Криптография и шифрование реферат

Обновлено: 17.05.2024

Данная исследовательская работа актуальна для учащихся средних и старших классов. Она включает основные и базовые шифры, а также затрагивает историю шифрования.

ВложениеРазмер
kriptografiya.doc 539 КБ

Предварительный просмотр:

Муниципальное образовательное учреждение

Котляревская Анна Эдуардовна

Руководитель: Фетисова Елена Дмитриевна

Введение в науку и основные понятия криптографии

История развития шифрования

Виды шифрования и шифров

Шифрование данных на компьютере

Перспективы развития криптографии

Целью моей работы является формирование представлений об истории развития криптографии и исследование различных типов шифров и задач.

Задачами работы являются:

1. Изучить историю развития криптографии.

  1. Рассмотреть различные типы шифров и соответствующих задач.
  2. На основе изученного материала разработать свой метод шифрования.
  3. Сделать выводы.

Введение в науку и основные понятия криптографии

История развития шифрования

Виды шифрования и шифров

Шифрование данных на компьютере

Перспективы развития криптографии

Как бы ни было много сделано, ни одна из наук не собирается останавливаться в своем развитии. Так и в области криптологии постоянно ведутся исследования. Часть проводимых работ относится к криптоанализу — вопросами проверки стойкости алгоритмов и поиском методов их взлома занимаются ведущие мировые криптографы. Но не прекращаются и усилия по созданию новых методов для защиты информации.
Несмотря на то, что существующие криптографические алгоритмы способны обеспечить достаточно высокий уровень безопасности, чтобы защитить данные от любого противника на сотни лет, новые шифры продолжают появляться. Так сравнительно недавно появилась группа неплохих алгоритмов, ставших финалистами конкурса AES.
Иногда новые алгоритмы должны работать в специальных условиях (мало памяти, ограниченный набор команд), иногда требуется увеличить производительность без снижения стойкости. Работы по созданию новых симметричных шифров ведутся постоянно, но значительного изменения состава широко применяемых симметричных криптографических алгоритмов, наверное, уже не произойдет. Все-таки симметричные шифры — одна из самых древних и хорошо изученных областей криптографии.
А вот в криптографии с открытым ключом до сих пор много чего не сделано. Хорошо проверенные методы, такие как RSA, требуют выполнения значительных объемов вычислений и оперируют блоками большого размера. И с увеличением минимальной рекомендованной длины ключа вследствие прогресса вычислительной техники и методов взлома накладные расходы растут очень быстро. Так что поиск более технологичных решений, способных обеспечить высокий уровень безопасности, может, в конце концов, привести к появлению принципиально новых алгоритмов.
Еще одна из плохо проработанных задач — это источники случайности для генераторов псевдослучайных чисел. Но поиск новых источников вряд ли относится к задачам криптографии. А вот оценка объема действительно случайной информации, получаемой из каждого источника, вполне заслуживает исследования.
Для специалистов в области защиты информации постоянно остается актуальной задача разработки альтернативных систем.
При этом главными остаются проблемы существования односторонней функции и функции с секретом. Здесь следует выделить следующие направления исследований:
1. Глобальная теоретическая идея построения новых асимметричных криптосистем, заключающаяся в попытке порождения функций с секретом с помощью "маскирования" простых задач под сложные (NP-полные). Было предложено много вариантов, но все они оказались нестойкими.
2. Схема открытого распределения ключей с использованием некоммутативных групп, предложенная лабораторией МГУ по математическим проблемам криптографии в 1993 году. Это явилось принципиально новым подходом к данной задаче. Однако до сегодняшнего дня практически реализуемых схем, основанных на этих идеях, не предложено.
3. После того, как Сидельников и Шестаков, используя быстрые алгоритмы декодирования, показали, что одна из схем типа МакЭлиса (схема Нидеррайтера) - нестойкая, был предложен ряд вариантов схемы на основе теоретико-кодовых конструкций. Практического применения не нашла ни одна из них либо в силу своей громоздкости, либо в силу того, что ее стойкость вызывает большие сомнения у специалистов.
4. С начала 90-х годов широко обсуждается возможность реализации протоколов асимметричной криптографии на основе квантово-механических эффектов.[12]

В практической части своей работы я хотела бы представить разработанный мной шифр.
Дана таблица с цифрами, которая выглядит следующим образом:

Место криптографических методов в системе методов защиты данных от нежелательного доступа. Роль программных средств защиты информации. История появления и развития шифрования. Определения криптографии и алгоритмы замены, перестановки и гаммирования.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 20.05.2017
Размер файла 45,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

криптография защита шифрование информация

1. Криптография и шифрование

1.1 Что такое шифрование

1.2 Основные понятия и определения криптографии

1.3 Симметричные и асимметричные криптосистемы

1.4 Основные современные методы шифрования

2. Алгоритмы шифрования

2.1 Алгоритмы замены (подстановки)

2.2 Алгоритм перестановки

2.3 Алгоритм гаммирования

Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения.

Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, просто модернизируемых не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных, но всегда остается проблема надежности их реализации.

Свидетельством ненадежности может быть все время появляющаяся в компьютерном мире информация об ошибках или "дырах" в той или иной программе (в т.ч. применяющей криптоалгоритмы), или о том, что она была взломана. Это создает недоверие, как к конкретным программам, так и к возможности вообще защитить что-либо криптографическими методами не только от спецслужб, но и от простых хакеров. Поэтому знание атак и дыр в криптосистемах, а также понимание причин, по которым они имели место, является одним из необходимых условий разработки защищенных систем и их использования.

В настоящее время особо актуальной стала оценка уже используемых крипто-алгоритмов. Задача определения эффективности средств защиты зачастую более трудоемкая, чем их разработка, требует наличия специальных знаний и, как правило, более высокой квалификации, чем задача разработки. Это обстоятельства приводят к тому, что на рынке появляется множество средств криптографической защиты информации, про которые никто не может сказать ничего определенного. При этом разработчики держат крипто-алгоритм (как показывает практика, часто нестойкий) в секрете. Однако задача точного определения данного крипто-алгоритма не может быть гарантированно сложной хотя бы потому, что он известен разработчикам. Кроме того, если нарушитель нашел способ преодоления защиты, то не в его интересах об этом заявлять.

1. Криптография и шифрование

1.1 Что такое шифрование

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен.

Шифрование появилось примерно четыре тысячи лет тому назад. Первым известным применением шифра (кода) считается египетский текст, датированный примерно 1900 г. до н. э., автор которого использовал вместо обычных (для египтян) иероглифов не совпадающие с ними знаки.

Спустя 500 лет шифрование стало повсеместно использоваться при оставлении текстов религиозного содержания, молитв и важных государственных документов.

Со средних веков и до наших дней необходимость шифрования военных, дипломатических и государственных документов стимулировало развитие криптографии. Сегодня потребность в средствах, обеспечивающих безопасность обмена информацией, многократно возросла.

Большинство из нас постоянно используют шифрование, хотя и не всегда знают об этом. Если у вас установлена операционная система Microsoft, то знайте, что Windows хранит о вас (как минимум) следующую секретную информацию:

* пароли для доступа к сетевым ресурсам (домен, принтер, компьютеры в сети и т.п.);

* пароли для доступа в Интернет с помощью DialUр;

* кэш паролей (в браузере есть такая функция -- кэшировать пароли, и Windows сохраняет все когда-либо вводимые вами в Интернете пароли);

* сертификаты для доступа к сетевым ресурсам и зашифрованным данным на самом компьютере.

Эти данные хранятся либо в рwl-файле (в Windows 95), либо в SAM-файле (в Windows NT/2000/XР). Это файл Реестра Windows, и потому операционная система никому не даст к нему доступа даже на чтение. Злоумышленник может скопировать такие файлы, только загрузившись в другую ОС или с дискеты. Утилит для их взлома достаточно много, самые современные из них способны подобрать ключ за несколько часов.

1.2 Основные понятия и определения криптографии

Итак, криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

Перечислю вначале некоторые основные понятия и определения.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита. В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

алфавит Z33 - 32 буквы русского алфавита и пробел;

алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

бинарный алфавит - Z2 = ;

восьмеричный алфавит или шестнадцатеричный алфавит; Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. xлены этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом (или асимметричесские).

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых: количество всех возможных ключей; среднее время, необходимое для криптоанализа. Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.

структурные элементы алгоритма шифрования должны быть неизменными;

длина шифрованного текста должна быть равной длине исходного текста;

не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

любой ключ из множества возможных должен обеспечивать надежную защиту информации;

алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

1.3 Симметричные и асимметричные криптосистемы

Оставаясь в рамках симметричной системы, необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования.

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст.

1.4 Основные современные методы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

* Алгоритмы замены или подстановки -- символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.

* Алгоритмы перестановки -- символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.

* Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

2. Алгоритмы шифрования

2.1 Алгоритмы замены (подстановки)

В этом наиболее простом методе символы шифруемого текста заменяются другими символами, взятыми из одного- (одно- или многоалфавитная подстановка) или нескольких (много- или полиалфавитная подстановка) алфавита.

максимально допустимой ценой является пятьсот руб. за штуку

книгакнигак нигакнигак нигак нигакниг акнигак ниг ак нигак

Дальше осуществляется непосредственное шифрование в соответствии со вторым правилом, а именно: берем первую букву шифруемого текста (М) и соответствующую ей букву ключа (К); по букве шифруемого текста (М) входим в рабочую матрицу шифрования и выбираем под ней букву, расположенную в строке, соответствующей букве ключа (К),-- в нашем примере такой буквой является Ч; выбранную таким образом букву помещаем в зашифрованный текст. Эта процедура циклически повторяется до зашифрования всего текста.

Расшифровка текста производится в следующей последовательности:

над буквами зашифрованного текста последовательно надписываются буквы ключа, причем ключ повторяется необходимое число раз. в строке подматрицы Вижинера, соответствующей букве ключа отыскивается буква, соответствующая знаку зашифрованного текста. Находящаяся под ней буква первой строки подматрицы и будет буквой исходного текста. полученный текст группируется в слова по смыслу.

Нетрудно видеть, что процедуры как прямого, так и обратного преобразования являются строго формальными, что позволяет реализовать их алгоритмически. Более того, обе процедуры легко реализуются по одному и тому же алгоритму.

Одним из недостатков шифрования по таблице Вижинера является то, что при небольшой длине ключа надежность шифрования остается невысокой, а формирование длинных ключей сопряжено с трудностями.

Нецелесообразно выбирать ключи с повторяющимися буквами, так как при этом стойкость шифра не возрастает. В то же время ключ должен легко запоминаться, чтобы его можно было не записывать. Последовательность же букв не имеющих смысла, запомнить трудно.

С целью повышения стойкости шифрования можно использовать усовершенствованные варианты таблицы Вижинера. Приведу только некоторые из них:

во всех (кроме первой) строках таблицы буквы располагаются в произвольном порядке.

В качестве ключа используется случайность последовательных чисел. Из таблицы Вижинера выбираются десять произвольных строк, которые кодируются натуральными числами от 0 до 10. Эти строки используются в соответствии с чередованием цифр в выбранном ключе. Известны также и многие другие модификации метода.

2.2 Алгоритм перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Рассмотрим некоторые разновидности этого метода, которые могут быть использованы в автоматизированных системах.

Самая простая перестановка -- написать исходный текст задом наперед и одновременно разбить шифрограмму на пятерки букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ.

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней группе (пятерке) не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти:

Тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

Кажется, ничего сложного, но при расшифровке проявляются серьезные неудобства.

Во время Гражданской войны в США в ходу был такой шифр: исходную фразу писали в несколько строк. Например, по пятнадцать букв в каждой (с заполнением последней строки незначащими буквами).

П У С Т Ь Б У Д Е Т Т А К К А

К М Ы Х О Т Е Л И К Л М Н О П

После этого вертикальные столбцы по порядку писали в строку с разбивкой на пятерки букв:

ПКУМС ЫТХЬО БТУЕД ЛЕИТК ТЛАМК НКОАП

Если строки укоротить, а количество строк увеличить, то получится прямоугольник-решетка, в который можно записывать исходный текст. Но тут уже потребуется предварительная договоренность между адресатом и отправителем посланий, поскольку сама решетка может быть различной длины-высоты, записывать к нее можно по строкам, по столбцам, по спирали туда или по спирали обратно, можно писать и по диагоналями, а для шифрования можно брать тоже различные направления. В общем, здесь масса вариантов.

2.3 Алгоритм гаммирования

3. Комбинированные методы шифрования

Одним из важнейших требований, предъявляемых к системе шифрования, является ее высокая стойкость. Однако повышение стойкости любого метода шифрования приводит, как правило, к существенному усложнению самого процесса шифрования и увеличению затрат ресурсов (времени, аппаратных средств, уменьшению пропускной способности и т.п.).

Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования, т.е. последовательное шифрование исходного текста с помощью двух или более методов.

Как показали исследования, стойкость комбинированного шифрования не ниже произведения стойкостей используемых способов.

Вообще говоря, комбинировать можно любые методы шифрования и в любом количестве, однако на практике наибольшее распространение получили следующие комбинации:

Итак, в этой работе был сделан обзор наиболее распространенных в настоящее время методов криптографической защиты информации и способов ее реализации. Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам:

осмысленной модификации информации на основе анализа ее структуры,

совершенство используемых протоколов защиты,

минимальный объем используемой ключевой информации,

минимальная сложность реализации (в количестве машинных операций), ее стоимость,

Поэтому желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы. Но в любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.

Список использованной литературы

1. Партыка Т.Л., Попов И.И. Информационная безопасность. Учебное пособие для студентов учреждений среднего профессионального образования. М.: ФОРУМ: ИНФРА-М, 2004.

2. Крысин А.В. Информационная безопасность. Практическое руководство. М.: СПАРРК, К.: ВЕК+,2003.

3. Тарасюк М.В. Защищенные информационные технологии. Проектирование и применение. М.: СОЛОН-Пресс, 2004.

Подобные документы

Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

курсовая работа [1,2 M], добавлен 28.12.2014

Рассмотрение основных понятий криптографии: конфиденциальности, целостности, аутентификации и цифровой подписи. Описание криптографических средств защиты (криптосистемы, принципы работы криптосистемы, распространение ключей, алгоритмы шифрования).

дипломная работа [802,2 K], добавлен 08.06.2013

Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

реферат [57,7 K], добавлен 24.05.2005

Шифрование как метод защиты информации. История развития криптологии. Классификация алгоритмов шифрования, симметричные и асимметричные алгоритмы. Использование инструментов криптографии в Delphi-приложениях. Краткая характеристика среды Delphi 7.

курсовая работа [48,5 K], добавлен 19.12.2009

Основные способы криптографии, история ее развития. Принцип шифрования заменой символов, полиалфавитной подстановкой и методом перестановки. Симметричный алгоритм шифрования (DES). Открытое распределение ключей. Шифры Ривеста-Шамира-Алдемана и Эль Гамаля.

реферат [39,3 K], добавлен 22.11.2013

Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

курсовая работа [564,3 K], добавлен 09.05.2012

Понятие шифров сложной замены. Шифры сложной замены называют многоалфавитными. Данная подстановка последовательно и циклически меняет используемые алфавиты. Понятие схемы шифрования Вижинера. Стойкость шифрования методом гаммирования и свойство гаммы.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Шифрование информации

По дисциплине: Информатика

Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения. Образно говоря, криптографические методы строят барьер между защищаемой информацией и реальным или потенциальным злоумышленником из самой информации. Конечно, под криптографической защитой в первую очередь – так уж сложилось исторически – подразумевается шифрование данных. Раньше, когда эта операция выполнялось человеком вручную или с использованием различных приспособлений, и при посольствах содержались многолюдные отделы шифровальщиков, развитие криптографии сдерживалось проблемой реализации шифров, ведь придумать можно было все что угодно, но как это реализовать. [4]

Цель исследования : является, распространить истоки шифрования информации и создание рабочего алгоритма шифрования на языке программирования .

Задачи исследования :

Изучение истории появления шифрования информации.

Создать алгоритм шифрования на языке программирования.

Имеются свидетельства, что информацию пытались зашифровать уже с самого появления письменности. Известным применением криптографии считается применение иероглифов в Древнем Египте. Однако, применение криптографии, скорее всего, было обоснованно не стремлением затруднить чтение текста, а превзойти других писцов в остроумии и изобретательности. В священных иудейских книгах применялся метод шифрования под названием Атбаш, который состоял в замене букв.

Как некий прообраз современной двоичной системы можно считать квадрат Полибия, изобретенный в Древней Греции. В нём буквы алфавита записывались в квадрат 5 на 5, после чего передавались номер строки и столбца, соответствующие символу исходного текста.

Самым известным криптографом XVI века можно назвать Блеза де Виженера. В его шифре использовалось многократное применение метода сдвига (шифр сдвига - один из самых простых и наиболее широко известных методов шифрования) с различными значениями сдвига. Для зашифровывания может использоваться таблица алфавитов, называемая tabula recta или квадрат Виженера.

В наше же время, после резкого скачка в развитии компьютерной техники, возросли не только потребности в шифровании, но и возможности в развитии криптографии. Современные мощные компьютеры и программы шифрования способны обеспечить высочайший уровень сокрытия информации и главным инструментом преодоления этой защиты является использования человеческого фактора.

Использование криптографии в коммерческих целях привело к появлению новой валюты – всем известных BitCoin. Эта валюта никак не контролируется государством, что и привело к ее популярности. Биткоин - виртуальная валюта, которую существует в сети и ее можно обменять на реальные деньги. [2]

Криптография (от греческого krypts - скрытый и gr a phein - писать) - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства) информации. Развилась практической необходимости передавать важные сведения надежным образом. Для математического анализа криптография использует инструментарий абстрактной алгебры.

Во время Первой Мировой Войны криптография активно использовалась в ведении боевых действий. Лидерами в этой области были Россия и Франция, но свои наработки имели и другие страны, в том числе Англия и Германия. Возможно, самым известным случаем применения является телеграмма Циммермана. Она была перехвачена и расшифрована британским криптографическим отделом “Комната №40”. Текст этой телеграммы позволил США обосновать объявление войны Германии и вступить в боевые действия на стороне союзников.

Касательно американской М-209, она являлась модификацией шифровальной машины С-36 с использованием колесной системы. Главными преимуществами М-209 являлись ее независимость от наличия электрического тока и надежность. [1]

Для современной криптографии характерно использование открытых алгоритмов шифрования, предполагающих использование вычислительных средств. Известны алгоритмы шифрования, которые при использовании ключа достаточной длины и корректной реализации алгоритма, криптографически стойки.

Очевидно, что в каких-либо целях людям требуется обойти шифрование. Наука, которая изучает методы расшифровки зашифрованной информации без предназначенного для такой расшифровки ключа, называется криптоанализом, а удачной раскрытие шифра – взломом или вскрытием. Первоначально методы криптоанализа основывались на лингвистических закономерностях естественного текста и реализовывались с использованием только карандаша и бумаги. Со временем в криптоанализе нарастает роль чисто математических методов, для реализации которых используются специализированные криптоаналитические компьютеры. [3]

Хорошие криптографические системы создаются таким образом, чтобы сделать их вскрытие как можно более трудным делом. Можно построить системы, которые на практике невозможно вскрыть (хотя доказать сей факт обычно нельзя). При этом не требуется очень больших усилий для реализации. Единственное, что требуется - это аккуратность и базовые знания. Нет прощения разработчику, если он оставил возможность для вскрытия системы. Все механизмы, которые могут использоваться для взлома системы надо задокументировать и довести до сведения конечных пользователей.

Таким образом, подводя итоги исследования выявлено, что :

История появления очень интересна и достаточно понятна, она мотивирует дальше изучать, читать и набираться знаний чтобы в дальнейшем быть умнее и помогать другим людям;

Существует достаточно много алгоритмов с помощью которых можно шифровать разными способами.

Криптография не является более придумкой военных, с которой не стоит связываться. Настала пора снять с криптографии покровы таинственности и использовать все ее возможности на пользу современному обществу. Широкое распространение криптографии является одним из немногих способов защитить человека от ситуации, когда он вдруг обнаруживает, что живет в тоталитарном государстве, которое может контролировать каждый его шаг.

Содержание
Вложенные файлы: 1 файл

Криптография - реферат по информатике.doc

Рязанский Государственный Педагогический

Университет им. Есенина


Выполнила студентка I курса

Факультета русской филологии

и национальной культуры

группы 1Б (Связи с общественностью)

Прялухина Ксения


Проверил: Андреев В.В.

Что такое криптография?

Криптогра́фия – наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации.

Изначально криптография изучала методы шифрования информации – обратимого преобразования открытого (исходного) текста на основе секретного алгоритма и/или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Разные люди понимают под шифрованием разные вещи. Дети играют в игрушечные шифры и секретные языки. Это, однако, не имеет ничего общего с настоящей криптографией. Настоящая криптография (strong cryptography) должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями – такими как мафия, транснациональные корпорации и крупные государства. Настоящая криптография в прошлом использовалась лишь в военных целях. Однако сейчас, со становлением информационного общества, она становится центральным инструментом для обеспечения конфиденциальности.

По мере образования информационного общества, крупным государствам становятся доступны технологические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и бесчисленное множество других важных вещей.

Криптография не является более придумкой военных, с которой не стоит связываться. Настала пора снять с криптографии покровы таинственности и использовать все ее возможности на пользу современному обществу. Широкое распространение криптографии является одним из немногих способов защитить человека от ситуации, когда он вдруг обнаруживает, что живет в тоталитарном государстве, которое может контролировать каждый его шаг.

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии, возможно, использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип – замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (хронологические рамки – с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) – до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления – криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается – от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики – работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества – её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

Криптография, как искусство

Долгое время занятие криптографией было уделом чудаков-одиночек. Среди них были одаренные ученые, дипломаты, священнослужители. Известны случаи, когда криптография считалась даже черной магией. Этот период развития криптографии как искусства длился с незапамятных времен до начала XX века, когда появились первые шифровальные машины. Понимание математического характера решаемых криптографией задач пришло только в середине XX века – после работ выдающегося американского ученого К. Шеннона.

История криптографии связана с большим количеством дипломатических и военных тайн и поэтому окутана туманом легенд. Наиболее полная книга по истории криптографии содержит более тысячи страниц. Она опубликована в 1967 году в Нью-Йорке и на русский язык еще не переведена. На русском языке недавно вышел в свет фундаментальный труд по истории криптографии в России.

Свой след в истории криптографии оставили многие хорошо известные исторические личности. Приведем несколько наиболее ярких примеров.

Рассмотрим более подробно несколько примеров.

Например, если роль сциталя выполняет карандаш с шестью гранями, то открытый текст КРИПТОГРАФИЯ может быть преобразован в шифртекст РПОРРФЯКИТГАИ. Шифртекст может быть и другим, так как он зависит не только от диаметра карандаша.

Шифр перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Рассмотрим некоторые разновидности этого метода, которые могут быть использованы в автоматизированных системах.

Самая простая перестановка – написать исходный текст задом наперед и одновременно разбить шифрограмму на группы из нескольких букв. Пусть группа состоит из пяти букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ.

получится такой шифротекст – ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней группе (пятерке) не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти – ПУСТЬ-БУДЕТ-ТАККА-КМЫХО-ТЕЛИО.

Тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому – ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

Кажется, ничего сложного, но при расшифровке проявляются серьезные неудобства.

Во время Гражданской войны в США в ходу был такой шифр: исходную фразу писали в несколько строк. Например, по пятнадцать букв в каждой (с заполнением последней строки незначащими буквами).

П У С Т Ь Б У Д Е Т Т А К К А

К М Ы Х О Т Е Л И К Л М Н О П

После этого вертикальные столбцы по порядку писали в строку с разбивкой на пятерки букв – ПКУМС ЫТХЬО БТУЕД ЛЕИТК ТЛАМК НКОАП

Если строки укоротить, а количество строк увеличить, то получится прямоугольник- решетка, в который можно записывать исходный текст. Но тут уже потребуется предварительная договоренность между адресатом и отправителем посланий, поскольку сама решетка может быть различной длины-высоты, записывать к нее можно по строкам, по столбцам, по спирали туда или по спирали обратно, можно писать и по диагоналями, а для шифрования можно брать тоже различные направления. В общем, здесь масса вариантов.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




ИСПОЛЬЗОВАНИЕ КРИПТОГРАФИИ ДЛЯ ЗАЩИТЫ ИНФОРМАЦИИ


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии — ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии и других народов тому являются примером.

Криптографические методы защиты информации — это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным для посторонних лиц без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты информации реализуется в виде программ или пакетов программ.

Актуальность темы очевидна, т.к. информация в современном обществе – одна из самых ценных вещей в жизни, требующая защиты от несанкционированного проникновения лиц, не имеющих к ней доступа.

Объектом изучения в проектной работе является криптография.

Предметом изученияявляются криптографические методы защиты информации.

Задачи исследования:

- изучить основные задачи криптографии;

- изучить способы защиты информации с помощью криптографии.

1. Криптография, её история и основные задачи

1.1 Криптография

Криптография — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонними лицами), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Изначально криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифровывание и расшифровывание проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Рис.1. Диск и додекаэдр Энея. Гибрид шифровальной кости, диска и линейки Энея.[ 2]

1.2. История криптографии

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип — замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки — с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) — до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления — криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается — от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики — работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества[3].

1.3. Основные задачи криптографии:

Обеспечение конфиденциальности данных (предотвращение несанкционированного доступа к данным). Это одна из основных задач криптографии, для ее решения применяется шифрование данных, т.е. такое их преобразование, при котором прочитать их могут только законные пользователи, обладающие соответствующим ключом

Обеспечение целостности данных— гарантии того, что при передаче или хранении данные не были модифицированы пользователем, не имеющим на это права. Под модификацией понимается вставка, удаление или подмена информации, а также повторная пересылка перехваченного ранее текста. name= ‘more’>

Обеспечение невозможности отказа от авторства - предотвращение возможности отказа субъектов от совершенных ими действий (обычно — невозможности отказа от подписи под документом). Эта задача неотделима от двойственной — обеспечение невозможности приписывания авторства. Наиболее яркий пример ситуации, в которой стоит такая задача — подписание договора двумя или большим количеством лиц, не доверяющих друг другу. В такой ситуации все подписывающие стороны должны быть уверены в том, что в будущем, во-первых, ни один из подписавших не сможет отказаться от своей подписи и, во-вторых, никто не сможет модифицировать, подменить или создать новый документ (договор) и утверждать, что именно этот документ был подписан. Основным способом решения данной проблемы является использование цифровой подписи. [4]

2. Современная криптография и криптосистемы

2.1. Симметричные криптосистемы. Современная криптография включает в себя четыре крупных раздела.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование — преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование — обратный шифрованию процесс.На основе ключа шифрованный текст преобразуется в исходный);

Электроная подпись (ЭП) - это программно-криптографическое средство, которое обеспечивает:

проверку целостности документов;

установление лица, отправившего документ

Электронная подпись используется физическими и юридическими лицами в качестве аналога собственноручной подписи для придания электронному документу юридической силы, равной юридической силе документа на бумажном носителе, подписанного собственноручной подписью правомочного лица и скрепленного печатью.

Электронный документ - это любой документ, созданный при помощи компьютерных технологий и хранящийся на носителях информации, обрабатываемых при помощи компьютерной техники, будь то письмо, контракт или финансовый документ, схема, чертеж, рисунок или фотография.

Преимущества использования ЭП

Использование ЭП позволяет:

значительно сократить время, затрачиваемое на оформление сделки и обмен документацией;

усовершенствовать и удешевить процедуру подготовки, доставки, учета и хранения документов;

гарантировать достоверность документации;

минимизировать риск финансовых потерь за счет повышения конфиденциальности информационного обмена;

построить корпоративную систему обмена документами.

Подделать ЭП невозможно - это требует огромного количества вычислений, которые не могут быть реализованы при современном уровне математики и вычислительной техники за приемлемое время, то есть пока информация, содержащаяся в подписанном документе, сохраняет актуальность. Дополнительная защита от подделки обеспечивается сертификацией Удостоверяющим центром открытого ключа подписи.

3. Управление криптографическими ключами

Криптографические ключи различаются согласно алгоритмам, в которых они используются.

- Секретные (Симметричные) ключи — ключи, используемые в симметричных алгоритмах (шифрование, выработка кодов аутентичности). Главное свойство симметричных ключей: для выполнения как прямого, так и обратного криптографического преобразования необходимо использовать один и тот же ключ (либо же ключ для обратного преобразования легко вычисляется из ключа для прямого преобразования, и наоборот).

3.2. Симметричные криптографические алгоритмы.

Классическими примерами таких алгоритмов являются симметричные криптографические алгоритмы, перечисленные ниже:

Одиночная перестановка по ключу

Простая перестановка

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу, очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Двойная перестановка

Параметры алгоритмов: Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

длина обрабатываемого блока

сложность аппаратной/программной реализации

4. Сравнение с асимметричными криптосистемами

4.1. Достоинства асимметричных криптосистем

скорость шифрования и дешифрования;

простота реализации (за счёт более простых операций);

уменьшение требуемой длины ключа для сопоставимой стойкости

изученность криптосистемы (за счёт большего возраста)

4.2. Основные недостатки

сложность управления ключами в большой сети

сложность обмена ключами. Для применения необходимо решить проблему надёжной передачи ключей каждому абоненту, так как нужен секретный канал для передачи каждого ключа обеим сторонам

Для компенсации недостатков симметричного шифрования в настоящее время широко применяется комбинированная (гибридная) криптографическая схема, где с помощью асимметричного шифрования передаётся сеансовый ключ, используемый сторонами для обмена данными с помощью симметричного шифрования.

Важным недостатком симметричных шифров является невозможность их использования в механизмах формирования электронной цифровой подписи и сертификатов, так как ключ известен каждой стороне. [6]

Схема 1. Симметричное шифрование

Криптосистемы с открытым ключом

Преимущества

Преимущество асимметричных шифров перед симметричными шифрами состоит в отсутствии необходимости предварительной передачи секретного ключа по надёжному каналу.

В симметричной криптографии ключ держится в секрете для обеих сторон, а в асимметричной криптосистеме только один секретный.

При симметричном шифровании необходимо обновлять ключ после каждого факта передачи, тогда как в асимметричных криптосистемах пару (E,D) можно не менять значительное время.

В больших сетях число ключей в асимметричной криптосистеме значительно меньше, чем в симметричной.

Несимметричные алгоритмы используют более длинные ключи, чем симметричные. Ниже приведена таблица, сопоставляющая длину ключа симметричного алгоритма с длиной ключа несимметричного алгоритма с аналогичной криптостойкостью.

Читайте также: