Координатно измерительные машины реферат

Обновлено: 04.07.2024

Важнейшую роль в обеспечении качества и конкурентоспособности продукции практически всех отраслей промышленности играет контрольно-измерительная техника, в которой особое место занимают средства измерения и контроля геометрических параметров ответственных деталей, узлов машин и механизмов.

В условиях современного рынка, жесткой конкуренции и постоянного совершенствования технологий на предприятиях различных областей промышленности, таких как автомобильная, авиационная, нефте- и газодобывающая, остро встает проблема быстрого и всестороннего контроля деталей, оснастки, заготовок, а также получения прототипов будущих изделий. Большинство предприятий России, действуя по старинке, используют в качестве средств контроля различные шаблоны, щупы и контрольные приспособления, которые зачастую не позволяют провести измерения в локальных зонах, указанных по требованию конструкторов, технологов и контролеров ОТК. Для изготовления подобной оснастки требуются значительные финансовые и временные затраты, а кроме того, необходимы большие площади для ее хранения. Бывает, что предприятие использует в своем производстве передовые CAD/CAM/CAE-технологии, но контроль изделий при этом проводится штангенциркулями, в результате чего цепочка автоматизации подготовки производства оказывается незамкнутой.

Для контроля точности изготовления изделий и технологической оснастки на большинстве предприятий применяются стационарные координатно-измерительные машины (КИМ). Однако в ряде случаев, например при измерении крупногабаритных деталей или труднодоступных полостей, а также при необходимости провести измерения непосредственно на сборочной линии, на литейном заводе или на ремонтном участке, эти машины неприменимы. В таких ситуациях могут использоваться измерительные машины, выполненные в виде манипулятора, — они компактны и легки и для проведения измерений устанавливаются непосредственно рядом с измеряемым объектом. Принцип действия таких машин достаточно прост. Оператор, закрепив манипулятор в удобном для работы месте, например с помощью магнитного основания, к любой металлической поверхности, касается щупом измеряемой точки. Посредством датчиков, расположенных в сочленениях манипулятора, на компьютерную систему поступает информация о пространственных координатах кончика щупа (при использовании точечного) или центра сферы (при использовании сферического наконечника). Таким образом, снимая координаты точек с измеряемой детали, компьютерная система может либо рассчитывать по ним отклонения по сравнению с компьютерной моделью, либо вычислять геометрические параметры элементов изделия.

На предприятиях, где применяются стационарные (КИМ), невозможно произвести измерения крупногабаритных объектов и сделать замеры в ходе технологического процесса. В связи с этим получить желаемый экономический эффект от этих измерительных приспособлений в ряде случаев весьма затруднительно. Поэтому многие предприятия стали проявлять большой интерес к новым современным мобильным КИМ, отвечающим таким требованиям:

• низкая стоимость (в несколько раз ниже, чем у стационарных КИМ);

• большая точность измерений;

• возможность автономной работы в условиях реального производства, непосредственно в цехе;

• простота обучения персонала и эксплуатации КИМ и ее программного обеспечения;

• взаимосвязь с современными CAD/CAM-системами.

МобильныеКИМфирмы FARO Technologies, Inc. (США) хорошо известны и используются на различных предприятиях, как за рубежом, так и в России. Отличительными особенностями данных машин являются:

• более высокая точность измерения (повторяемость до ±0,006 мм);

• наличие температурной компенсации;

• совместимость со щупами типа Renishaw, применяемыми для измерения хрупких и нежестких изделий;

• долговечная конструкция из алюминия и углепластика;

КИМ FARO состоит из опорной плиты, которая крепится к любому подходящему месту, и нескольких соединенных между собой шарнирами колен. Конструкция очень похожа на строение человеческой руки: В каждом шарнире есть датчик контроля угловых перемещений, который в режиме реального времени следит за углом поворота колена, в результате чего программное обеспечение просчитывает координаты откалиброванного щупа. В зависимости от числа колен имеются машины с шестью или семью степенями свободы. Обычно при работе вполне достаточно шести степеней свободы, но для ряда задач, например для сканирования, рекомендуется применять КИМ с семью степенями. Рабочей зоной КИМ является сфера с диаметрами 1,2; 1,8; 2,4; 3,0 или 3,7 м, причем щуп может легко попасть практически в любую точку внутри этой сферы. Самая точная КИМ FARO Platinum 4 имеет повторяемость ±0,006 мм и точность ±0,018 мм на рабочей зоне 1,2 м.

FARO не имеет привода и поэтому все перемещения колен и фиксация точки замера производятся оператором вручную. Измерение осуществляется в комплексе с персональным компьютером, а для повышения мобильности лучше использовать ноутбук.

Стоит также отметить возможность контроля сложных поверхностей, например формообразующих поверхностей штампа, правильность изготовления которых практически невозможно проверить ни одним прибором, кроме КИМ.

Очень часто КИМ FARO используют для сканирования опытных образцов изделия. Данные о них можно получить в виде точек, линии, окружностей, плоскостей и т.д., по которым в дальнейшем строится CAD-модель.

Удобный дизайн, возможность температурной компенсации результатов измерений, виброустойчивость, невосприимчивость к ударам, а также наличие перезаряжаемого бесперебойного источника питания от FARO Powerhouse (работает до 8 ч без подзарядки) способствуют успешному использованию FARO в жестких цеховых условиях производства.

Масса манипуляторов FARO колеблется от 5 до 10 кг; упаковка представляет собой удобный кейс, что позволяет перевозить КИМ вручную без использования какого-либо дополнительного оборудования.

В настоящее время CimCore выпускает три серии манипуляторов: для работы в режиме контактных измерений; для использования совместно с лазерной сканирующей системой PerceptronScanWorks, предназначенной для быстрого контроля изделий (скорость контроля — до 30 тыс. точек в секунду); и для трехмерного сканирования объектов.

Такие измерительные манипуляторы обеспечивают шесть или семь степеней свободы вращения и беспрепятственные измерения в труднодоступных местах. Высококачественный углепластик, из которого изготовлены компоненты манипулятора, делает измерительную машину высокоустойчивой к температурным изменениям. Манипулятор обеспечивает высочайшую точность, которая составляет от 16 мкм до 5 мкм. При этом длина измерения со стационарной позиции составляет от 1,2 до 3,6 м.


Манипулятор CimCore серии INFINITE


Манипулятор CimCore серии StingerII

Прогресс в развитии систем ЧПУ станков, станочных измерительных систем и большой опыт компании Delcam в области обработки деталей сложной формы на станках с ЧПУ стали предпосылками для появления нового программного продукта — PowerINSPECTOMV (on-machineverification), разработанного компаниями Delcam и Renishaw.

Программ PowerINSPECTслужит для проведения измерений на станке с ЧПУ, оснащенном измерительной головкой, что позволяет минимизировать временные затраты на проведение контроля и обеспечить экономию времени, поскольку качество обработки можно контролировать на всех этапах технологического процесса. Это значит, что ошибки будут выявлены на самых ранних стадиях и не потребуется повторная установка детали на станок.

Технология особенно эффективна для крупногабаритных изделий, установка которых на станке занимает много времени. Для таких изделий станок может даже заменить КИМ, позволяя выполнить окончательный контроль, поскольку КИМ с большой рабочей зоной очень дороги.Еще одна область применения этого ПО — программное базирование, не требующее выверки детали на станке. По результатам обмера обеспечивается наилучшее совмещение координат модели и фактических координат детали. Необходимое смещение и разворот системы координат используются далее в УЧПУ станка. Эта возможность используется при установке деталей на станок, в особенности для того, чтобы правильно распределить припуск на заготовке-отливке перед ее обработкой.

Новая технология и новые датчики во многих случаях позволяют отказаться от шаблонов.

Работа организована так, что одно место PowerINSPECTOMV в состоянии осуществлять периодический контроль обработки на нескольких станках одновременно. Передача программ на станки и результатов контроля обратно производится по сети. Измерения на станке с помощью PowerINSPECTOMVне заменяют измерения на стационарных координатно-измерительных машинах, но значительно расширяют возможности промежуточного контроля изделий.

Программное базирование

Особенно интересно применение PowerINSPECTOMV для поднастройки положения деталей, что может быть необходимо при доработке деталей после переустановки или при обработке деталей, не имеющих выращенных базовых элементов, — например лопаток, компрессорных колес, криволинейных тонкостенных деталей с аэродинамическим профилем и пр. Измерив деталь, PowerINSPECT может определить, насколько она смещена и повернута относительно заданного положения в программе обработки. Имея эти данные, можно легко скорректировать положение системы координат через стойку ЧПУ. Такой метод можно назвать программным базированием — положение детали относительно базовых точек станка определяется не установочными элементами приспособления, а результатами замера по программе.

Принцип работы лазерного сканера следующий: он крепится вместо контактного щупа и подключается к КИМ мобильного или стационарного типа, либо к станку с числовым программным обеспечение (ЧПУ).

Внутри сканера располагается цифровая видеокамера и диодный лазерный излучатель с модуляцией сигнала. Лазерный луч формирует строку различной длины в зависимости от модели, а затем гаснет до начала следующей. Максимальное количество строчек в секунду 60.


Технология сканирования Kreon базируется на методе триангуляции. Угол между камерой и лазерным лучом выбран оптимальным для сканирования. При угле 0° между лучом и измеряемой поверхностью камера не фиксирует излучение строки, подсвеченной лучом лазера на измеряемой поверхности, 90°- оптимальное положение.

Лазерный луч в единичный момент времени образует на сканируемой поверхности светящуюся точку, которая фиксируется матрицей видеокамеры. При формировании лучом лазера строчки на измеряемой поверхности, на матрице фиксируется размытая (градиентная) кривая, которая затем фильтруется по точкам с максимальной интенсивностью свечения. Из этих точек с максимальной интенсивностью свечения формируется облако.




Электроника фильтрует изображение и оставляет только самые "яркие" точки.

За счет калибровки камеры определяется зависимость между видеоизображением и действительной метрической системе координат (UV). В результате создается линия из точек на плоскости


Зная позицию сканера относительно объекта, электроника определяет положение точек линии в трехмерной системе координат (XYZ). Собранные плоскости с точками образуют облако точек.


Опыт эксплуатации данного оборудования показывает высокую эффективность его применения в следующих областях:

· при проведении контрольно-измерительных работ;

· при проведении пуско-наладочных работ;

· быстрое создание прототипов;

НИИизмерения созданы и выпускаются универсальные приборы и инструменты с цифровым электронным отсчетом, уникальные средства контроля прецизионных зубчатых колес и передач, приборы активного контроля и подналадчики для всех видов финишного станочного оборудования, комплекс приборов для контроля ответственных деталей колесных пар железнодорожного транспорта, приборы для контроля резьб и параметров труб нефтяного сортамента, средства контроля деталей компрессоров, подшипников, ряд специализированных приборов для различных отраслей машиностроения.


На базе различных измерительных систем разработана гамма современных цифровых универсальных приборов контроля геометрических параметров прецизионных деталей (индуктивные пробки для контроля диаметров, толщиномеры, глубиномеры, штангенрейсмасы). Разработана и поставляется портативная измерительная система с индуктивным преобразователем и автономным питанием, имеющая переключаемые диапазоны измерений от 0,04 до 4 мм и дискретность отсчета 0,01; 0,1 и 1 мкм. Не ее базе создана модифицированная измерительная система для прецизионного измерения линейных размеров и перемещений, которая может использоваться в средствах автоматизации технологических процессов, а также для контроля различных параметров деталей в труднодоступных условиях; система допускает эксплуатацию при температурах от -20 до +50 оС (рис.1).

Серьезное внимание НИИизмерения уделяет проблеме метрологического обеспечения производства ответственных резьбовых деталей, особенно сортамента нефтегазового комплекса. В рамках работ по этому направлению разработан комплекс индикаторных приборов для контроля параметров резьбы (шага, высоты и угла профиля, среднего диаметра и конусности резьбы), а также электронные цифровые приборы для контроля диаметров и прямолинейности отверстий труб, пригодные в том числе и для контроля труб погружных штанговых насосов. Созданы также электронные цифровые приборы для контроля конусности калибров-колец (ручной) и для контроля конусности и шага резьбы конических калибров-колец (стационарный). Допускаемая погрешность приборов не превышает нескольких микрон. Результаты контроля обрабатываются, запоминаются, выводятся на табло электронного блока и на печатающее устройство. Модули контролируемых зубчатых колес 7-12 мм, диаметры 126-1000 мм. Разработаны также две модификации цифровых нормалемеров, предназначенных для определения отклонения и колебания длины общей нормали цилиндрических зубчатых колес внешнего зацепления. Предел измерения длины общей нормали 0…120 или 50-320 мм.

В последние годы создано новое поколение приборов активного контроля, предназначенных для управления процессом обработки валов, отверстий и плоских поверхностей с непрерывной и прерывистой поверхностью на кругло- и внутришлифовальных станках-автоматах, полуавтоматах и станках с ЧПУ, отличающееся от ранее выпускавшихся существенно более высоким техническим уровнем (повышение в 1,5-2 раза быстродействия и точности, уменьшение в 2-3 раза габаритов, массы, энергопотребления, расширение технологических возможностей, использование единого для всей гаммы приборов активного контроля одной и той же модели малогабаритного электронного отсчетно-командного устройства на микропроцессорной базе). Гамма включает 7 основных моделей приборов с различными исполнениями и закрывает контроль деталей при всех видах шлифования, кроме бесцентрового. Диапазон размеров контролируемых валов и отверстий — 2,5…200 мм, дискретность цифрового отсчета — 0,1 — 1 мкм.


Разработаны также подналадчики (рис.2) для круглошлифовальных бесцентровых, токарных, сверлильно-фрезерно-расточных станков с ЧПУ, обрабатывающих центров, гибких модулей и систем, унифицированные по механической и электронной части с приборами активного контроля.. Подналадчики обеспечивают контроль внутренних и наружных размеров при изготовлении деталей и выдачу в систему управления станками информации о необходимой подналадке оборудования.

Для контроля диаметра колес по кругу катания колес после их обточки на токарном станке создан специализированный прибор (рис.3), позволяющий контролировать колеса диаметром 800…1200 мм. В приборе используется угловой фотоэлектрический преобразователь. Результаты измерений обрабатываются, запоминаются и выводятся на табло электронного блока.



Электронный профилометр (рис. 4) портативный для измерения параметров шероховатости методом ощупывания плоских и цилиндрических (наружных и внутренних) поверхностей ответственных деталей. Измеряемые параметры — Ra/Rq/Rz/Rmax/Sm. Основная относительная погрешность измерения — не более 2,5%.

Проведение измерений на станке пока вызывает много вопросов как у технологов, так и у метрологов. С одной стороны, станок должен использоваться для выпуска продукции, а не для непроизводительных измерений. Это веский довод, если не учитывать, сколько времени можно сэкономить, если обнаружить брак на ранней стадии. В данном случае PowerINSPECTOMV может выступить средством промежуточного контроля. При производстве сложных крупногабаритных деталей, когда цена ошибки очень высока, промежуточный контроль повышает вероятность достижения желаемого результата. С другой стороны, метрологи пока не хотят признать, что станок может быть средством измерения. Формально с этим тоже можно согласиться, хотя точность позиционирования современных станков с ЧПУ даже сегодня обеспечивает погрешность измерения, достаточную для контроля большинства размеров, особенно крупногабаритных изделий. Использование PowerINSPECTOMV в качестве средства контроля уже сейчас оправданно экономически и технически, и графика 4`2007

Таким образом, использование КИМ и лазерных сканеров для бесконтактного съема информации позволяет значительно сократить сроки, необходимые для проектирования новых и модернизации серийно выпускаемых изделий, достичь высокой точности проведения контрольно-измерительных работ, а также значительно сократить время и снизить затраты на проектирование и изготовление контрольных приспособлений

В мелкосерийном и среднесерийном производстве при частой сменяемости выпускаемых изделий широкое применение находят контрольно-измерительные машины: измерительные роботы и координатно-измерительные машины (КИМ).

С их помощью автоматизируются процессы измерения и наладки в автоматизированных комплексах машиностроения.

Измерительные роботы — автоматические измерительные устройства, отличающиеся хорошими манипуляционными свойствами, высокими скоростями перемещений и измерений.

Измерительные роботы могут выполнять типовые контрольные операции: качественная оценка состава рабочей среды; установление присутствия определенных объектов, их счет, определение расположения, сортировка; оценка значения параметров деталей. Типовая структура измерительного робота показана на рисунке 2.16.

Рис. 2.16. Схема измерительного робота

Датчики d служат для определения вариаций измеряемых параметров в запястье 1 и шарнире 2 захватного устройства 3. Область применения — механическая обработка, сборка, шлифовка, упаковка, а при использовании датчиков визуальной информации (телекамера) геометрическое распознавание внешней среды в двух- и трехмерном геометрическом пространстве и т.д. Захватные устройства могут быть механическими, вакуумными, электромагнитными. Базы данных и знаний содержат информацию о последовательности действий, позициях и времени выполнения операций, набор возможных объектов, образцовых значений. Датчики d могут определять наличие объекта, его положение, регулировать усилие захватного устройства и т.д.

Измерительные роботы позволяют выполнять работы в труднодоступных (морское дно, космос и т.п.) и опасных для здоровья (запыление пространства, радиация, взрывоопасность и т.п.) местах, сократить утомительные операции, простои оборудования.

На рисунке 2.17 (а) показана схема использования измерительного робота для сортировки проконтролированных изделий на размерные группы.

Рис. 2.17. Схема измерительного робота-рассортировщика

Проконтролированные изделия подаются транспортным диском 1 в зоны захвата 2 робота 3. Система управления обеспечивает такие перемещения робота 3, при которых изделия сбрасываются в нужную ячейку приемника 4.

Конструкция робота показана на рисунке 2.17 (б).

После запуска робота от пульта управления 2 приводится в действие привод 13 продольного перемещения манипулятора 10, который перемещается до тех пор, пока не сработает фотореле, состоящее из осветителя 4 и фоторезистора 3. Это фотореле по отражению света обнаруживает наличие детали между губками 5 и 7 захватного устройства манипулятора. По сигналу фотореле привод 13 отключается и включается привод 12 поперечного перемещения. Привод перемещает кисть захватного устройства до тех пор, пока деталь не окажется между губками 5 и 7 и не произойдет затемнения фотодиода фотореле 6. Затем включается привод 9 сжатия кисти и блок коммутации. Датчик 8 габаритных размеров захваченной детали через схемы сравнения вводит необходимые программы с координатами точек доставки детали. Для этой цели служат также датчик 1 продольного и датчик 11 поперечного положения манипулятора 10. Когда заданное положение кисти будет достигнуто, приводы отключаются, деталь освобождается, и цикл перемещения робота повторяется.

Робота зі скаргами незадоволених клієнтів

. 21 4. Система роботи зі скаргами у мережі готелів Promus. 22 5. Система обслуговування клієнтів в Microsoft 23 6. . в базах даних (якщо існують), а проблеми пов'язані зі скаргами, залишаються поза увагою менеджерів по маркетингові та торгового персоналу . клієнтів. 16 2.4. Технічний бік роботи відділу з роботи з клієнтами.. 17 2.5. Зробити те щоб замовник міг звернутися після того зі своїми скаргою. .

В более сложных робототехнических комплексах захватное устройство находит в строго фиксированных местах нужное измерительное средство и осуществляет качественную и количественную оценку параметров изделия.

Новые возможности для современного производства создают широкоуниверсальные, автоматические, достаточно гибкие средства контроля — координатные измерительные машины (КИМ).

С их применением повышается точность и достоверность результатов измерения. Использование принципов оперативного и диалогового программирования дало возможность применения КИМ как универсального средства контроля в единичном и мелкосерийном производствах.

В КИМ используется координатный метод измерения, сводящийся к последовательному нахождению координат ряда точек изделия и последующему расчету размеров, отклонений размера, формы и расположения в соответствующих системах координат. Структурная схема КИМ представлена на рисунке 2.18. измерительный машина робот

Рис. 2.18. Структурная схема КИМ

Рис. 2.19. КИМ фирмы dEA и измерительная головка

Конструкция КИМ реализует идею мехатронных систем в станкостроении и обеспечивает высокую жесткость корпуса 1 и прецизионное функционирование механики. Использование виброопор обеспечивает высокоточные измерения даже без использования специального фундамента. Измерительная головка 2 является одним из основных элементов КИМ, т.к. её погрешность непосредственно входит в результат измерения. Функциональные возможности измерительной головки во многом определяют функциональные возможности КИМ, классы поверхностей и объем параметров изделий, доступные для контроля. В КИМ используются различные типы измерительных головок в зависимости от встречающихся на практике метрологических задач. В любом случае измерительная головка дает первичную измерительную информацию, на основе которой определяются размеры детали. Эта информация может быть получена или в виде фактических координат точек проверяемой поверхности или в виде отклонений этих координат от заданных в определенном направлении.

Датчики 3 больших перемещений обеспечивают измерение перемещений измерительной головки 2 относительно измеряемой детали по пространственным координатам X,Y, Z. Автоматическое управление перемещениями измерительной головки 2 в рабочем пространстве КИМ осуществляется от вычислительного управляющего устройства 6 с погрешностью позиционирования до 0,05 мкм. Связь вычислительно-управляющего устройства с приводами перемещения измерительной головки обеспечивается интерфейсом 4. Отображение результатов измерений обеспечивается блоком цифровой индикации координат 5 и печатающим устройством 7, которые позволяют оператору контролировать движение измерительной головки и выполнение программы, находясь непосредственно у измеряемой детали. КИМ может быть оснащена графопостроителем 8.

КИМ позволяет осуществить переход от контроля размеров к контролю форм в лабораторных и цеховых условиях и позволяют проводить измерения крупногабаритных деталей сложной формы размером до трех метров, таких как: корпусные изделия машиностроения, турбины, прессформы, штампы. Для них характерны высокая прецизионность и производительность (таблица 2.1)

Актуальность данной статьи связана с тем, что в последнее время использование на производстве координатно-измерительных машин позволяет оперативно измерять геометрические параметры простых и сложных деталей, включая те детали, измерение которых традиционными способами требует дорогостоящей специальной оснастки или измерение которых невозможно вообще; также позволяет сокращать время на наладку станков ЧПУ, за счет достоверного контроля первых обработанных деталей из последующей партии; исключать брак, используя постоянный контроль точности процесса обработки деталей, и своевременно корректировать его.

Ключевые слова

Текст научной работы

Трехкоординатные приборы позволяют решить ряд новых задач измерительной техники, которые ранее традиционными методами не решались, или были трудоемкими и тем самым тормозили развитие производственного процесса. Появилась необходимость ввести такие способы контроля, которые будут соответствовать темпам обработки. Станки с ЧПУ позволили значительно повысить производительность обработки, но надежда обойтись без контроля обрабатываемых на них деталей, не оправдалась. Необходимо проверять состояние и наладку станков с ЧПУ, контролируя первую изготовленную деталь. Причем зачастую эти детали сложной геометрической формы с большим количеством размеров.

Принцип работы координатно-измерительных машин (КИМ) основывается на том, что имеется возможность измерить перемещение щупа относительно контролируемых объектов по трем пространственным осям Х, У, Z. Математический отсчет по измеренным точкам ведется в цифровой форме. Так как при замере некоторых линейных и угловых величин ряд размеров может быть получен только путем вычислений, а также для того чтобы получить результат измерений в более удобной форме (в виде протоколов и графиков) в сочетании с КИМ используется ЭВМ. На ЭВМ и периферийные устройства (мониторы, принтеры и другие) перекладываются наиболее трудоемкие операции контроля деталей сложной пространственной формы: вычисление, установка детали и щупов относительно баз, составление протоколов. На КИМ можно измерять в любой из трех систем прямоугольных координат: в машинной, соответствующей осям, по которым перемещается щуп; в нормальной системе, соответствующей осям детали (деталь при установке чаще всего бывает смещена по всем трем осям КИМ); вспомогательная, которая может быть смещена по трем осям от нормальной системы (эта система используется для измерения размеров на наклонных поверхностях детали). Благодаря использованию в КИМ ЭВМ пересчет из одной системы в другую осуществляется автоматически, без участия человека.

Основными конструктивными элементами КИМ являются[1]: механическая часть, которая обеспечивает установку контролируемой детали и ее перемещение относительно системы ощупывания или наоборот, системы ощупывания относительно любой точки неподвижной детали; система ощупывания, фиксирующая координаты, в которых щуп касается точки объекта; измерительная часть, которая измеряет координаты, измеренные при перемещении стола или системы щупов по каждой из осей координатно-измерительной машины; система привода и управления перемещениями подвижных органов КИМ и щуповой системы; система обработки результатов измерений.

Основными характеристиками для механической части КИМ являются габаритные размерами, форма и масса контролируемых деталей и имеющиеся возможности ощупывающей системы. По конструкции измерительная система может быть трех видов: консольная, портальная и мостовая.

Консольная конструкция позволяет производить установку и контроль детали наиболее простым способом, но в тоже время ее жесткость и координатные перемещения становятся меньше.

Портальная конструкция сочетает в себе портал и консоль, благодаря этому обеспечивается более высокая жесткость и большие координатные перемещения. При этом сохраняется удобство загрузки детали, так как во время загрузки портал можно отвести на расстояние от измеряемых деталей.

Мостовая конструкция состоит из консоли, располагающейся между двух передвижных колонн и имеющей наибольшую жесткость и наибольший размер перемещений по осям. Однако присутствие в мостовой конструкции боковых колонн ограничивает доступ к детали и снижает диапазон измерений.

Чтобы выбрать перемещающийся элемент КИМ необходимо оценить геометрические параметры и массу детали. Крупногабаритные, громоздкие и тяжелые детали необходимо устанавливать на массивный неподвижный стол. При измерении легких, маленьких деталей зачастую применяют столы с перемещающимся по одной (Х) или двум (Х и У) координатам. Стол и направляющие изготавливают из серого чугуна, стального литья, а в последнее время из твердых каменных пород, например, таких как гранит.

Система ощупывания определяется и параметрами детали, и процессом измерения. Выбор метода ощупывания (формы контактирующего элемента и принцип действия головки) зависит от множества факторов, связанных с деталью и задачей измерения, и в свою очередь влияет на точность измерения, условия обслуживания КИМ, возможную степень автоматизации и производительность. Применяемые щуповые головки по принципу действия делятся на механические, электроконтактные, индуктивные и др. Механические щупы жестко крепятся к подвижной пиноли и имеют различную форму: конусный наконечник применяют для определения расстояний между отверстиями; сферический – для измерения плоских цилиндрических или выпуклых поверхностей; плоские – для измерения выпуклых поверхностей; дисковые – для измерения глубоких поверхностей или внутренних канавок и т. д. В сочетании с жесткими наконечниками используются различные удлинители и крепежный кубик (сфера) на конце пиноли, обеспечивающий установку щупа в любом направлении. Жесткие щупы применяют при ручном ощупывании и управлении; измерительное усилие и положение контакта зависят от усилия рук. Отсчет производится при стабилизации показания на отсчетном приборе. Электроконтактные щупы основаны на использовании замыкания токовой цепи в момент контакта щупа с деталью. При этом выдается звуковой и световой сигнал на снятие отсчета. Такой щуп малонадежен и не применим при токонепроводящих деталях. Другим вариантом электроконтактного щупа является электроконтактный преобразователь, замыкающий или размыкающий электрические контакты во время касания.

Применение ЭВМ совместно с КИМ дало возможность развитию полной автоматизации процесса измерения, которую тормозит необходимость замены щупов, так как детали имеют сложную геометрическую форму и некоторые точки труднодоступны для измерения одним щупом, поэтому требуется применение различных щупов. Наиболее удобным к применению является набор наконечников из пяти штук, они соединены между собой в одном корпусе. Каждый из наконечников чувствителен к перемещению по трем осям (Х, У и Z), благодаря тому что в конструкции имеется три индуктивных преобразователя. Такая система ощупывания может быть использована как датчик касания – в таком случае измерения перемещения щупа выполняются измерительной частью КИМ, и как индикатор, показывающий отклонение – в этом случае измерения малых перемещений наконечника выполняются системой ощупывания с помощью индуктивного преобразователя, значение которого со знаком плюс или минус суммируются с показаниями измерительной части КИМ, причем данные математические операции производятся до обработки результатов измерений.

Измерительная часть служит для измерения перемещений щупа или стола по трем осям рабочего пространства КИМ. Конструктивно она может быть фотоэлектрической, линейной или круговой индуктивной, лазерной.

Привод и управление КИМ определяют производительность, точность и удобство обслуживания. Ручной подвод пиноли к месту измерения применяется в КИМ с малыми диапазонами измерениями и неавтоматизированных. При этом возрастают погрешности из-за влияния температуры руки оператора и нестабильности измерительного усилия. При моторном приводе применяются два варианта управления – цифровое перфорационное через управляющие блоки и числовое управление через микроЭВМ, служащей для обработки измеренных значений.

Полезный эффект от использования КИМ во многом зависит от способа обработки данных. В случае когда в КИМ не используется ЭВМ, все необходимые расчеты по чертежам и запись результатов должен выполнять сам оператор. Первой предпосылкой для автоматизации измерительной системы стало подключение печатающего устройства, но недостатком этого способа стало то, что размеры деталей на чертеже должны были быть даны исключительно в значениях координат. Второй уровень автоматизации – это применение ЭВМ для вычислений и распечатки протоколов, третья ступень автоматизации – полностью автоматизированные КИМ. В них возможен автоматический ввод программы, автоматическое управление подвижными узлами КИМ, автоматическая обработка данных измерений и оценка результатов. Все эти задачи решаются путем составления программ для ЭВМ в составе КИМ.

Применение координатно-измерительных машин на производстве способствует решению многих метрологических задач, таких как: оперативное измерение геометрических размеров простых и сложных деталей, включая детали, измерение которых может вызвать затруднение и потребовать больших материальных и физических затрат; сокращение времени на наладку станков ЧПУ, изготавливающих проверяемые детали; исключение брака, путем постоянного контроля точности процесса обработки деталей.

Координатно-измерительные-машины

Что такое КИМ - устройство?

Представьте себе станок с ЧПУ, способный выполнять чрезвычайно точные измерения с высокой степенью автоматизации. Вот что делают CMM Machine или просто КИМ.


Hexagon Global Classic CMM — одна из моделей координатно-измерительных машин

Применение координатно-измерительных машин

Координатно-измерительные машины используются, когда необходимо провести высокоточные измерения. И чем сложнее или многочисленнее измерения, тем выгоднее использовать КИМ.

Обычно КИМ используются для проверки и контроля качества. То есть они используются для проверки соответствия детали требованиям и спецификациям заказчика.

Они также могут быть использованы для обратного проектирования существующих деталей путем проведения точных измерений их характеристик.

Кто изобрел станки КИМ?

Первые станки КИМ были разработаны компанией Ferranti of Scotland в 1950-х годах. Они были необходимы для точного измерения деталей в аэрокосмической и оборонной промышленности. Самые первые машины имели только 2 оси движения. Трехосевые станки были представлены в 1960-х годах DEA Италии. Компьютерное управление появилось в начале 1970-х годов и было введено Шеффилдом из США.

Типы КИМ.

Существует пять типов координатно-измерительных машин:

· КИМ с мостом: В этой конструкции, наиболее распространенной, головка КИМ едет по мосту. Одна сторона моста движется по рельсу на базе , а другая опирается на воздушную подушку или другим способом на базу без направляющей.

· Консольный КИМ: Консоль поддерживает мост только с одной стороны.

· Портальный КИМ : Портал использует направляющий рельс с обеих сторон, как фрезерный станок с ЧПУ. Это, как правило, самые большие КИМ, поэтому им нужна дополнительная поддержка.

· КИМ с горизонтальным рычагом: представьте консоль, но весь мост перемещается вверх и вниз по одному рычагу, а не по его собственной оси. Это не самые точные модели КИМ, но они могут измерять большие тонкие компоненты, такие как кузов автомобиля.

· КИМ с переносным рычагом: в этих машинах используются сочлененные рычаги, которые обычно устанавливаются вручную Вместо непосредственного измерения XYZ они вычисляют координаты из положения вращения каждого соединения и известной длины между соединениями.

Каждый из них имеет свои преимущества и недостатки в зависимости необходимых типов измерения. Эти типы относятся к конструкции машины, которая используется для позиционирования его зонда относительно измеряемой детали.


Выше приведена удобная таблица, чтобы помочь разобраться в плюсах и минусах:

Зонды обычно располагаются в 3х осях - X, Y и Z. Однако, более сложные машины также могут менять угол зонда, позволяя проводить измерения в местах, в которые 3х осевой зонд не смог бы попасть.Так же для этих целей обычно используют поворотные столы

КИМ часто изготавливаются из гранита и алюминия, и они используют аэродинамические подшипники

Датчик - определяет, где находится поверхность детали, когда производится измерение.

КИМ используются примерно в трех основных отрослях :

· Отделы контроля качества: как правило, они содержатся в чистых помещениях с климат-контролем, чтобы максимизировать их точность.

· Цех: Здесь КИМ находятся среди станков с ЧПУ, чтобы упростить замеры на точность обычно рядом со станком, где обрабатываются детали. Это позволяет максимально быстро найти и определить даже самую небольшую ошибку в точности.

· Портативный: Портативные КИМ легко перемещать. Они могут использоваться в цехах или даже на удаленном от производственного объекта участке для измерения деталей в полевых условиях.

Насколько же точны КИМ ?

Как правило, они стремятся к точности микрометра или лучше. Но увы все не так просто.
• Во-первых,погрешность может быть функцией размера, поэтому погрешность измерения КИМ может быть задана в виде краткой формулы, которая включает в себя длину измерения в качестве переменной.

Например, глобальная классическая CMM Hexagon указана в качестве доступной универсальной CMM и определяет ее точность как: 1.0 + L / 300 мкм.

Эти измерения в микронах, а L указывается в мм. Допустим, мы пытаемся измерить длину 10-миллиметрового элемента. Формула будет 1,0 + 10/300 = 1,0 + 1/30 или 1,03 мкм.

Микрон - это тысячная часть мм. Таким образом, ошибка при измерении длины 10 мм составляет 0,00103 мм - довольно маленькая ошибка!

С другой стороны, нужно иметь точность, в 10 раз превышающую то, что мы пытаемся измерить. Таким образом, это означает, что если мы можем доверить это измерение только 10x, то пол десятой .

Все становится еще мрачнее для измерений КИМ в цехах. Если КИМ размещается в контролируемой температурой лаборатории, это очень помогает. Но в цехе температура может сильно варьироваться. Существуют различные способы, с помощью которых КИМ может компенсировать изменение температуры, но ни один из них не является идеальным.

Читайте также: