слышен хруст, объясняющийся взаимным перемещением мелких кристаллов. При выделении кристаллов из раствора обычно наблюдается лишь частичное образование правильных кристаллических граней, так как возникают корки из тесно расположенных кристаллов. Именно такого типа кристаллы обнаруживаются в пустотах камней. Однако как бы неравномерно ни происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла данного вещества, всегда остаются одними.

S3. Кристаллические системы (сингонии).

Рис. S3. Кристаллические системы (сингонии) и теми же. Это один из основных законов кристаллографии — закон постоянства гранных углов. По величине гранных углов можно установить, каким веществом образован данный кристалл. Вообще форма кристаллов служит одним из признаков, по которым идентифицируется вещество. Например, при смешивании растворов хлорида кальция и сульфата натрия происходит медленное образование кристаллов гипса:

Кристаллическое состояние вещества.

При рассматривании в микроскоп кристаллы оказываются мелкими бесцветными иголочками. Бесцветные кристаллические осадки образуют многие вещества, но появление именно таких иголочек означает, что в исходных растворах имелись соль кальция и сульфат какого-то металла.

В физических свойствах монокристаллов проявляется важная особенность, заключающаяся в том, что некоторые свойства зависят от выбранного направления в кристалле. Явление зависимости свойств от направления называют анизотропией.

Если вырезать из кубического кристалла хлорида натрия два бруска одинакового размера, один в направлении, перпендикулярном грани куба, а другой по диагонали куба (рис. 8.4), то эти бруски обнаружат разную прочность на разрыв. Если первый брусок разрушится под действием силы в 1000 Н, то для второго бруска такой же результат будет получен иод действием силы в 2,5 раза большей. Очевидно, что в кристаллах этой соли сцепление между частицами в направлении, перпендикулярном граням куба, меньше, чем в направлении диагонали куба.

Бруски, вырезанные из кристаллов природного NaCl.

Рис. 8.4. Бруски, вырезанные из кристаллов природного NaCl.

Рис. 8.4. Бруски, вырезанные из кристаллов природного NaCl.

(каменной соли):

а — в направлении, перпендикулярном граням куба;

6 — в направлении диагонали одной из граней Во многих кристаллах различие между величиной сцепления по разным направлениям настолько велико, что кристалл легко раскалывается или даже расслаивается по определенным плоскостям. Это свойство кристаллов называется спайностью. Пример спайности — расслаивание слюды KAl2(OH)2Si3AlO10 на тончайшие пластинки.

В кристаллах с низкой симметрией свет распространяется в разных направлениях с разной скоростью, в результате чего возникают два или три разных показателя преломления. Анизотропия свойств наблюдается также и в отношении теплопроводности. Если покрыть пластинку слюды слоем воска и прикоснуться к ней концом нагретого шила, то воск плавится вокруг этого места, образуя эллипс (рис. 8.5). Из опыта следует, что кристалл слюды проводит теплоту в двух взаимно перпендикулярных направлениях с разной скоростью, что приводит к эллиптической форме участка расплавленного воска.

Зона плавления слоя воска на поверхности слюды.

Рис. 8.5. Зона плавления слоя воска на поверхности слюды

Кристаллические вещества характеризуются дальним порядком, ᴛ.ᴇ. трехмерной периодичностью структуры по всœему объёму. Регулярное расположение частиц изображается в виде кристаллических решеток, в узлах которых расположены частицы, образующие твердое вещество. Соединяются они воображаемыми линиями.

Идеальные монокристаллы обладают:

- анизотропностью – ᴛ.ᴇ. в различных направлениях по объёму кристалла физические свойства различны.

- определœенной температурой плавления.

- кристаллические вещества характеризуются энергией кристаллической решетки, это та энергия, которую нужно затратить на то, чтобы разрушить кристаллическую решетку и удалить частицы за пределы взаимодействия.

- постоянная кристаллической решетки характеризует расстояние между частицами в кристаллической решетке, а также узлы между гранями кристаллической решетки.

- координационное число кристаллической решетки - ϶ᴛᴏ число частиц, непосредственно примыкающих к данной частице.

Наименьшей структурной единицей является элементарная ячейка. Имеется семь типов кристаллических решеток: кубическая, тетраэдрическая, гексагональная, ромбоэдрическая, орторомбоэдрическая, моноклинная и триклинная.


Οʜᴎ отличаются между собой углами между осями (a, b, g) и постоянными кристаллической решетки (a,b,c).

Существуют различные вещества, которые кристаллизуются в одинаковых кристаллических решетках – изоморфные вещества.

По типу частиц в узлах кристаллической решетки кристаллы бывают: молекулярные, атомно – ковалентные, ионные, металлические и смешанные.

1). Молекулярные кристаллы: в узлах находятся молекулы, между которыми существуют вандерваальсовы взаимодействия или водородная связь. Веществ с молекулярной решеткой очень мало. К ним принадлежат неметаллы, за исключением углерода и кремния, всœе органические соединœения с неионной связью и многие неорганические вещества. К примеру, структура льда:

Молекулярные кристаллы обладают небольшими координационными числами. и невысокой плотностью.

2). Атомно – ковалентные кристаллы: в узлах находятся атомы, которые связаны между собой ковалентными связями.

Пример: Атомно – ковалентный кристалл – алмаз, где атомы углерода (sp 3 – гибридизация) находятся в кристаллической решетке. Координационное число тоже небольшое (к.ч. = 4).


3). Ионные кристаллы: в узлах находятся ионы, которые удерживаются друг около друга за счёт электростатического взаимодействия. К соединœениям с ионной связью относится большинство солей и небольшое число оксидов. Ионные соединœения имеют сравнительно высокие температуры плавления. По причине того, что ионная связь ненасыщенна и ненаправленна, ионная решетка характеризуется высокими координационными числами (6,8).

4). Существуют металлические кристаллы. Металлические решетки образуют простые вещества большинства элементов периодической системы – металлы. По прочности металлические решетки находятся между атомными и молекулярными кристаллическими решетками.

5). В природе часто встречаются смешанные кристаллы, в которых взаимодействие осуществляется как ковалентными, так и вандерваальсовыми взаимодействиями, к примеру, графит:


В слоях ковалентная связь (sp 2 -гибридтзация атома углергда), между слоями – вандерваальсово взаимодействие.

Некоторые вещества могут кристаллизоваться в различные кристаллические решетки. Это явление принято называть полиморфизм (примером являются: углерод, алмаз и графит) или аллотропия.

Кристаллическое состояние вещества. - понятие и виды. Классификация и особенности категории "Кристаллическое состояние вещества." 2017, 2018.

Кристаллическими называют тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными - в которых атомы и молекулы расположены беспорядочно. Стеклообразные тела также относятся к разряду аморфных, так как внутри них нет кристаллов. . [читать подробнее].

Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллическое вещество. Данная работа также посвящена кристаллам и их свойствам.

Содержание
Прикрепленные файлы: 1 файл

Содержание2.docx

Глава 1. Кристаллические и аморфные тела. . 2

1.2. Идеальные кристаллы. . . 2-3

1.3. Монокристаллы и кристаллические агрегаты. 3-4

1.4. Поликристаллы. . . 4-5

Глава 2. Элементы симметрии кристаллов. . 6-11

Глава 3. Типы дефектов в твёрдых телах. . 12

3.1. Точечные дефекты. . . 12-14

3.2. Линейные дефекты. . . 14

3.3. Поверхностные дефекты. . 15

3.4. Объёмные дефекты. . ..15

Глава 4. Получение кристаллов. . 16-17

Список используемой литературы. . 22

Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллическое вещество. Данная работа также посвящена кристаллам и их свойствам.

В настоящее время кристаллы имеют большое распространение в науке и техники, так как обладают особыми свойствами. Такие области использования кристаллов, как полупроводники, сверхпроводники, квантовая электроника и многие другие требуют глубокого понимания зависимости физических свойств кристаллов от их химического состава и строения.

В настоящее время известны способы искусственного выращивания кристаллов. Кристалл можно вырастить в обыкновенном стакане, для этого требуется лишь определенный раствор и аккуратность, с которой необходимо ухаживать за растущим кристаллом.

Кристаллов в природе существует великое множество и так же много существует различных форм кристаллов. В реальности, практически невозможно привести определение, которое подходило бы ко всем кристаллам. Здесь на помощь можно привлечь результаты рентгеновского анализа кристаллов. Рентгеновские лучи дают возможность как бы нащупать атомы внутри кристаллического тела, и определяет их пространственное расположение. В результате было установлено, что решительно все кристаллы построены из элементарных частиц, расположенных в строгом порядке внутри кристаллического тела.

Во всех без исключения кристаллических постройках из атомов можно выделить множество одинаковых атомов, расположенных наподобие узлов пространственной решетки. Чтобы представить такую решетку, мысленно заполним пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет собой кладка из одинаковых кирпичиков. Если внутри кирпичиков выделить соответственные точки, например, их центры или вершины, то мы и получим модель пространственной решетки. Для всех без исключения кристаллических тел характерно решетчатое строение.

Глава 1. Кристаллические и аморфные тела.

По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела.

Характерной особенностью аморфных тел является их изотропность, т.е. независимость всех физических свойств (механических, оптических и т. д.) от направления. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок). По своей структуре аморфные тела очень близки к жидкостям.

Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т.д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.

В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества.

В каждой пространственной решетке можно выделить структурный элемент минимального размера, который называется элементарной ячейкой.

Рис.1 Типы кристаллических решёток

1–простая кубическая решетка;

2–гранецентрированная кубическая

решетка;

3 – объемно-центрированная кубическая решетка;

4 – гексагональная решетка.

В простой кубической решетке частицы располагаются в вершинах куба. В гранецентрированной решетке частицы располагаются не только в вершинах куба, но и в центрах каждой его грани. В объемно-центрированной кубической решетке дополнительная частица располагается в центре каждой элементарной кубической ячейки.

Следует помнить, что частицы в кристаллах плотно упакованы, так что расстояние между их центрами приблизительно равно размеру частиц. В изображении кристаллических решеток указывается только положение центров частиц.

1.2. Идеальные кристаллы.

Правильная геометрическая форма кристаллов привлекала внимание исследователей ещё на ранних стадиях развития кристаллографии и давала повод к созданию тех или иных гипотез об их внутреннем строении.

Если мы будем рассматривать идеальный кристалл, то не обнаружим в нём нарушений, все одинаковые частицы расположены одинаковыми параллельными рядами. Если приложить к произвольной точке три не лежащие в одной плоскости элементарные трансляции и повторить её бесконечно в пространстве, то получится пространственная решетка, т.е. трёхмерная система эквивалентных узлов. Таким образом, в идеальном кристалле расположение материальных частиц характеризуется строгой трёхмерной периодичностью. И чтобы получить наглядное представление о закономерностях, связанных с геометрически правильным внутренним строением кристаллов, на лабораторных занятиях по кристаллографии обычно используют модели идеально образованных кристаллов в виде выпуклых многогранников с плоскими гранями и прямыми рёбрами. На самом же деле грани реальных кристаллов не бывают идеально плоскими, так как при своём росте они покрываются бугорками, шероховатостями, бороздками, ямками роста, вициналями (гранями, отклонившимися целиком или частично от своего идеального положения), спиралями роста или растворения и т.д.

Идеальный кристалл - это физическая модель, представляющая собой бесконечный монокристалл, не содержащий примесей или структурных дефектов. Отличие реальных кристаллов от идеальных связано с конечностью их размеров и наличием дефектов. Наличия некоторых дефектов (например, примесей, межкристаллитных границ) в реальных кристаллах можно практически полностью избежать с помощью специальных методов выращивания, отжига или очистки. Однако при температуре T>0К в кристаллах всегда есть конечная концентрация (термоактивированных) вакансий и межузельных атомов, число которых в равновесии экспоненциально убывает с понижением температуры.

Кристаллические вещества могут существовать в виде монокристаллов или поликристаллических образцов.

Монокристалл - это твердое тело, в котором регулярная структура охватывает весь объем вещества. Монокристаллы встречаются в природе (кварц, алмаз, изумруд) или изготовляются искусственно (рубин).

Поликристаллические образцы состоят из большого количества мелких, хаотически ориентированных, разного размера кристалликов, которые могут быть связаны между собой определенными силами взаимодействия.

1.3. Монокристаллы и кристаллические агрегаты.

Монокристалл — отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и иногда имеющий анизотропию физических свойств. Внешняя форма монокристалла обусловлена его атомно-кристаллической решёткой и условиями (в основном скоростью и однородностью) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку, в неравновесных условиях (средняя скорость роста) кристаллизации огранка проявляется слабо. При ещё большей скорости кристаллизации вместо монокристалла образуются однородные поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза. Большое промышленное значение имеют монокристаллы полупроводниковых и диэлектрических материалов, выращиваемые в специальных условиях. В частности, монокристаллы кремния и искусственных сплавов элементов III (третьей) группы с элементами V (пятой) группы таблицы Менделеева (например GaAs Арсенид галлия) являются основой современной твердотельной электроники. Монокристаллы металлов и их сплавов не обладают особыми свойствами и практически не применяются. Монокристаллы сверхчистых веществ обладают одинаковыми свойствами независимо от способа их получения. Кристаллизация происходит вблизи температуры плавления (конденсации) из газообразного (например иней и снежинки), жидкого (наиболее часто) и твёрдого аморфного состояний с выделением тепла. Кристаллизация из газа или жидкости обладает мощным очищающим механизмом: химический состав медленно выращенных монокристаллов практически идеален. Почти все загрязнения остаются (накапливаются) в жидкости или газе. Это происходит потому, что при росте кристаллической решётки происходит самопроизвольный подбор нужных атомов (молекул для молекулярных кристаллов) не только по их химическим свойствам (валентности), а также по размеру.

Современной технике уже не хватает небогатого набора свойств естественных кристаллов (особенно для создания полупроводниковых лазеров), и учёные придумали метод создания кристаллоподобных веществ с промежуточными свойствами, путём выращивания чередующихся сверхтонких слоёв кристаллов с похожими параметрами кристаллических решёток.

Читайте также: