Конструкционные и инструментальные материалы реферат

Обновлено: 04.07.2024

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной позволило увеличить скорость резания в 2—3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность.

Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, для того чтобы в течение длительного времени срезать стружку.

Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания.

Содержимое работы - 1 файл

Инструментальные материалы.docx

Федеральное агентство по образованию

Реферат по теме:

Студент: Шелякин А.И.

Преподаватель: Сулаков В.В.

Общие сведения

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной позволило увеличить скорость резания в 2—3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность.

Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, для того чтобы в течение длительного времени срезать стружку.

Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания.

Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость).

Режущая часть инструмента должна иметь большую износостойкость в условиях высоких давлений и нагрева.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок, либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т. е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.

В настоящее время для изготовления режущих элементов инструментов применяются следующие материалы:

1) инструментальные стали (углеродистые, легированные и быстрорежущие);

2) твердые сплавы;

3) минералокерамические материалы;

5) абразивные материалы.

Инструментальные стали

Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200 — 250* их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они плохо закаливаются и требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.

Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию, по профилю.

С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает брак из-за деформации и трещин, по сравнению с получаемым при термической обработке углеродистых сталей. Примером низколегированных сталей может служить сталь У 11Х, которая представляет собой углеродистую сталь с небольшими добавками хрома.

Низколегированные стали не превосходят углеродистые стали по режущим свойствам, так как введение в сталь небольшого количества легирующих элементов не повышает теплостойкость стали. Поэтому область применения для низколегированных сталей рекомендуется та же, что и для углеродистых сталей.

Легированные инструментальные стали отличаются от углеродистых более высокой прокаливаемостью и закаливаемостью, что позволяет производить закалку инструментов с охлаждением в горячих средах и получать меньшую деформацию.

В производстве режущих инструментов из инструментальных легированных сталей наибольшее применение находят хромокремнистая сталь 9ХС и хромовольфрамомарганцовистая сталь ХВГ.

У стали 9ХС наблюдается равномерное распределение карбидов по сечению. Это позволяет использовать ее для резьбонарезных инструментов с мелким шагом резьбы, особенно для круглых плашек.

Вместе с тем сталь 9ХС имеет повышенную твердость в отожженном состоянии, пониженную обрабатываемость, высокую чувствительность к обезуглероживанию при нагреве.

Сталь ХВГ имеет повышенную карбидную неоднородность, что усиливает выкрашивание режущих кромок и не позволяет рекомендовать ее для инструментов, работающих в тяжелых условиях. Применяется она для изготовления таких инструментов, как длинные развертки, метчики, протяжки, для которых крайне нежелательна деформация при закалке.

Вместо сталей 9ХС и ХВГ можно применять сталь ХГСВФ. Она имеет меньшую твердость после отжига и обезуглероживается значительно меньше, чем сталь 9ХС.

По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200— 260* С. Поэтому эти стали непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.

В настоящее время для изготовления металлорежущих инструментов применяются быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:

1) стали нормальной производительности;

2) стали повышенной производительности.

К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, Р9М4; к сталям второй группы — Р9К5, Р9КЮ, Р10К5Ф5, Р18К5Ф2, Р9Ф5, Р14Ф4, Р18Ф2.

В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -— цифрой, следующей за буквой К.

Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость HRC 62—65, красностойкость 600* С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется. Существенным недостатком этой стали является большая карбидная неоднородность, особенно значительная в прутках большого сечения.

При увеличении карбидной неоднородности прочность стали снижается и при работе наблюдается выкрашивание режущих кромок инструмента и снижение его стойкости.

Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой. Из стали Р18 могут изготовляться всевозможные инструменты, в том числе такие сложные как шеверы, долбяки, протяжки и др.

Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18.

Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии и имеет важное значение для инструментов, получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяется в ограниченных пределах.

Сталь Р12 равноценна по режущим свойствам стали Р18. По сравнению со сталью Р18 сталь Р12 имеет меньшую карбидную неоднородность, повышенную пластичность и пригодна для инструментов, изготовляемых методом пластической деформации.

По сравнению со сталью Р9 сталь Р12 лучше шлифуется, что объясняется более удачным сочетанием легирующих элементов.

Стали марок Р18М и Р9М отличаются от сталей Р18 и Р9 тем, что они в своем составе вместо вольфрама содержат до 0,6—1% молибдена (из расчета, что 1% молибдена заменяет 2% вольфрама). Эти стали имеют равномерно распределенные карбиды, но более склонны к обезуглероживанию. Поэтому закалку инструментов из этих сталей необходимо проводить в защитной атмосфере. По своим основным свойствам стали Р18М и Р9М не отличаются от сталей Р18 и Р9 и имеют ту же область применения.

Вольфрамомолибденовые стали типа Р6М3, Р6М5 являются новыми сталями, значительно повышающими как прочность, так и стойкость инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам, вследствие чего замена 6—10% вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.

Вольфрамомолибденовые стали рекомендуется применять в промышленности наряду с вольфрамовыми для изготовления инструмента, работающего в тяжелых условиях, когда необходима повышенная износостойкость, пониженная карбидная неоднородность и высокая прочность.

Сталь Р18, особенно в крупных сечениях (диаметром более 50 мм], с большой карбидной неоднородностью целесообразно заменять на стали Р6М3 и Р12. Сталь Р12 пригодна для протяжек, сверл, особенно в сечениях диаметром менее 60—70 мм. Сталь Р6М3 целесообразно использовать для инструментов, изготовляемых способом пластической деформации, для инструментов, работающих с динамическими нагрузками, и для инструментов больших сечений с малыми углами заострения на режущей части.

Быстрорежущие стали повышенной производительности Р9К5, Р9К10, Р10К5Ф5 используются в основном при обработке жаропрочных сплавов, высокопрочных и нержавеющих сталей, других труднообрабатываемых материалов, а также конструкционных сталей с повышенными режимами резания. В настоящее время применяются кобальтовые и ванадиевые быстрорежущие стали. Легирование быстрорежущих сталей кобальтом и ванадием понижает прочность, но повышает красностойкость до 630—670*С. При этом возрастают их режущие свойства, т. е. повышается стойкость инструмента в 1,5—3,0 раза по сравнению со стойкостью инструментов из стали Р18.

Вместе с тем быстрорежущие стали повышенной производительности, содержащие кобальт, имеют повышенную чувствительность к обезуглероживанию. Быстрорежущие стали повышенной производительности шлифуются хуже стали Р18 и требуют более точного соблюдения температур нагрева при термической обработке. В порядке ухудшения шлифуемости рассматриваемые стали располагаются в такой последовательности: Р18Ф2, Р18К5Ф2, Р9К5, Р9К10, Р14Ф4, Р9Ф5, Р10К5Ф5. Ухудшение шлифуемости выражается в повышении износа абразивных кругов и увеличении толщины поверхностного слоя стали, повреждаемого при излишне жестком режиме шлифования.

Быстрорежущие стали повышенной производительности из-за технологических недостатков не являются сталями универсального назначения. Они имеют относительно узкие границы применения, более пригодны для инструментов, подвергаемых незначительному профильному шлифованию.

Твердые металлокерамические сплавы

В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью и теплостойкостью. Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих -режущих свойств при температуре нагрева до 750—1100* С.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Тема работы: Инструментальные стали для режущего инструмента

Курсовая работа студента

3 курса инженерно-физического факультета

дневного отделения 190805 группы

Новоселова Евгения Эдуардовича

проф.,д.ф.-м.н. Кайбышев Р.О.

Основные свойства инструментальных сталей. 4

Термическая обработка. 5

Список литературы. 10

Введение.

Режущие инструменты, работающие в условиях больших нагрузок, высоких температур и трения, должны удовлетворять ряду особых эксплуатационных требований: твердость материала режущей части инструмента должна значительно превышать твердость материала заготовки, высокая прочность обеспечивает сопротивляемость инструмента деформациям в процессе резания, а достаточная вязкость материала инструмента позволяет ему воспринимать ударные динамические нагрузки, возникающие при обработке заготовок. Поскольку в процессе резания механическая энергия превращается в тепловую, режущая кромка инструмента нагревается до высоких температур.

Условия работы измерительного инструмента приближаются к условиям работы режущего инструмента при легких режимах резания, различие состоит лишь в значительно меньших удельных давлениях на рабочие поверхности. Для разных видов инструмента применяют инструментальные стали разного типа.

Инструментальными сталями называют углеродистые и легированные стали, обладающие высокой твердостью, прочностью, износостойкостью, применяемые для изготовления режущих, измерительных инструментов и штампов.

Основные свойства инструментальных сталей.

Одной из главных характеристик инструментальных сталей является теплостойкость (или красностойкость), то есть устойчивость против отпуска при нагреве инструмента в процессе работы. Различают инструментальные стали, не обладающие теплостойкостью (углеродистые и легированные стали, содержащие до 3 – 4 % легирующих элементов), полутеплостойкие (содержащие свыше 0,6 – 0,7 %C и 4 – 3 %Cr) и теплостойкие (высоколегированные стали ледебуритного класса, содержащие Cr, W, V, Mo, Co), получившие название быстрорежущих.

Основным элементом, определяющим высокую износостойкость инструментальных сталей, является углерод, так как твердость, а следовательно и износостойкость инструмента после термообработки зависит от содержания углерода в мартенсите. Наличие легирующих элементов в значительной степени влияет на прокаливаемость стали, а также увеличивает стабильность мартенсита при нагреве закаленной стали.

Углеродистые инструментальные стали (У7, У8Г, У12А, У8ГА) маркируют буквой У (углеродистая): следующая за ней цифра – средняя массовая доля углерода в десятых доля процента, буква Г говорит о повышенном содержании марганца в данной стали, А – высококачественная, т.е. более чистая по сере и фосфору сталь.

Рис. 1. Схема микроструктуры углеродистых инструментальных сталей

а) Сталь У8 после отжига – перлит зернистый

б) Сталь У8 после закалки и низкого отпуска – мартенсит отпуска

в) Сталь У12 после отжига – перлит зернистый + цементит вторичный

г) СтальУ12 после закалки и низкого отпуска – мартенсит отпуска +цементит вторичный

Доэвтэктоидные и эвтектоидные инструментальные стали в исходном (отожженном) состоянии имеют структуру зернистого перлита (рис. 1). В структуре заэвтектоидных сталей дополнительно присутствует вторичный цементит. Стали с такой структурой имеют низкую твердость и хорошо обрабатываются резанием.

Термическая обработка.

Температура закалки у доэвтектоидных сталей должна быть выше верхней критической точки Ас3 (t = Ас3 + 20 – 40), ?С, а у эвтектоидных и заэвтектоидных выше нижней критической точки Ас1 (t = Ас1 + 20 – 40), ?С, чтобы в результате закалки сталь получила мартенситную структуру. У заэвтэктоидных сталей при этом сохраняется вторичный цементит. Закалку проводят в воде или в водных растворах солей. После закалки инструментальные углеродистые стали подвергаются низкому отпуску при 150 – 170 ?С (рис. 2), снимающего значительную часть закалочных напряжений при сохранении высокой твердости. Формируется структура мартенсит отпуска. У заэвтектоидных инструментальных сталей в структуре дополнительно присутствует вторичный цементит (рис. 1). Поскольку углеродистые стали обладают низкой прокаливаемостью, из них изготовляют в основном инструмент небольшой толщины (напильники, ножовочные полотна, хирургический инструмент).

Рис. 2. График термической обработки заэвтектоидной инструментальной стали.

Углеродистые стали можно использовать в качестве режущего инструмента только для резания материалов с низкой твердостью и с малой скоростью резания, так как при нагреве выше 190 – 200 ?С их твердость резко снижается.

Легированная инструментальная сталь (X, 9X, 9XC, 6XBГ) производится в основном высококачественной, поэтому буква А в конце марки не ставится. Цифра в начале марки показывает среднюю массовую долю углерода в десятых долях процента. Если содержание углерода около 1 %, то цифра обычно отсутствует. Буквы означают легирующие элементы: А (внутри марки) – азот, В – вольфрам, Г – марганец, К – кобальт, М – молибден, Н – никель, С – кремний, Т – титан, Ф – ванадий, Х – хром. Цифры, стоящие после букв, показывают среднюю массовую долю легирующего элемента в целых процентах. Отсутствие цифры после буквы означает, что содержание этого легирующего элемента находится в пределах от 0,1 до 1 %. Легированные инструментальные стали подобно углеродистым не обладают теплостойкостью и пригодны только для резания относительно мягких материалов с небольшой скоростью. Их используют для инструмента, не подвергаемого в работе нагреву свыше 200 – 250 ?С. Легированные стали обладают большей прокаливаемостью, чем углеродистые.

Низколегированные стали (11Х, 13Х) рекомендуются для инструментов диаметром до 15 мм, а стали повышенной прокаливаемостью (9ХС, ХВСГ) имеют большую теплостойкость (250 – 280) ?С, хорошие режущие свойства и сравнительно мало деформируются при закалке. Их используют для изготовления инструментов диаметром 60 – 80 мм.

Окончательная термическая обработка легированных сталей состоит из неполной закалки и низкого отпуска, подобно углеродистым (рис. 2).

При неполной закалке изделие нагревают до t = Ас1 + (30 – 50) ?С, выдерживают и быстро охлаждают в масле или горячих средах, что уменьшает их коробление по сравнению с углеродистыми, охлаждаемыми в воде. Низкий отпуск проводят при температуре 150 – 180 ?С.

Структура инструментальных легированных сталей после окончательной термической обработки состоит из отпущенного легированного мартенсита и легированного зернистого цементита, т.е. она качественно подобна структуре углеродистой заэвтектоидной инструментальной стали после аналогичной термообработки (рис. 1).

Быстрорежущая сталь маркируется буквой Р, а следующая за ней цифра указывает среднюю массовую долю главного легирующего элемента быстрорежущей стали – вольфрама (Р18, Р6М5, Р10К5Ф5). Среднее содержание других легирующих элементов обозначается цифрой после соответствующей буквы. Среднее содержание хрома в большинстве быстрорежущих сталей составляет 4 % и поэтому в обозначении марки стали не указывается. Кроме того, не указывается содержание молибдена до 1 % по массе и ванадия, если его содержание меньше, чем молибдена.

Красностойкость в инструментальных сталях выражается способностью противостоять распаду мартенсита при высоких температурах. Красностойкость достигается за счет уменьшение термодинамической активности углерода. Чтобы получить красностойкость, нужно подавить диффузию углерода. А это достигается за счет введения карбидообразующих элементов. Основными элементами стали, обеспечивающими высокую красностойкость, являются W, Mo, V. Карбидообразующие элементы образуют в стали специальные карбиды: Me6C на основе W и Мо, МеС на основе V и Ме23С6 на основе Сr.

Быстрорежущие стали относятся к карбидному (ледебуритному) классу. Их фазовый состав в отожженном состоянии представляет собой легированный феррит и карбиды Cr7C3, Fe3W3C6, VC, в которых также растворен ванадий. В феррите растворена большая часть хрома: почти весь вольфрам, молибден и ванадий находятся в карбидах. Количество карбидной фазы в быстрорежущих сталях достигает 22 – 30 %.

Рис. 3. Схема микроструктуы быстрорежущих сталей.

а) Литая и отожженная – сорбитообразный перлит + карбиды +

б) Горячедеформированная и отожженная – сорбитообразный

в) Закаленная – мартенсит закалки + аустенит остаточный + карбиды

г) Отпущенная – мартенсит отпуска + карбиды.

В структуре литой бысторежущей стали присутствует сложная эвтектика, напоминающая ледебурит. В результате горячей механической обработки (ковки) сетка ледебуритной эвтектики дробится (рис. 3). Для снижения твердости, улучшения обработки резанием и подготовки структуры стали к закалке после ковки быстрорежущую сталь подвергают отжигу при 800 – 860 ?С. Для придания теплостойкости стали инструменты подвергают закалке и многократному отпуску (рис. 4).

Рис. 4. График термической обработки быстрорежущей стали.

Режимы термической обработки инструментальных сталей приведены в табл. 1, 2, 3 в приложении.

Температура закалки быстрорежущей стали принимают в интервале 1200 – 1290 ?С. Высокие температуры закалки необходимы для более полного растворения карбидов и получения при нагреве аустенита, высоколегированного хромом, вольфрамом, молибденом и ванадием. Это обеспечивает получение после закалки мартенсита, обладающего высокой теплостойкостью. Однако даже при очень высоком нагреве растворяется только часть карбидов, примерно 30 – 60 % от имеющихся у различных марок быстрорежущих сталей.

Высоколегированный аустенит, полученный при нагреве под закалку, обладает большой устойчивостью, поэтому быстрорежущие стали имеют малую критическую скорость охлаждения (закалки) и могут закаливаться на воздухе. Однако на практике в качестве охлаждающей среды применяется масло.

Структура быстрорежущей стали после закалки представляет высоколегированный мартенсит, содержащий 0,3 – 0,4 %С, нерастворенные избыточные карбиды и высоколегированный остаточный аустенит, составляющий 25 – 35 %. Поскольку остаточный аустенит понижает режущие свойства стали, его присутствие в готовом инструменте недопустимо.

После закалки следует отпуск при 550 – 570 ?С, вызывающий превращение остаточного легированного аустенита в легированный мартенсит и дисперсионное твердение в результате частичного распада мартенсита и выделения карбидов (рис. 3), что сопровождается увеличением твердости. Чтобы весь остаточный аустенит перевести в мартенсит и произошел отпуск вновь образовавшегося мартенсита, применяют многократный (чаще трехкратный) отпуск при 550 – 570 ?С.

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2. 3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего, увеличить их быстроходность и мощность. Аналогичное явление наблюдалось

также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой

износостойкостью в условиях высоких давлений и температур.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми. В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.

1.
Основные требования к инструментальным материалам.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость.

Твердость инструментального материала должна быть выше твердости обрабатываемого не менее чем в 1,4 - 1.7 раза.

2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью

. Способность материала сохранять высокую твердость при температурах резания называется теплостойкостью

.. Для быстрорежущей стали – теплостойкость еще называют красностойкостью (т.е. сохранение твердости при нагреве до температур начала свечения стали)

Увеличение уровня теплостойкости инструментального материала позволяет ему работать с большими скоростями резания (табл. 1).

Допустимая скорость при резании Стали 45 м/мин

3. Важным требованием является достаточно высокая прочность

инструментального материала. Если высокая твердость материала рабочей части инструмента не обеспечивается необходимой прочностью, то это приводит к поломке инструмента и выкрашиванию режущих кромок.

Таким образом, инструментальный материал должен иметь достаточный уровень ударной вязкости и сопротивляться появлению трещин (т.е. иметь высокую трещиностойкость).

4. Инструментальный материал должен иметь высокую износостойкость

при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.

5. Необходимым условием достижения высоких режущих свойств инструмента является низкая физико-химическая активность инструментального материала по отношению к обрабатываемому

. Поэтому кристаллохимические свойства инструментального материала должны существенно отличаться от соответствующих свойств обрабатываемого материала. Степень такого отличия сильно влияет на интенсивность физико-химических процессов (адгезионно-усталостные, коррозионно-окислительные и диффузионные процессы) и изнашивание контактных площадок инструмента.

6. Инструментальный материал должен обладать технологическими свойствами

, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей ими являются хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки (малая чувствительность к перегреву и обезуглероживанию, хорошие закаливаемость и прокаливаемость, минимальные деформирование и образование трещин при закалке и т.д.); хорошая шлифуемость после термической обработки.

2. ВИДЫ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ

Инструментальные стали

Для режущих инструментов применяют быстрорежущие стали, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 0,7-1,3% и суммарным содержанием легирующих элементов (кремния, марганца, хрома и вольфрама) от 1,0 до 3,0%.

2.1. Углеродистые и легированные инструментальные стали.

Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали

марок У7, У7А…У13, У13А. Помимо железа и углерода, эти стали содержат 0,2…0,4% марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200…250°С) их твердость резко уменьшается.

Легированные инструментальные стали,

по своему химическому составу, отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного либо нескольких легирующих элементов: хрома, никеля, вольфрама, ванадия, кобальта, молибдена. Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами – лучшей закаливаемостью и прокаливаемостью, меньшей склонности к короблению, но теплостойкость их равна 350…400°С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, метчики).

Следует отметить, что за последние 15-20 лет существенных изменений этих марок не произошло, однако наблюдается устойчивая тенденция снижения их доли в общем объеме используемых инструментальных материалов.

2.2. Быстрорежущие стали.

В настоящее время быстрорежущие стали являются основным материалом для изготовления режущего инструмента, несмотря на то, что инструмент из твердого сплава, керамики и СТМ обеспечивает более высокую производительность обработки.

Широкое использование быстрорежущих сталей для изготовления сложнопрофильных инструментов определяется сочетанием высоких значений твердости (до HRC@68) и теплостойкости (600-650°С) при высоком уровне хрупкой прочности и вязкости, значительно превышающих соответствующие значения для твердых сплавов. Кроме того, быстрорежущие стали обладают достаточно высокой технологичностью, так как хорошо обрабатываются давлением и резанием в отожженном состоянии.

В обозначении быстрорежущей стали буква Р означает, что сталь быстрорежущая, а следующая за буквой цифра – содержание средней массовой доли вольфрама в %. Следующие буквы обозначают: М – молибден, Ф – ванадий, К – кобальт, А – азот. Цифры, следующие за буквами, означают их среднюю массовую долю в %. Содержание массовой доли азота составляет 0,05-0,1%.

Современные быстрорежущие стали можно разделить на три группы: нормальной, повышенной и высокой теплостойкости.

К сталям нормальной теплостойкости

относятся вольфрамовая Р18 и вольфрамомолибденовая Р6М5 стали (табл. 2.2). Эти стали имеют твердость в закаленном состоянии 63…64 HRC, предел прочности при изгибе 2900…3400Мпа, ударную вязкость 2,7…4,8Дж/м2
и теплостойкость 600…620°С. Указанные марки стали получили наиболее широкое распространение при изготовлении режущих инструментов. Объем производства стали Р6М5 достигает 80% от всего объема выпуска быстрорежущей стали. Она используется при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс.

Стали повышенной теплостойкости

характеризуются повышенным содержанием углерода, ванадия и кобальта.

Среди ванадиевых сталей

наибольшее применение получила марка Р6М5Ф3.

Наряду с высокой износостойкостью, ванадиевые стали

Таблица 2. Химический состав быстрорежущих сталей

Стали нормальной теплостойкости

Стали повышенной теплостойкости

Стали высокой теплостойкости

4.
Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора

Алмаз как инструментальный материал получил в последние годы широкое применение в машиностроении. В настоящее время выпускается большое количество разнообразного инструмента с использованием алмазов: шлифовальные круги, инструменты для правки шлифовальных кругов из электрокорунда и карбида кремния, пасты и порошки для доводочных и притирочных операций. Значительные по размерам кристаллы алмазов применяют для изготовления алмазных резцов, фрез, сверл и других режущих инструментов. Область применения алмазного инструмента с каждым годом вес более расширяется. Алмаз представляет собой одну из модификаций углерода кристаллического строения. Алмаз – самый твердый из всех известных в природе минералов. Высокая твердость алмаза объясняется своеобразием его кристаллического строения, прочностью связей атомов углерода в кристаллической решетке, расположенных на равных и очень малых расстояниях друг от друга. Коэффициент теплопроводности алмаза в два и более раза выше, чем у сплава ВК8, поэтому тепло от зоны резания отводится сравнительно быстро. Возросшие потребности в алмазном инструменте не могут быть полностью удовлетворены за счет природных алмазов. В настоящее время освоено промышленное производство синтетических алмазов из графита при больших давлениях и высоких температурах. Синтетические алмазы могут быть различных марок, которые отличаются между собой прочностью, хрупкостью, удельной поверхностью и формой зерен. В порядке возрастания прочности, снижения хрупкости и удельной поверхности марки шлифовальных порошков из синтетических алмазов располагаются так:АС2, АС4, АС6, АС15, АС32. К числу новых видов инструментальных материалов относятся сверхтвердые поликристаллы на основе алмаза и кубического нитрида бора.

Диаметр заготовок из сверхтвердых поликристаллов находится в пределах 4-8мм, а высота – 3-4мм. Такие размеры заготовок, а также совокупность физических, механических свойств позволяют с успехом использовать рассматриваемые материалы в качестве материала для изготовления режущей части таких инструментов, как резцы, торцевые фрезы и др. Сверхтвердые поликристаллы на основе алмаза особенно эффективны при резании таких материалов, как стеклопластики, цветные металлы и их сплавы, титановые сплавы. Значительное распространение рассматриваемых композитов объясняется рядом присущих им уникальных свойств – твердостью, приближающейся к твердости алмаза, высокой теплопроводностью, химической инертностью к железу. Однако они обладают повышенной хрупкостью, что делает невозможным их применение в условиях ударных нагрузок. Более устойчивы к удару инструменты из композитов 09 и 10. Они оказываются эффективными при обработке с тяжелыми режимами и ударными нагрузками закаленных сталей и чугунов. Применение сверхтвердых синтетических материалов оказывает существенное влияние на технологию машиностроения, открывая перспективу замены во многих случаях шлифования точением и фрезерованием. Перспективным видом инструментального материала являются двухслойные пластины круглой, квадратной, трехгранной или шестигранной форм. Верхний слой пластин состоит из поликристаллического алмаза, а нижний из твердого сплава либо металлической подложки. Поэтому пластины можно применять для инструментов с механическим креплением в державке. Сплав силинит-Р на основе нитрида кремния с добавками окиси алюминия и титана занимает промежуточное положение между твердыми сплавами на карбидной основе и сверхтвердыми материалами на основе алмаза и нитрида бора. Как показали исследования, он может применяться при чистовом точении сталей, чугуна, сплавов алюминия и титана. Преимущество этого сплава заключается и в том, что нитрид кремния никогда не станет дефицитным. 5.
Стали для изготовления корпусов элементов
У сборного инструмента корпуса и элементы крепления изготовляются из конструкционных сталей марок: 45, 50, 60, 40Х, 45Х, У7, У8, 9ХС и др. Наибольшее распространение получила сталь 45, из которой изготовляют державки резцов, хвостовики сверл, зенкеров, разверток, метчиков, корпуса сборных фрез, расточные оправки. Для изготовления корпусов инструментов, работающих в тяжелых условиях, применяют сталь 40Х. Она после закалки в масле и отпуска обеспечивает сохранение точности пазов, в которые вставляются ножи. В том случае, когда отдельные части корпуса инструмента работают на износ, выбор марки стали определяется соображениями получения высокой твердости в местах трения. К таким инструментам относятся, например, твердосплавные сверла, зенкеры, у которых направляющие ленточки в процессе работы соприкасаются с поверхностью обработанного отверстия и быстро изнашиваются. Для корпуса подобных инструментов применяют углеродистую инструментальную сталь, а также легированную инструментальную сталь 9ХС. Заключение

Развитие новой техники диктует требования к разработке новых материалов, в число которых входят сверхтвердые материалы. Традиционно их используют в металлообработке, инструментальном производстве, камне и стеклообработке, обработке строительных материалов, керамики, ферритов, полупроводниковых и др. материалов. В последние годы интенсивно ведутся работы по применению алмазов в электронике, лазерной технике, медицине и других областях науки и техники . В индустриально развитых странах мира получению сверхтвердых материалов и изделий из них уделяется большое внимание. Российская Федерация за последние годы существенно продвинулась в части создания отечественного алмазного производства. Большой вклад в решении этой проблемы вносит государственная научно-техническая программа "Алмазы", во многом благодаря поддержке которой свыше 25 % потребностей республики в алмазной продукции сегодня удовлетворяется за счет собственного производства.

Более полное решение проблемы импортозамещения требует дальнейшего проведения работ по совершенствованию существующих и разработке новых материалов и технологий получения сверхтвердых материалов и изделий на их основе, расширения областей их применения. Сегодня работы в области сверхтвердых материалов в России ведутся в широком спектре проблем, в том числе: синтез порошков алмаза и кубического нитрида бора, выращивание крупных монокристаллов алмаза, выращивание монокристаллов драгоценных камней, получение поликристаллов алмаза, кубического нитрида бора и композиций на их основе, в том числе с использованием нанопорошков, разработка новых композиционных алмазосодержащих материалов и технологий получения из них инструмента, разработка технологии и оборудования для нанесения алмазных пленок и покрытий, сертификация алмазной продукции, а также освоение мощностей по выпуску алмазной продукции.

Список использованной литературы

1. Новые инструментальные материалы и области их применения. Учебн. пособие / В.В.Коломиец, - К.: УМК ВО, 1990. – 64 с.

2. Васин С.А., Верещака А.С., Кушнир В.С. Резание металлов: Термомеханический подход к системе взаимосвязей при резании: Учебн. для техн. вузов. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2001. – 448 с.

3. Металлообрабатывающий твердосплавный инструмент: Справочник В.С. Самойлов, Э.Ф.Эйхманс, В.А.Фальковский и др. – М.: Машиностроение, 1988. – 368 с.

4. Инструменты из сверхтвердых материалов / Под ред. Н.В.Новикова. – Киев: ИСМ НАНУ, 2001. – 528 с.

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной позволило увеличить скорость резания в 2—3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность.

Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, для того чтобы в течение длительного времени срезать стружку.

Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания.

Содержимое работы - 1 файл

Инструментальные материалы.docx

Федеральное агентство по образованию

Реферат по теме:

Студент: Шелякин А.И.

Преподаватель: Сулаков В.В.

Общие сведения

История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной позволило увеличить скорость резания в 2—3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность.

Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

Инструментальный материал должен иметь высокую твердость, для того чтобы в течение длительного времени срезать стружку.

Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания.

Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость).

Режущая часть инструмента должна иметь большую износостойкость в условиях высоких давлений и нагрева.

Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок, либо поломка инструмента, особенно при их небольших размерах.

Инструментальные материалы должны обладать хорошими технологическими свойствами, т. е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.

В настоящее время для изготовления режущих элементов инструментов применяются следующие материалы:

1) инструментальные стали (углеродистые, легированные и быстрорежущие);

2) твердые сплавы;

3) минералокерамические материалы;

5) абразивные материалы.

Инструментальные стали

Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200 — 250* их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они плохо закаливаются и требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.

Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию, по профилю.

С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает брак из-за деформации и трещин, по сравнению с получаемым при термической обработке углеродистых сталей. Примером низколегированных сталей может служить сталь У 11Х, которая представляет собой углеродистую сталь с небольшими добавками хрома.

Низколегированные стали не превосходят углеродистые стали по режущим свойствам, так как введение в сталь небольшого количества легирующих элементов не повышает теплостойкость стали. Поэтому область применения для низколегированных сталей рекомендуется та же, что и для углеродистых сталей.

Легированные инструментальные стали отличаются от углеродистых более высокой прокаливаемостью и закаливаемостью, что позволяет производить закалку инструментов с охлаждением в горячих средах и получать меньшую деформацию.

В производстве режущих инструментов из инструментальных легированных сталей наибольшее применение находят хромокремнистая сталь 9ХС и хромовольфрамомарганцовистая сталь ХВГ.

У стали 9ХС наблюдается равномерное распределение карбидов по сечению. Это позволяет использовать ее для резьбонарезных инструментов с мелким шагом резьбы, особенно для круглых плашек.

Вместе с тем сталь 9ХС имеет повышенную твердость в отожженном состоянии, пониженную обрабатываемость, высокую чувствительность к обезуглероживанию при нагреве.

Сталь ХВГ имеет повышенную карбидную неоднородность, что усиливает выкрашивание режущих кромок и не позволяет рекомендовать ее для инструментов, работающих в тяжелых условиях. Применяется она для изготовления таких инструментов, как длинные развертки, метчики, протяжки, для которых крайне нежелательна деформация при закалке.

Вместо сталей 9ХС и ХВГ можно применять сталь ХГСВФ. Она имеет меньшую твердость после отжига и обезуглероживается значительно меньше, чем сталь 9ХС.

По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200— 260* С. Поэтому эти стали непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.

В настоящее время для изготовления металлорежущих инструментов применяются быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:

1) стали нормальной производительности;

2) стали повышенной производительности.

К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, Р9М4; к сталям второй группы — Р9К5, Р9КЮ, Р10К5Ф5, Р18К5Ф2, Р9Ф5, Р14Ф4, Р18Ф2.

В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -— цифрой, следующей за буквой К.

Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость HRC 62—65, красностойкость 600* С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется. Существенным недостатком этой стали является большая карбидная неоднородность, особенно значительная в прутках большого сечения.

При увеличении карбидной неоднородности прочность стали снижается и при работе наблюдается выкрашивание режущих кромок инструмента и снижение его стойкости.

Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой. Из стали Р18 могут изготовляться всевозможные инструменты, в том числе такие сложные как шеверы, долбяки, протяжки и др.

Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18.

Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии и имеет важное значение для инструментов, получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяется в ограниченных пределах.

Сталь Р12 равноценна по режущим свойствам стали Р18. По сравнению со сталью Р18 сталь Р12 имеет меньшую карбидную неоднородность, повышенную пластичность и пригодна для инструментов, изготовляемых методом пластической деформации.

По сравнению со сталью Р9 сталь Р12 лучше шлифуется, что объясняется более удачным сочетанием легирующих элементов.

Стали марок Р18М и Р9М отличаются от сталей Р18 и Р9 тем, что они в своем составе вместо вольфрама содержат до 0,6—1% молибдена (из расчета, что 1% молибдена заменяет 2% вольфрама). Эти стали имеют равномерно распределенные карбиды, но более склонны к обезуглероживанию. Поэтому закалку инструментов из этих сталей необходимо проводить в защитной атмосфере. По своим основным свойствам стали Р18М и Р9М не отличаются от сталей Р18 и Р9 и имеют ту же область применения.

Вольфрамомолибденовые стали типа Р6М3, Р6М5 являются новыми сталями, значительно повышающими как прочность, так и стойкость инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам, вследствие чего замена 6—10% вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.

Вольфрамомолибденовые стали рекомендуется применять в промышленности наряду с вольфрамовыми для изготовления инструмента, работающего в тяжелых условиях, когда необходима повышенная износостойкость, пониженная карбидная неоднородность и высокая прочность.

Сталь Р18, особенно в крупных сечениях (диаметром более 50 мм], с большой карбидной неоднородностью целесообразно заменять на стали Р6М3 и Р12. Сталь Р12 пригодна для протяжек, сверл, особенно в сечениях диаметром менее 60—70 мм. Сталь Р6М3 целесообразно использовать для инструментов, изготовляемых способом пластической деформации, для инструментов, работающих с динамическими нагрузками, и для инструментов больших сечений с малыми углами заострения на режущей части.

Быстрорежущие стали повышенной производительности Р9К5, Р9К10, Р10К5Ф5 используются в основном при обработке жаропрочных сплавов, высокопрочных и нержавеющих сталей, других труднообрабатываемых материалов, а также конструкционных сталей с повышенными режимами резания. В настоящее время применяются кобальтовые и ванадиевые быстрорежущие стали. Легирование быстрорежущих сталей кобальтом и ванадием понижает прочность, но повышает красностойкость до 630—670*С. При этом возрастают их режущие свойства, т. е. повышается стойкость инструмента в 1,5—3,0 раза по сравнению со стойкостью инструментов из стали Р18.

Вместе с тем быстрорежущие стали повышенной производительности, содержащие кобальт, имеют повышенную чувствительность к обезуглероживанию. Быстрорежущие стали повышенной производительности шлифуются хуже стали Р18 и требуют более точного соблюдения температур нагрева при термической обработке. В порядке ухудшения шлифуемости рассматриваемые стали располагаются в такой последовательности: Р18Ф2, Р18К5Ф2, Р9К5, Р9К10, Р14Ф4, Р9Ф5, Р10К5Ф5. Ухудшение шлифуемости выражается в повышении износа абразивных кругов и увеличении толщины поверхностного слоя стали, повреждаемого при излишне жестком режиме шлифования.

Быстрорежущие стали повышенной производительности из-за технологических недостатков не являются сталями универсального назначения. Они имеют относительно узкие границы применения, более пригодны для инструментов, подвергаемых незначительному профильному шлифованию.

Твердые металлокерамические сплавы

В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью и теплостойкостью. Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих -режущих свойств при температуре нагрева до 750—1100* С.

Читайте также: