Корень орган питания и синтеза веществ реферат

Обновлено: 02.07.2024

Ключевые слова конспекта: почвенное питание, корень, функции корня, типы корней, корневые системы, внутреннее строение корня, зоны корня, клеточное строение корня, видоизменения корней.

Почвенное питание

Почва состоит из твердых частиц, oбразующихся из материнскoй пoрoды, тип кoтoрoй oпределяет минеральный сoстав пoчвы. Сoдержание в пoчве вoды — главный фактoр для развития растений. Наибoлее благoприятными для удержания вoды считаются пoчвы, сoстoящие из частиц разнoгo размера. Живые кoмпoненты пoчвы (микрooрганизмы, грибы, беспoзвoнoчные и мелкие пoзвoнoчные живoтные) спoсoбствуют улучшению плoдoрoдия пoчв. Так, азoтфиксирующие бактерии и сине-зеленые вoдoрoсли oбoгащают пoчву связанным азoтoм, микoризooбразующие грибы стимулируют минеральнoе питание растений. Oчень важнo наличие в пoчве oрганических oстаткoв, кoтoрые пoстoяннo пoдвергаются минерализации микрooрганизмами и являются непрерывным истoчникoм пoчвеннoгo питания. Чем больше органических остатков в почве, тем она плодороднее.

Корень. Функции корня

Корень — подземная часть вегетативного тела растения, закрепляющая его в почве. Появился впервые у сосудистых растений.

Корень — осевой орган, обладающий радиальной симметрией и неопределенно долго нарастающий в длину, благодаря деятельности апикальной (верхушечной) меристемы. От стебля он отличается тем, что на нем никогда не нарастают листья, а апикальная меристема прикрыта чехликом. Функции корня:

Типы корней

В корне различают главный корень, боковые и придаточные корни. Первичный корень закладывается еще в зародыше, он ориентирован вниз и становится у голосеменных и цветковых растений главным. Боковые корни формируются на главном.

корень таблица

корень

Внутреннее строение корня

Проводящая система корня (ситовидные трубки и сосуды) радиально расположена в центре корня, образуя клетками основной ткани осевой цилиндр. Пo сoсудам прoисхoдит транспoрт вoды с раствoренными в ней веществами к наземным oрганам растения oт кoрневых вoлoскoв. Между тяжами сoсудoв нахoдятся ситoвидные трубки. Oни служат для транспoртирoвки oрганических раствoрoв oт наземнoй части растения к клеткам кoрня.

Между флoэмoй и ксилемoй распoлoжена oбразoвательная ткань — камбий, клетки кoтoрoгo непрерывнo делятся, oбеспечивая рoст кoрня в тoлщину. Всасывание вoды с раствoренными в ней веществами oсуществляется в зoне кoрневых вoлoскoв. Корневой волосок — это вырост клетки, он живет около 20 дней и заменяется новым.

Клеточное строение корня

клеточное строение корня

Зоны корня на продольном разрезе:

  1. Корневой чехлик.
  2. Зонa деления — делящиеся клетки обрaзовaтельной ткaни.
  3. Зонa ростa — осуществляет рост корня в длину.
  4. Зонa всaсывaния — рaсположенa выше зоны ростa. Ее поверхность покрытa выростaми нaружных клеток — корневыми волоскaми, которые всaсывaют из почвы воду с рaстворенными в ней веществaми. Корневые волоски покрыты слизью, которaя рaстворяет минерaльные чaстицы почвы, и корни прочно сцепляются с субстрaтом. В этой зоне зaклaдывaются боковые корни.
  5. Зонa проведения — в центре корня нaходится проводящaя ткaнь, обрaзовaннaя древесиной (ксилемой) и лубом (флоэмой). Для зоны хaрaктерен постоянный рост. Нa ее долю приходится большaя чaсть длины корня. Здесь корень утолщается, благодаря делению клеток камбия. В зоне проведения корень ветвится.

строение корня

Видоизменения корней.

Корнеплоды вследствие сильного разрастания паренхимы или за счет деятельности дополнительных слоев камбия происходит утолщение корня, его видоизменение в корнеплод. У редьки, свеклы и репы большая часть корнеплода образована разросшимся основанием стебля; у моркови, наоборот, главную часть корнеплода формирует главный корень. Корнеплоды приспособлены для запасания питательных веществ.

Другие видоизменения: корнеклубни (георгин), воздушные корни (кукуруза).

Содержимое работы - 1 файл

курсовая работа по биологии - корень.doc

Корень – это орган, обеспечивающий растение водой и минеральными веществами и укрепляющий его в почве. В корнях образуются многие важные для жизни растения вещества.

Корни всасывают из почвы воду и растворенные в ней минеральные вещества.

На жизнедеятельность корней влияют внешние условия: температура почвы, наличие в ней влаги, растворенных минеральных веществ и воздуха.

Для достижения цели были поставлены следующие задачи:

2. Рассмотреть основные методические приемы при изучении данной темы.

ГЛАВА 1. ВИДЫ КОРНЕЙ И ТИПЫ КОРНЕВЫХ СИСТЕМ

Функции корня. Корни закрепляют растение в почве и прочно удерживают его в течение всей жизни. Через них растение получает из почвы воду и растворенные в ней минеральные вещества. В корнях некоторых растений могут откладываться и накапливаться запасные вещества.

Виды корней. Различают три вида корней: главные, придаточные и боковые [1]. При прорастании семени первым развивается зародышевый корешок. Он превращается в главный корень.

Рис. 1. Типы корневых систем

Корни, образующиеся на стеблях, а у некоторых растений и на листьях, называют придаточными. От главного и придаточных корней отходят боковые корни.

Типы корневых систем. Все корни одного растения образуют корневую систему. Различают два типа корневых систем — стержневую и мочковатую [2]. Корневую систему, в которой сильнее всех развит похожий на стержень главный корень, называют стержневой. Стержневую корневую систему имеет большинство двудольных растений, например щавель, морковь, свекла и др. [1].

Обычно стержневая корневая система хорошо видна только у молодых, выросших из семян двудольных растений. У многолетних растений (лютик, земляника, подорожник) часто главный корень отмирает, а от стебля отрастают придаточные корни.

Мочковатой называют корневую систему из придаточных и боковых корней. Главный корень у растений с мочковатой системой недостаточно развит или рано отмирает. Мочковатая корневая система характерна для однодольных растений пшеницы, ячменя, лука, чеснока и др.

Для того чтобы научиться различать типы корневых систем, выполните лабораторную работу.

Глава 2. Методические особенности преподавания

В процессе изучения данной темы главное внимание обращается на усвоение учащимися знаний о строении корня во взаимосвязи с функциями, связи корня со средой обитания, о важнейших агротехнических мероприятиях, вытекающих из биологии корня, способствующих его росту и развитию; формирование умений распознавать на натуральных объектах типы корневых систем, ставить опыты по выяснению основных функций корня, выращивать растения и ухаживать за ними, проводить рыхление почвы, пикировку, окучивание, подкормку.

Содержание темы позволяет решить воспитательные задачи: формировать материалистическое мировоззрение на основе раскрытия сущности процесса питания растений из почвы, строение и функций корня в свете причинной обусловленности явлений, путей управления ростом растений с помощью различных агроприемов (внесение необходимых удобрений, обработка почвы, мелиорация и др.).

Урок начинается беседой, в процессе которой выясняются знания учащихся о корне. Школьники обычно указывают, что это подземный орган, который поглощает из почвы питательные вещества и укрепляет растение. Учитель дополняет ответы учащихся, сообщает, что при помощи корня растение хорошо закрепляется в почве и противостоит ветрам и даже бурям. Однако ураганной силы ветер иногда способен вырвать из почвы деревья с корнями. Способность корней связывать частицы почвы используется человеком для закрепления оврагов, осыпей, склонов рек, железнодорожных насыпей.

Затем на основе знаний учащихся из курса природоведения изучается материал о почве, ее составе, свойствах, плодородии. Учитель демонстрирует опыты для определения физического и механического состава почвы и подводит учащихся к выводу о зависимости жизнедеятельности корней от физического состава почвы, содержания в ней питательных веществ, воды, воздуха; почва — это природное богатство, которое надо беречь от разрушений, только на плодородной почве можно вырастить хороший урожай.

Учитель раскрывает меры охраны почвы от разрушения, способствующие накоплению запасов влаги в почве (снегозадержание, ранняя вспашка земель под зябь, раннее боронование весной, посадка полезащитных полос и др.), указывает на необходимость высокоэффективного использования земель, улучшения их плодородия как важнейшего условия повышения урожайности растений.

На следующем этапе урока изучается внешнее строение корней. Учитель сообщает, что все корни одного растения образуют корневую систему, и показывает учащимся на таблице главный, боковые и придаточные корни, раскрывает понятия стержневой и мочковатой корневых систем. Он отмечает, что общая поверхность корней одного растения очень большая, намного превышает надземную часть. Учитель просит установить взаимосвязь строения и функций корневой системы. С его помощью учащиеся делают вывод, что большая протяженность корневой системы обеспечивает закрепление, удержание растения в почве, поглощение воды и питательных веществ.

1. Рассмотрите корневую систему взрослых растений гороха и пшеницы, найдите черты отличия и установите типы корневых систем у растений.

2. Отберите растения со стержневой корневой системой, укажите признаки, по которым вы будете их отбирать.

3. Отберите растения с мочковатой корневой системой. Укажите признаки, по которым вы их отберете.

Внешнее и внутреннее строение корня. Зоны корня. Ткани. Знания макро- и микроскопического строения корня необходимы для понимания протекающих в нем процессов жизнедеятельности, установления взаимосвязи его строения и функций. Целесообразно на изучение данного вопроса выделить три урока. На первом уроке следует начать формирование знаний о зонах корня, их строении и значении, об особенностях строения клеток корневого чехлика и корневых волосков в связи с выполняемыми функциями. На втором уроке следует продолжить формирование знаний о внутреннем строении корня, тканях на примере зон деления и роста, о росте корня, смене зон, значении прищипки корня для управления ростом растения, подвести школьников к выводу о причинной обусловленности биологических явлений. На третьем уроке необходимо сформировать у школьников знания о зоне проведения и ее главной функции — поглощении воды и минеральных веществ из почвы; обосновать вывод о материальных основах питания растений из почвы.

Первый урок начинается с устной проверки знаний о почве, се составе, свойствах и мерах охраны, о видах корней и типах корневых систем. Кроме того, проверяются умения учащихся определять типы корневых систем на живых растениях или гербарных экземплярах.

Затем проводится изучение нового материала. Организуется самостоятельная работа учащихся по заданию: 1) рассмотрите корни проростков пшеницы (или какого-либо другого растения) и опишите их внешний вид; 2) вынутые из почвы корми проростков встряхните, найдите участки корня, на которых пет почвы, и участки с комочками почвы; 3) установите, сколько участков можно выделить на корне, чем они различаются между собой.

1. Рассмотрите в лупу корпи проростков пшеницы и ответьте па вопросы: каково строение и цвет кончика корпя? По каким признакам можно определить зону всасывания?

3.Зарисуйте корневой волосок н сделайте надписи к рисунку.

4.Ответьте на вопрос: в чем сходство строения клеток корневого чехлика и корневого волоска?

После лабораторной работы проводится беседа, обобщаются знания об особенностях строения клеток "корневого чехлика и корневых волосков в связи с функциями. Отмечается, что клетки этих зон отличаются друг от друга формой и размерами. Учитель сообщает о том, что за счет корневых волосков увеличивается общая поверхность корня и повышается его эффективность как органа поглощения. На I мм2 поверхности всасывающей зоны может располагаться от 200 до 400 корневых волосков, благодаря чему контакт корня с почвой увеличивается в 18—40 раз. Подчеркивается, что корневой волосок представляет собой вытянутую клетку с очень тонкой оболочкой, что позволяет ему тесно соприкасаться с частицами почвы и поглощать воду и минеральные вещества. Если останется время, то для закрепления знаний о зонах корня, строении и функциях корневого чехлика и корневых волосков можно организовать самостоятельную работу учащихся с рисунком учебника и провести беседу по вопросам: какие различают зоны корня? Каковы строение и функции клеток корневого чехлика? Почему его так называют? Какая зона называется всасывающей? Какое строение она имеет? Что представляет собой корневой волосок?

Целесообразно предложить учащимся дома повторить материал о строении растительной клетки.

Затем раскрывается механизм постепенной смены зон корня, всасывающий участок с корневыми волосками после их отмирания становится проводящим, на месте растущего участка образуются корневые волоски. Благодаря смене зон корня успешно осуществляются его функции: снабжение растений водой и питательными веществами, укрепление в почве. Учащиеся делают вывод: смена зон корня является важным приспособлением к поглощению воды и питательных веществ из все новых участков почвы.

Рассмотрение вопроса о смене зон корня позволяет сосредоточить внимание учащихся на взаимосвязях в организме растения, показать зависимость одной зоны корня от другой, взаимосвязь между строением и функциями, подчеркнуть причинную обусловленность биологических явлений.

С целью закрепления знаний о внутреннем -строении корня, его тканях можно организовать самостоятельную работу учащихся с учебником по заданию: найдите в тексте материал о тканях, выпишите определение ткани; заполните таблицу 8.

Роль отдельных тканей в выполнении этих функций уже частично освещалась.

Для понимания их взаимодействия в системе корня как органа абсорбции наряду с цитологической характеристикой тканей имеет значение уяснение последовательности их дифференциации и взаимного расположения в корне.

В продольном сечении, проведенном через кончик корня, различают четыре зоны:

  1. корневой чехлик;
  2. апикальную меристему, включающую зону интенсивных клеточных делений;
  3. зону растяжения;
  4. зону дифференциации клеток и образования постоянных тканей.

Приведенная схема дает представление о последовательности дифференциации различных тканей корня, происходящих из его апикальной меристемы. Обособленный прокамбиальный цилиндр можно обнаружить сразу же за зоной меристемы, и на расстоянии 100—150 мк от нее имеются инициальные клетки ситовидных трубок. На расстоянии 250—300 мк от меристемы встречаются зрелые элементы флоэмы. Зрелые сосуды ксилемы появляются на еще более дальнем расстоянии от кончика корня.

Здесь следует отметить очень важные корреляции в развитии тканей. На протяжении всей зоны растяжения имеются дифференцированные ситовидные трубки, в то время как в ксилемной части в этой зоне образуются лишь инициальные клетки сосудов; созревание их происходит в другой зоне корня, характеризующейся вместе с тем развитием корневых волосков и своеобразным изменением структуры оболочек клеток эндодермы — появлением пятен Каспари. Согласованность в процессах дифференциации таких тканей, как ксилема, эндодерма, ризодермис, показывает их взаимодействие в выполнении функции проведения веществ в зоне максимального поглощения.

Экспериментально установлено участие различных зон корня в поглощении веществ. Выяснено, что меристематическая зона поглощает небольшое количество минеральных веществ, сразу же используемых в процессах синтеза; клетки, перешедшие в фазу растяжения, поглощают больше минеральных элементов, чем клетки апикальной меристемы, и поглощенные вещества также используются в синтетических процессах, происходящих непосредственно в зоне поглощения; для зоны дифференциации постоянных тканей (зоны корневых волосков) характерно еще более интенсивное, поглощение, однако в этом случае значительная часть поглощенных веществ передвигается в надземные органы.

Из анатомических особенностей тканей, лежащих на пути тока растворов в радиальном направлении — от корневых волосков до сосудов ксилемы, — следует отметить:

  1. наличие системы крупных межклетников в паренхиме коры в противоположность отсутствию их в тканях центрального цилиндра;
  2. наличие специализированной ткани — эндодермы — на границе коры и стелы.

Указанные черты структуры корня имеют большое значение в механизме передвижения веществ, однако этот механизм в физиологии растений еще окончательно не установлен. Представления о механизме передвижения веществ развиваются главным образом в рамках двух теорий — активного и пассивного тока веществ. Активный транспорт связан с передвижением веществ через цитоплазму и вакуоли и осуществляется за счет энергии аэробного дыхания, происходящего в тканях корня. Система межклетников в паренхиме коры, обеспечивая хорошую ее аэрацию, представляет собой, таким образом, важный фактор в активном передвижении веществ.

Выразительной чертой строения стелы корня как органа поглощения веществ является чередование групп флоэмы и ксилемы по периферии центрального цилиндра, причем каждая из этих тканей залагается непосредственно под перициклом, т. е. в одинаковом положении по отношению к тканям коры. Современное состояние знаний о механизмах поглощения и передвижения веществ позволяет до некоторой степени объяснить функциональный смысл такого расположения тканей.

Изучение метаболизма корневой системы показало, что некоторая, иногда значительная часть поглощенных корнями веществ сразу же включается в состав разнообразных органических соединений. Есть основания считать, что синтезирующиеся в корнях вещества передвигаются по флоэме.

Все эти представления, основывающиеся на экспериментальных данных, позволяют понять исключительную целесообразность структуры центрального цилиндра корня. При чередующемся расположении, в непосредственном контакте с корой ткани флоэмы и ксилемы могут работать весьма согласованно и экономично: поток наружного раствора может поступать непосредственно в ксилему, минуя флоэмную часть, а при определенных условиях флоэма может избирательно аккумулировать некоторые вещества, сразу же включающиеся в метаболизм этой ткани.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


Лекции


Лабораторные


Справочники


Эссе


Вопросы


Стандарты


Программы


Дипломные


Курсовые


Помогалки


Графические

Доступные файлы (8):

(8)Корень как орган поглощения минеральных элементов. Метаболизм корней..doc

Впервые И.С. Шуловым в лаборатории Д.Н. Прянишникова был разработан метод, при котором в стерильных условиях находилась только корневая система. В таких условиях надземные органы растения развивались нормально. Было показано, что в отсутствие микроорганизмов корневые системы растений прекрасно усваивают вещества, внесенные в питательную среду, в минеральной форме в виде растворимых солей. Некоторые органические растворимые соединения, в частности соединения азота (аминокислоты), также может поглощать растительный организм, хотя и с меньшей интен­сивностью. Более сложные нерастворимые органические соединения в отсутствие микроорганизмов усваиваться растением не могут.

Таким образом, основными источниками питательных веществ для растений являются минеральные соли. Катионы и анионы поступают в растения независимо друг от друга с разной скоростью. Скорость поступления того или иного иона в большей степени определяется быстротой его использования.

Корневая система как орган поглощения солей

Сформировавшаяся корневая система — сложный специализированный орган. Основной зоной поглощения питательных веществ, снабжающей и надземные органы растения, является зона растяжения клеток и зона корневых во­лосков. Подсчеты показывают, что на 1 мм2 поверхности корня развивается от 200 до 400 корневых волосков. Таким образом, корневые волоски увеличивают поверхность корня в сотни раз. Они обладают и повышенной способностью к поглощению (Д.Б. Вахмистров). В меристематической зоне нет дифференцированной сосудистой системы. При этом флоэма дифференцируется раньше, и лишь несколько выше по длине корня образуется ксилема. Именно по ксилеме происходит передвижение воды с растворенными питательными веществами. Поэтому основная масса поглощенных меристемой ионов используется в этих же клетках.

Однако некоторое количество ионов, и особенно Са2+ все же посту­пает из этой зоны в надземные органы растений. Вместе с тем поглощенные в зоне растяжения и зоне корневых волосков ионы, наряду со снабжением надземных органов, могут транспортироваться и вниз по корню (М.Ф. Данилова). Выше зоны корневых волосков расположена зона ветвления корня. В этой зоне поверхность покрыта слоем пробки и в поглощении питательных солей практически не участвует. Различные зоны корня поглощают разные минеральные элементы. Показано, что Са2+ поступает только в апикальные зоны, К+, NH4+, фосфаты абсорбируются всей корневой системой. Однако для кукурузы установлено, что наибольшая скорость аккумуляции К+ и N03- наблюдается в зоне растяжения, a NH4+ быстрее абсорбируется в апексах.

Особенности поступления солей в корневую систему

Растительный организм обладает способностью к избирательному накоплению питательных элементов.

Влияние внешних условий на поступление солей

При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пре­делах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. Быстрота реакции указывает на прямое действие света. Вместе с тем свет может оказывать и косвенное влияние. На свету в процессе фотосинтеза образуются углеводы, которые необходимы для дыхания, образуется АТФ, энергия которой используется на поступление веществ. При уменьшении содержания кислорода до 2—3% интенсивность поступления солей остается на одном уровне. Лишь снижение концентрации кислорода ниже 3% вызывает падение поглощения примерно в два раза.

Как уже упоминалось, поглощение одного иона зависит от присутствия других ионов. Так, в присутствии легко поглощаемого аниона катионы той же соли поступают быстрее. Ионы с одинаковым зарядом обычно конкурируют между собой.

Влияние внутренних факторов на поступление солей

Зависимость поступления солей от интенсивности дыхания является установленным фактом. Ингибиторы процесса дыхания (в частности, цианистый калий) резко тормозят поступление солей. Процесс дыхания может оказывать влияние на поступление солей в нескольких направлениях. Так, в процессе дыхания выделяющийся углекислый газ в водной среде диссоциирует на ионы Н+ и НС03-. Адсорбируясь на поверхности корня, эти ионы служат обменным фондом для поступающих катионов и анионов. В процессе переноса ионов через мембрану участвуют специфические белки-переносчики, синтез которых находится в зависимости от интенсивности дыхательного процесса. Наконец, энергия, выделяемая в процессе дыхания, непосредственно используется для поступления солей (активное поступление). В этой связи особенно важно, что вещества, нарушающие накопление энергии дыхания в макроэргических фосфорных связях (динитрофенол), также тормозят поступление солей. Поступление воды и солей во многих случаях идет независимо друг от друга. Сопоставление количества воды, испаренной в процессе транспирации, и ко­личества поступивших солей показывает, что прямой зависимости между этими процессами обычно нет.

Механизм и пути поступления минеральных солей через корневую систему

Поступление питательных солей в корневую систему носит частично активный характер, связанный с метаболизмом. Об этом свидетельствуют следующие особенности поступления: способность растений к избирательному концентрированию веществ; относительная независимость поступления воды и солей; зависимость от дыхания и фотосинтеза; ускорение процесса под влиянием температуры и света.

В корневой системе различают два объема — апопласт и симпласт. Тот факт, что оба эти объема участвуют в поглощении солей, был доказан в опытах с меченой серой (Э. Эпстайн). Отрезанные корневые системы ячменя погружали в раствор, содержащий сульфат (S042-), меченный по сере (35S). В одной пробе корней было определено количество серы, поглощенной в течение одного часа. Другую пробу после часового пребывания в растворе помещали в раствор CaS04, не содержащий меченой серы. Сначала 35S быстро обменивалась и выходила в окружающий раствор, затем обмен прекращался. В дальнейшем 35S в раствор больше не выходила. Та часть серы, которая быстро обменивалась, была легкодиффундирующая, поступившая пассивным путем. Оставшаяся часть 35S в растении, очевидно, проникла внутрь клетки через мембрану. Таким образом, эти исследования подтвердили наличие свободного пространства корня (апопласта), т.е. той части тканей, в которую вещества вместе с водой могут поступать путем свободной диффузии. Объем свободного пространства составляет 5—10% от всего объема корневой системы.

Корни поглощают вещества из почвенного раствора (водная фаза) и при контакте с частицами ППК — почвенного поглощающего комплекса (твердая фаза почвы). ППК — это мелкодисперсная коллоидная часть почвы, смесь минераль­ных (алюмосиликатных) и органических (гуминовых) соединений. Большая часть коллоидов почвы заряжена отрицательно, на их поверхности в адсорбированном (поглощенном) состоянии находятся катионы. Некоторая часть коллоидов почвы в определенных условиях может быть заряжена положительно, по­этому на них в поглощенном адсорбированном состоянии будут находиться анионы. Обменные катионы и анионы — один из важнейших источников питания для растений. Катионы и анионы, находящиеся в поглощенном состоянии на частицах почвенного поглощающего комплекса, могут обмениваться на ионы, адсорбированные на поверхности клеток корня. Так может осуществляться поступление катионов К+, Са2+, Na+ в обмен на протоны, а также анионов N03-, Р043- и других в обмен на НС03- или анионы органических кислот. Особенно эффективно идет поглощение при контактном обмене, при котором происходит обмен ионами без перехода их в раствор. Поглощенные ионы адсорбируются на поверхности клеточных оболочек ризодермы. Из адсорбированного состояния ионы могут по коре корня передвигаться двумя путями: по апопласту и симпласту. При поступлении в симпласт ионы проникают через мембрану и далее передвигаются по плазмодесмам к сосудам ксилемы.

Ток воды с растворенными веществами, движущийся по свободному пространству (апопласту), как бы омывает все клетки коры. На всем этом пути могут наблюдаться адсорбция веществ клеточными стенками, поступление ионов в клетки через соответствующие мембраны и включение их в обмен веществ, т. е. метаболизация. Необходимо учесть, что на пути движения по апопласту имеется преграда в виде клеток эндодермы с поясками Каспари. Передвижение через клетки эндодермы возможно, по-видимому, только через цитоплазму. Даже если признать наличие в стенках клеток эндодермы промежутков для свободной диффузии, то они настолько малы, что вещества не могут через них проникнуть. В связи с этим перенос ионов через мембраны клеток эндодермы необходим и также осуществляется с помощью переносчиков. В целом между апопластом и симпластом в корневой системе происходит непрерывное взаимодействие и обмен питательными солями. По мнению некоторых исследователей, основным для транспорта ионов является симпластный путь, отличающийся от апопластного большей эффективностью и возможностью осуществлять ме­таболическую регуляцию.

Роль корней в жизнедеятельности растений

В корне запасаются питательные вещества, в том числе и минеральные. Таким образом, корень является органом, регулирующим скорость поступления веществ в надземные органы. Это хорошо проявляется в опытах по выращиванию растений в водных культурах на среде, содержащей все питательные элементы. Оказалось, что в пасоке, вытекающей из среза отделенных корней, выделяется меньше фосфора по сравнению с тем количеством, которое поступает в корневую систему. При переносе растений из полной питательной среды на дистиллированную воду в пасоке в течение длительного времени продолжают обнаруживаться соединения фосфора. Иначе говоря, в восходящем токе по сосудам ксилемы передвигаются не только питательные соли, поступившие непосредственно из почвы, но и предварительно аккумулированные в клетках корня. Известно, что к концу онтогенеза, по мере старения клеток корня, их поглотительная способность резко падает. В этот же период в почве уменьшается количество доступных питательных веществ. Тем не менее, клетки корня продолжают снабжать надземные органы питательными веществами. В клетках корня происходят очень активные обменные процессы. Так, вне зависимости от того, какие соединения азота находились в питательной среде и поступали в клетки (аммиак или нитраты), в пасоке были обнаружены аминокислоты и амиды. Имеются данные, что 50—70% поступившего азота включается в метаболизм в корнях. Уже через несколько секунд после поступления неорганическая фосфорная кислота оказывается в составе АТФ. Правда, при переходе из клеток корня в полость сосудов фосфорная кислота обычно вновь отщепляется. Есть вещества, которые синтезируются только в клетках корня, как алкалоиды, происходит в клетках корня. В корнях синтезируются и другие вещества, например, порфирины, каучук, витамины (В1, В6, никотино­вая кислота, аскорбиновая кислота). Немецкий ученый К. Мотес (1958) установил, что если изолированные листья табака поместить в питательную среду и на них образуются корни, то они долгое время сохраняют зеленую окраску. Если корни обрывать, то при выдерживании на питательной смеси листья желтеют. При этом влияние корней оказалось возможным заменить нанесением на листья раствора фитогормона типа цитокининов, а именно кинетина. Показано (Е. Овсян­никова), что фотосинтетическая деятельность листьев зависит от гормональных веществ, поступающих через корневую систему. В настоящее время не вызывает сомнения, что корневая система — место синтеза важнейшей группы фитогормонов — цитокининов. Таким образом, живые клетки корня являются источником многих важных и незаменимых органических веществ, в том числе гормонов.

Читайте также: