Комплексоны в медицине реферат

Обновлено: 02.07.2024

Термин "комплексоны" предложен в 1945 году профессором Цюрихского университета Г. Шварценбахом (1904 - 1978) для органических лигандов группы полиаминополикарбоновых кислот (напомним, что лигандами в химии комплексных соединений называют нейтральные молекулы или анионы, которые координируются вокруг центрального атома).

По координационной теории Вернера, комплексное соединение состоит из центрального атома (иона; обычно иона металла) и координированных, то есть расположенных вокруг него, молекул или ионов, называемых лигандами. Количество атомов или групп атомов, связанных с центральным ионом, называют координационным числом комплекса, а количество координационных мест, которые может занять лиганд, - его координационной емкостью, или дентатностью (от лат. dentatus - имеющий зубы, зубчатый). Каждое координационное место, занимаемое лигандом, это его "зуб", которым он связывается с центральным атомом. "Однозубчатый", или монодентатный, лиганд занимает одно координационное место, бидентатный лиганд - два координационных места и т.д. Характерной особенностью комплексона как лиганда является его поли-, или мультидентатность. Молекула комплексона содержит несколько функциональных электронодонорных групп. Часть их имеет кислотную, а часть - основную природу, как это показывает молекула простейшего тридентатного комплексона - иминодиуксусной кислоты (ИДА) (рис. 1).

С увеличением числа электронодонорных групп увеличивается и дентатность лиганда до четырех (нитрилтриуксусная кислота, НТА), шести (этилендиаминтетрауксусная кислота, ЭДТА) и выше (см. рис. 1). При взаимодействии с ионом металла полидентатный комплексон прочно захватывает ион металла своими "зубами", как это можно видеть на примере даже простейшего комплексона ИДА. Еще прочнее захватывает ион металла гексадентатная ЭДТА (рис. 2).

Образующиеся соединения ионов металлов с комплексонами - комплексонаты - имеют в своей структуре несколько так называемых хелатных циклов. Термин хелат (англ. chelate от греческого cilh - клешня) принят для обозначения циклических структур, которые образуются в результате присоединения катиона к двум или более донорным атомам, принадлежащим одной молекуле комплексона. В соответствии с термином хелат комплексон следует представлять в виде какого-то краба, который своими полидентатными клешнями прочно захватывает ион металла, и чем больше клешней, тем прочнее захват. Как буквальный перевод слова chelate в литературе до сравнительно недавнего времени для обозначения комплексных соединений с циклическими структурами использовался термин "клешневидные соединения".

Замыкание циклов при образовании соединений является важным фактором, обусловливающим высокую устойчивость комплексонатов. Правило циклов, сформулированное Л.А. Чугаевым еще в 1906 году, задолго до появления комплексонов, имеет общий характер и проявляется в самых различных реакциях. В соответствии с этим правилом комплексные соединения, содержащие циклические группировки, отличаются более высокой прочностью, чем соединения, не содержащие циклов, а наибольшей устойчивостью обладают комплексы с пяти- и шестичленными циклами.

Приведем примеры наиболее распространенных представителей комплексонов, применяемых в медицине:

Для того чтобы выполнять функцию противоядий (антидотов) при отравлении тяжелыми металлами, комплексоны должны отвечать некоторым требованиям. Они не должны, во-первых, быть токсичными, а во-вторых, подвергаться разложению или какому-либо изменению в биологической среде, их антидотное действие зависит от прочности образующегося металлокомплекса. Зная сравнительную устойчивость комплексов, можно установить степень химического сродства отдельных катионов к тем или иным комплексонам, а значит, предвидеть возможность избирательного связывания. Необходимо учитывать, что эффективность комплексонов в отношении токсичных металлов зависит не только от стабильности образуемого комплекса металл-хелат, но и от прочности связи извлекаемого металла с биокомплексами организма.

С учетом этих требований наибольшее распространение в качестве антидотов получили различные соли этилендиаминтетрауксусной кислоты (ЭДТА), среди которых наиболее доступной является динатриевая соль, известная как трилон Б. Его применение показано при отравлении соединениями кальция: СаО (негашеная известь), Са(ОН)2 (гашеная известь), СаС2 (карбид кальция). При этом трилон Б, связывая ионы кальция, превращается в тетацин.

В организме комлексоны участвуют во многих сложных реакциях, вступая во взаимодействие с неорганическими биологическими соединениями. Так как в крови и других биосредах велика концентрация кальция, этот катион конкурирует с любыми из выводимых металлов за место в комплексе.

Комплексоны в медицине (Зеленин К.Н. , 2001), ХИМИЯ

Рассматривается применение комплексонов в медицине.

КОМПЛЕКСОНЫ В МЕДИЦИНЕ

Российская военно-медицинская академия, Санкт-Петербург

В "Соросовском Образовательном Журнале" уже были рассмотрены общие вопросы химии комплексных соединений, а также комплексонов и комлексонатов. В настоящей статье обсуждаются некоторые вопросы химии комплексных соединений, связанные с их применением в медицинской практике.

В организме непрерывно происходят образование и разрушение биокомплексов из катионов биометаллов (железо, медь, цинк, кобальт) и биолигандов (порфиринов, аминокислот, полипептидов). Обмен веществ с окружающей средой поддерживает концентрации вещества на определенном уровне, обеспечивая состояние металло-лигандного гомеостаза.

Распределение того или иного катиона металла между биолигандами в биосредах определяется как прочностью образующихся комплексов, так и концентрациями этих лигандов. Для каждого из катионов биометаллов характерна своя совокупность реакций металло-лигандного равновесия. Поступление, метаболизм, накопление и выделение катионов металлов (а в целом любых микроэлементов) регулируются специальной системой микроэлементозного гомеостаза. В совокупности существуют тысячи патологических явлений - микроэлементозов, связанных с теми или иными металлоизбыточными или металлодефицитными состояниями. Нарушение металло-лигандного гомеостаза возможно по разным причинам: из-за дефицита или избытка катионов биометаллов, из-за поступления катионов токсичных металлов, из-за поступления или образования посторонних лигандов.

Для поддержания металло-лигандного гомеостаза и выведения из организма ионов токсичных металлов все шире начинают использовать комплексоны - полиаминополикарбоновые кислоты. В медицине сложилось специальное направление, связанное с использованием комплексонов для регуляции металло-лигандного баланса, - хелатотерапия.

Приведем примеры наиболее распространенных представителей комплексонов, применяемых в медицине:

Для того чтобы выполнять функцию противоядий (антидотов) при отравлении тяжелыми металлами, комплексоны должны отвечать некоторым требованиям. Они не должны, во-первых, быть токсичными, а во-вторых, подвергаться разложению или какому-либо изменению в биологической среде, их антидотное действие зависит от прочности образующегося металлокомплекса. Зная сравнительную устойчивость комплексов, можно установить степень химического сродства отдельных катионов к тем или иным комплексонам, а значит, предвидеть возможность избирательного связывания. Необходимо учитывать, что эффективность комплексонов в отношении токсичных металлов зависит не только от стабильности образуемого комплекса металл-хелат, но и от прочности связи извлекаемого металла с биокомплексами организма.

С учетом этих требований наибольшее распространение в качестве антидотов получили различные соли этилендиаминтетрауксусной кислоты (ЭДТА), среди которых наиболее доступной является динатриевая соль, известная как трилон Б. Его применение показано при отравлении соединениями кальция: СаО (негашеная известь), Са(ОН)2 (гашеная известь), СаС2 (карбид кальция). При этом трилон Б, связывая ионы кальция, превращается в тетацин.

В организме комлексоны участвуют во многих сложных реакциях, вступая во взаимодействие с неорганическими биологическими соединениями. Так как в крови и других биосредах велика концентрация кальция, этот катион конкурирует с любыми из выводимых металлов за место в комплексе.

При этом положение равновесия комплексообразования в организме зависит от соотношения констант устойчивости комплексоната металла, выводимого из организма, и кальция (тетацина). Это становится очевидным из анализа следующего химического уравнения, которое должно иметь место в биосредах:

(CaЭДТА) + M2 + = (MЭДТА) + Ca2 +

Для него константа равновесия KB имеет вид

то есть равна отношению констант нестойкости комплексов вытесняемого металла и кальция. KB называют константой вытеснения, а по величине ее отрицательного логарифма (pKB) судят о степени комплексообразования данного катиона с тетацином. Чем больше pKB , тем сильнее катион металла вытесняет катион кальция из тетацина:

Очевидно, что выведение из организма стронция не будет осуществляться кальциевой солью ЭДТА, а марганца и железа - ее кобальтовой солью. В соответствии с приведенным рядом прочности хелатов тетацин обменивает ион кальция на ионы свинца, кобальта, кадмия. Отсюда следует ожидать, что тетацин должен быть эффективным антидотом при отравлении свинцом и кадмием, так как катионы этих металлов вытесняют из комплексона ион кальция, образующий менее прочный комплекс с ЭДТА. Он, таким образом, выглядит достаточно универсальным. Это в полной мере оказалось справедливым по отношению к иону свинца. К сожалению, величины pKB могут использоваться лишь для предварительной ориентировки, так как на практике более значимыми могут оказаться иные факторы.

Разнообразие процессов всасывания, распределения металлов в организме, взаимодействия с биокомпонентами крови и тканей делает проблему применения комплексонов в медицине весьма сложной. И действительно, при отравлениях кадмием, медью, ртутью из-за образования токсичных комплексов тетацин использовать не рекомендуется. К тому же, как выяснилось, взаимодействие тетацина с катионом свинца не сводится к простому обмену ионами. В реакции тетацина с катионом свинца на самом деле образуется комплекс СаРbЭДТА, который хорошо растворим в воде и легко удаляется из организма через почки:

Следовательно, знания лишь одной величины константы вытеснения далеко не достаточно для прогнозирования применения того или иного комплексона в клинической практике.

Со времени первого лечебного использования тетацина в 1952 году этот препарат нашел широкое применение в клинике профессиональных заболеваний и продолжает оставаться незаменимым антидотом свинца. Очень эффективна аэроингаляция тетацином, когда антидот быстро всасывается и долго циркулирует в крови. При этом усиливается выведение свинца почками.

Для ресорбции, распределения и выведения металлов имеют значение не только физико-химические свойства вводимых с лечебной целью комплексов, но и и свойства эндогенных биокомплексонов, с которыми встречается металл в организме в процессах введения, циркуляции и выведения из организма.

Помимо тетацина и трилона Б практическое значение в качестве противоядий имеют и некоторые другие соли этилендиаминтетрауксусной кислоты. Перспективен еще один комплексон, производное диэтилентриаминпентауксусной кислоты - СаNа3ДТПА (пентацин). Его особенно успешно применяют при отравлениях радиоактивными элементами

Данные последних лет свидетельствуют о высокой антидотной эффективности при свинцовых отравлениях еще одного комплексообразующего вещества - пеницилламина, который представляет собой диметилцистеин, то есть аминокислоту следующего строения:

Защитное действие пеницилламина обусловливается наличием трех групп (-SH или сульфгидрильной, аминной и карбоксильной). Оказалось, что он особенно хорошо проявляет себя при хронических формах отравлений тяжелыми металлами, когда необходим длительный прием препарата.

Еще одна перспективная для медицины группа комплексонов принадлежит к семейству полициклических хелатирующих реагентов - криптандов, с которыми катионы металлов координируются таким образом, что ион оказывается спрятанным в циклической полости лиганда. Приведенный выше представитель криптандов высоко селективен по отношению к катиону стронция.

Специфичным для катиона железа является комплексон дефероксамин, применяемый для удаления железа при некоторых железоизбыточных состояниях. Это вещество содержит структурные фрагменты, которые присутствуют в некоторых железосодержащих белках, именуемых сидерофорами:

Для связывания токсичного катиона бериллия применяется алюминон, получивший такое название из-за способности координироваться с катионом алюминия. Его эффективность по отношению к бериллию - проявление диагонального сходства пары бериллий-алюминий.

Для связывания ядовитых катионов мышьяка успешно применяют препарат, получивший название британского антилюизита (БАЛ):

Высокой степенью комплексообразования отличается также фитин - сложный органический препарат, представляющий собой смесь кальциевых и магниевых солей инозитфосфорных кислот, его получают из конопляных жмыхов. Фитин полностью защищает животных, отравленных смертельными дозами свинца. При этом он в отличие от солей ЭДТА выводит яд преимущественно через желудочно-кишечный тракт, а не через почки. Фитин - совершенно безвредный лечебный препарат, он может быть использован и при отравлении ионами других металлов. Имеются и другие перспективные комплексоны, среди которых есть вещества растительного происхождения.

Комплексоны и их комплексы применяют при лечении различных металлоизбыточных и металлодефицитных состояний, связанных с заболеваниями, которые вызываются нарушениями обмена кальция, железа, меди и др. (рахит, психические заболевания, профилактика радиационных поражений). Полиаминополикарбоновые кислоты и их натриевые соли используют при лечении как гиперкальциемии, так и декальцинации костей. Значительно менее ядовитые соли кальция (пентацин, тетацин) используют для удаления радионуклидов из организма и для лечения отравлений тяжелыми металлами. Так, тетацин показан при отравлениях свинцом, кобальтом, ванадием; пентацин применяют преимущественно при отравлениях соединениями железа, кадмия и свинца, а также для удаления радионуклидов (технеция, плутония, урана); триэтилентетрааминогексауксусную кислоту используют при отравлениях плутонием; D-пеницилламин применяют при лечении отравлениями медью, ртутью, свинцом, болезни Вильсона (психического заболевания, вызываемого нарушением баланса катиона меди в нервных тканях). Дефероксамин используют для лечения гемохроматозов, а также при отравлении железом.

Типичные примеры использования хелатотерапии, вызванные избытком того или иного катиона, даны в табл. 1.

Иногда длительное поступление в организм малых количеств ядовитых металлов приводит к их накоплению в различных внутренних органах и тканях, вследствие чего их концентрация в крови и моче существенно не повышена. Введение же комплексонов увеличивает выведение яда с мочой и тем самым указывает на его присутствие в организме. В таких случаях комплексоны можно использовать в целях диагностики. Иными словами, процесс комплексообразования приводит к нарушению установившегося равновесия между ионизированным металлом плазмы крови и металлом, содержащимся, например, в жировых тканях, а также в эритроцитах, печени, костной ткани и т.д.

Например, тетацин используют при диагностике хронических свинцовых отравлений. Диагностическим показателем здесь служит выведение металла с мочой в результате однократной инъекции комплексона. Надо, однако, отметить, что при этом возможно и усиление интоксикации, по-видимому из-за увеличения обратного всасывания связанного с тетацином свинца из пищеварительного тракта, куда он переходит из плазмы через стенку кишечника.

Еще один на первый взгляд неожиданный пример использования хелатотерапии - защита от газовой гангрены. Оказалось, что введение в организм раствора тетацина вызывает в данном случае связывание ионов цинка и кобальта, выполняющих функцию активаторов действия фермента лецитиназы, который и является токсином газовой гангрены. Поэтому, связывая эти ионы, удается резко снизить действие токсина.

Молекулы комплексонов практически не подвергаются расщеплению или какому-либо изменению в биологической среде, что является их важной фармакологической особенностью. Комплексоны нерастворимы в липидах и хорошо растворимы в воде, поэтому они не проникают или плохо проникают через клеточные мембраны, а следовательно, 1) не выводятся кишечником; 2) всасывание комплексообразователей происходит только при их инъекции (лишь пеницилламин принимают внутрь); 3) в организме комплексоны циркулируют по преимуществу во внеклеточном пространстве; 4) выведение из организма осуществляется главным образом через почки. Этот процесс происходит быстро. Так, уже через полтора часа после внутрибрюшинной инъекции в организме остается 15% введенной дозы тетацина, через 6 часов - 3%, а через двое суток - только 0,5%.

Комплексоны малотоксичны, их токсическое действие проявляется в основном в повреждении слизистой оболочки тонкой кишки и почечных канальцев. При быстром вливании или введении больших количеств полиаминополикарбоновых кислот вследствие уменьшения содержания кальция в крови возможно нарушение возбудимости мышц и свертываемости крови.

Так как комплексоны связывают и ускоряют выведение из организма многих металлов, то по отношению к ним не остаются безучастными и биоэлементы, находящиеся в свободном состоянии (Na, К, Са) или входящие в состав жизненно важных металлопротеинов. Вот почему введение в организм комплексонов не может не повлиять на течение обменных процессов и действие некоторых чужеродных веществ, поскольку их биотрансформация определяется функцией ферментов, молекулы которых включают тот или иной металл. Так, при обследовании 71 человека, соприкасавшегося во время работы со свинцом или ртутью и получающего тетацин с лечебной и диагностической целью, было установлено, что при длительном применении этот препарат резко увеличивает выведение из организма меди и марганца через почки. Эти данные привели к выводу о необходимости дополнительного введения названных жизненно важных микроэлементов с целью восполнения их потерь. В то же время эксперименты свидетельствуют, что комплексоны активируют такие металлопротеидные ферменты, как цитохромоксидаза, каталаза. Это связывается со способностью комплексонов изменять валентность атомов железа и других микроэлементов.

Поскольку соли ЭДТА и других аминополикарбоновых кислот не разлагаются в организме, характеризуются большой терапевтической широтой и быстро выводятся почками, их иногда рекомендуют применять и для предупреждения некоторых профессиональных отравлений (свинцовых, марганцевых, ртутных). В производственных условиях это возможно посредством вдыхания аэрозолей или приема таблеток, содержащих антидот. Однако с учетом вероятности развития побочных явлений (нарушение функции почек, связывание кальция сыворотки крови и многих микроэлементов, изменение активности некоторых ферментов) к этому следует относиться отрицательно.

Ведутся исследования иных профилактических средств, которые при длительном повседневном применении (в том числе и непосредственно на производстве) не вызывали бы нежелательных сдвигов в состоянии организма и в то же время обладали выраженным защитным действием. Эти свойства выявлены у пектина - полимерного вещества пищевого происхождения, которое построено в виде цепей со звеньями следующего строения:

Каждое из звеньев полимерной молекулы пектина включает две молекулы галактоуроновых кислот, соединенных гидролизующимися связями. Пектины получают из яблок, свеклы, подсолнечника и других растений.

Карбоксильные группы в структуре пектина способны присоединять катионы многих металлов с образованием пектинатов. Кроме того, пектин - коллоидное вещество с выраженными сорбционными свойствами. Эти физические особенности, по-видимому, в немалой степени определяют его защитное действие при интоксикациях. Особенно четко эффект проявляется при проникновении в организм свинца, всасывание которого под влиянием пектина резко тормозится. Пектин вводится в организм в виде специально изготовленного мармелада с 5%-ным содержанием препарата. Каких-либо побочных явлений и осложнений длительный прием пектина не вызывал.

Таким образом, в настоящее время можно говорить о несомненных успехах и широких перспективах хелатотерапии в изыскании и применении лекарственных средств. Практическое использование этих средств оказалось особенно результативным при профессиональных хронических интоксикациях соединениями свинца, ртути и радиоактивных элементов.

В последнее время перед хелатотерапией открылись широкие горизонты. Еще в 60-е годы стало очевидным, что комплексоны или их соли (тетацин, трилон Б) могут применяться при всех видах патологий, связанных с Са-избыточными состояниями. Ведь ЭДТА и трилон Б циркулируют только в кровяном русле и связывают все металлические ионы (кроме калия и натрия), которые в нем находятся. Между тем именно ион кальция в первую очередь и присутствует в плазме. Следовательно, удаляя его из организма, можно лечить такие заболевания, как артрозы, атеросклероз, почечно-каменную болезнь.

В дальнейшем выяснилось, что возможности ЭДТА-хелатотерапии значительно шире. Ведь ЭДТА выводит из плазмы и все прочие биокатионы, присутствующие в ней в микроколичествах. Принято считать, что эти катионы выступают в качестве катализаторов неблагоприятных для здоровья свободнорадикальных процессов с участием активных форм кислорода, а тем самым активизируют нежелательные процессы перекисного окисления липидов. Следовательно, роль хелатотерапии оказывается значительно более широкой. И действительно, она препятствует отложению холестерина и восстанавливает его уровень в крови, понижает кровяное давление, позволяет избежать ангиопластики, подавляет нежелательные побочные эффекты некоторых сердечных препаратов, удаляет кальций из холестериновых бляшек, растворяет тромбы и делает кровеносные сосуды эластичными, нормализирует аритмию, препятствует старению, восстанавливает силу сердечной мышцы и улучшает функции сердца, увеличивает внутриклеточное содержание калия, регулирует минеральный обмен, восстанавливает варикозные вены, растворяет катаракту, устраняет заболевания сетчатки и понижает потребность в инсулине у диабетиков, устраняет пигментацию кожи, применяется в лечении остеоартритов и ревматоидных артритов, способствует устранению последствий инсульта, полезен при лечении болезни Альцгеймера, препятствует возникновению рака, улучшает память и проявляет множество других положительных эффектов.

Некоторые специалисты даже предлагают ЭДТА-хелатотерапию в качестве эффективной альтернативы коронарного шунтирования, покушаясь на самые совершенные достижения современной хирургии.

1. Зеленин К.Н. Химия: Учеб. для мед. вузов. СПб.: Спец. лит., 1997.

2. Оксенглендер Г.Н. Яды и противоядия. Л.: Наука, 1982.

3. Архипова О.Г., Зорина Л.А., Сорокина Н.С. Комплексоны в клинике профессиональных болезней. М.: Медицина, 1975.

4. Лудевиг Р., Лос К. Острые отравления. М.: Медицина, 1983.

5. A Textbook on EDTA Chelation Therapy // J. Advan. Med. 1989. Vol. 2, ╧ 1, 2. Р. 17-54.

Рецензент статьи Г.В. Лисичкин

Кирилл Николаевич Зеленин, доктор химических наук, профессор, зав. кафедрой химии Российской военно-медицинской академии, академик РАЕН и Российской военно-медицинской академии, заслуженный деятель науки РФ. Область научных интересов - органические соединения азота и синтез физиологически активных веществ. Автор свыше 330 научных работ.

2. Биометаллоорганическая химия / Под ред. Ж. Жауэна. – М.: БИНОМ. Лаборатория знаний, 2009. – 494 с.

4. Общая химия. Биофизическая химия. Химия биогенных элементов. Учебник для медицинских вузов. / Ю.А. Ершов, В.А. Попков, А.С. Берлянд и др.; под ред. Ю.А. Ершова), 8 изд. – М.: Высшая школа, 2010. – 560 с.

Важнейшим классом бионеорганических комплексов металлов являются транспортные комплексы, в которых один или несколько атомов металла связаны с атомами азота, кислорода или серы белковых молекул, выступающие в роли полидентатных лигандов. Одним из основных переносчиков ионов металлов в человеческом организме является низкомолекулярный белок металлотионеин (Мr=6500), содержащий большое число цистеиновых фрагментов. Один моль металлотионеина способен перенести 7-12 моль таких жизненно необходимых элементов, как Zn, Cu и Se. При отравлениях тяжелыми металлами (Сd, Hg, Pb, Ag, As) данный белок выполняет защитную функцию, связывая их в прочные и относительно малотоксичные комплексы. Железосодержащий белок трансферрин выполняет преимущественно транспортные функции. Несмотря на сравнительно низкое содержание железа (2 моль ионов Fe3+ на одну молекулу белка), трансферриновые комплексы обеспечивают высокую скорость тканевого обмена данного элемента и являются важными переносчиками железа.

Изучение бионеорганических комплексов дает важную информацию об особенностях их метаболизма и позволяет разрабатывать эффективные способы коррекции заболеваний, связанных с недостатком (или, наоборот, с избытком) тех или иных элементов в человеческом организме.

Применение комплексных соединений в медицине и фармации связано также с их использованием в методах качественного и количественного анализа – в комплексонометрии. Широкое распространение получила комплексонометрия в медико-биологических исследованиях. Этот метод необходим для определения в живых организмах кальция, магния и многих микроэлементов. Комплексонометрия применяется в анализе лекарственного сырья, питьевых, минеральных и сточных вод. В биологии и медицине комплексоны используются не только в аналитических целях, но и в качестве стабилизаторов при хранении крови, так как комплексоны связывают ионы металлов, катализирующих реакции окисления. Комплексоны применяются также для выведения из организма ионов токсичных металлов (Рb2+, Cd2+ , Hg2+ и др.), радиоактивных изотопов и продуктов их распада.


БИОГЕННАЯ РОЛЬ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ И ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Роль комплексных соединений в жизнедеятельности живых организмов огромна. Исключительно важное значение их видно из следующего примера: два вещества – гемоглобин и хлорофилл являются комплексными соединениямижелеза и магния соответственно. Применение комплексных соединений в медицине и фармации связано в основном с их использованием в методах качественного и количественного анализа – в комплексонометрии. Широкое применение методы комплексонометрии получили после открытия органических веществ, относящихся к классу аминокарбоновых кислот, которые оказались прекрасными комплексообразователями. Эти соединения были названы комплексонами, а методы объёмного анализа, основанные на их применении, - комплексонометрией. К наиболее известным комплексонам относятся: - нитрилотриуксусная кислота (комплексон 1), этилендиаминтетрауксусная кислота (комплексон II), двунатриевая соль этилендиаминтетрауксусной кислоты (ЭДТА, комплексом III, трилон Б).

На практике обычно применяют хорошо растворимую в воде двунатриевую соль этилендиаминтетрауксусной кислоты (трилон Б). Анион этой соли образует особо прочные пятичленные кольца с ионами металлов и может действовать как четырёх-, пяти- и шестидентатныйлиганд.

В настоящее время разработаны кемплексонометрические методы определения более 80 химических элементов. Широкое распространение получила комплексонометрия в медико-биологических исследованиях. Этот метод необходим для определения в живых организмах кальция, магния и многих микроэлементов. Комплексонометрия применяется в анализе лекарственного сырья, питьевых, минеральных и сточных вод. В биологии и медицине комплексоны используются не только в аналитических целях, но и в качестве стабилизаторов при хранении крови, так как комплексоны связывают ионы металлов, катализирующих реакции окисления. Комплексоны применяются также для выведения из организма ионов токсичных металлов (Рb 2+ , Cd 2+ , Hg 2+ и др.) , радиоактивных изотопов и продуктов их распада.

Также широко распространено применение монодентатныхлигандов. В гемоглобине таким лигандом является молекула воды, а оксигемоглобине - молекула О2.. Прочность последнего комплекса достаточна для связывания кислорода в капиллярах альвеол и переноса от легких к тканям , но вместе с тем не слишком велика, что обеспечивает своевременное высвобождение молекул кислорода при падении его парциального давления над кровью в процессе газообмена.

Помимо гемоглобина способностью связывать молекулярный кислород обладают и некоторые другие металлопротеины. Одним из них является миоглобин, содержащийся в мышцах и придающий им характерный красно-серый цвет. По своей структуре миоглобин напоминает гемоглобин, но состоит из единственной полипептидной цепи, связанной с одной простейшей группой. Основной ролью миоглобина является накопление и поддержание запаса кислорода, необходимого для выполнения мышечной работы.

В организмах членистоногих и моллюсков функции переносчика кислорода выполняет гемоцианин, простетические группы которого представляют собой порфириновые комплексы меди в степенях окисления +1 или +2.

Основным источником энергии для жизнедеятельности является солнечный свет, в поглощении которого участвует хлоролофилл - комплекс магния с макроциклическими лигандами. В процессе фотосинтеза энергия квантов электромагнитного излучения используется для осуществления сложной последовательности эндэргонических процессов, приводящих в конечном итоге, к образованию глюкозы и кислорода из воды и углекислого газа:

6СО2+ 6Н2О =С6Н12О6 + 6О2.

Эта реакция является важнейшим биологическим процессом на Земле. Семейство витаминов В12 (кобаламинов) включает порфириновые производные кобальта, в которых ион-комплексообразователь Со 2+ связан с пятью атомами азота хелатного лиганда и одним монодентатнымлигандом-цианогруппой CN - ,анионом ОН - . Терапевтическое действие кобаламинов практически не зависит от природы монодентатноголиганда,т.к. в человеческом организме все они быстро превращаются в цианокобаламин.

В отличии от многих металлоферментов витамины семейства В12 обладают широким спектром биологического действия .Они участвуют в катаболизме жиров и белков, синтезе метионина и процессах кроветворения. Недостаток витамина В12 приводит к развитию анемии и дегенерации нервных тканей. Подвижность монодентатноголиганда при атоме кобальта и относительно большая цианокобаламина по сравнению с другими витаминами В12 позволяет использовать оксикобаламин в качестве эффективного антидота при острых отравлениях цианидами. Своевременная инъекция нескольких граммов оксикобаламина способствует связыванию токсичных ионов CN - по схеме: оксикобалами +CN - = цианокобаламин + ОН - с последующегосяцианокобаламин из организма.

В состав металоферментов могут входить атомы как одного, так и нескольких различных металлов. Так, фермент ксантиноксидаза, катализирующий окисления пуриновых оснований и образование мочевой кислоты ,содержит два атома молибдена и восемь атомов железа. Комплексы меди(2), марганца(2), кобальта(2) и молибдена(4) способствует протеканию ОВР, и участвуют в синтезе РНК и других важнейших биохимических превращениях.

Еще одним важнейшим классом бионеорганических комплексов металлов являются транспортные комплексы, в которых один или несколько атомов металла связаны с атомами азота, кислорода или серы белковых молекул, выступающие в роли полидентатныхлигандов. Одним из основных переносчиков ионов металлов в человеческом организме является низкомолекулярный белок металлотионеин(Мr=6500), содержащий большое число цистеиновых фрагментов. Один моль металлотионина способен перенести 7-12 моль таких жизненно необходимых элементов, как Zn, Cu и Se. При отравлениях тяжелыми металлами (Сd, Hg, Pb, Ag, As) данный белок выполняет защитную функцию, связывая их в прочные и относительно малотоксичные комплексы.

Другой железосодержащий белок, трансферрин выполняет преимущественно транспортные функции. Несмотря на сравнительно низкое содержание железа ( 2моль ионов Fe 3+ на одну молекулу белка, трансферриновые комплексы обеспечивают высокую скорость тканевого обмена данного элемента и являются важными переносчиками железа.

Изучение бионеорганических комплексов дает важную информацию об особенностях их метаболизма и позволяет разрабатывать эффективные способы коррекции заболеваний, связанных с недостатком (или, наоборот, с избытком) тех или иных элементов в человеческом организме. В многочисленных экспериментах было показано, что непосредственное введение в организм катионов физиологически важных микроэлементов (Fe 2+ Fe 3+ ,Zn 2+ Cu 2+ Co 2+ Mn 2+ Cr 3+ ) в форме их неорганических солей ( например, хлоридов или сульфатов) обычно не приводит к желаемому результату, поскольку при попадании в желудочно- кишечный тракт или другие жидкие среды организма эти ионы немедленно превращаются либо а нерастворимые соединения (фосфаты, карбонаты, оксалаты) либо в прочные комплексы с разнообразными защитными белками. Кроме того, свободные катионы переходных элементов вызывают денатурацию ферментов и других белковых соединений ,что приводит к разнообразным нарушениям метаболических процессов, функций внутренних органов, поражению слизистых оболочек.

Многие из указанных проблем могут быть успешно решены при правильном подборе бионеорганических комплексов металлов, необходимых для нормального функционирования человеческого организма. Так, для лечения анемии, вызванной недостатком железа и кобальта, данные элементы должны вводится в виде координационных соединений, например, представляющих собой комплексы железа с глюконовой кислотой, витамином В12. и другими.

Недостаток хрома может быть восполнен введением комплексов этого элемента с пиколиновой или аспарагиновой кислотами, биоусвояемость которых в желудочно-кишечном тракте достигает 20-30%. Для сравнения отметимБигеннаяроль,что аналогичный показатель для неорганических солей хрома не превышает 1%.

Также для выделения избытка того или иного элемента используются различные органические соединения, молекулы или анионы которых способны выступать в роли хелатных лигандов. Помимо комплексов в качестве универсального антидота при отравлениях кадмием, ртутью, мышьяком, свинцом и многими переходными элементами широко применяется препарат унитоил. Молекулы унитоиласодержат две функциональные группы SH и по характеру своего действия является аналогом металлотионина.

Комплексоны (полиаминополикарбоновые кислоты) нашли широкое применение в аналитической химии, химической технологии, теплоэнергетике, биологии, медицине, сельском хозяйстве и многих других отраслях. Хотя первый комплексон — этилендиаминтетрауксусная кислота (ЭДТА) — был впервые синтезирован и предложен для практического использования еще в 1935 г., а общее количество известных комплексонов… Читать ещё >

Комплексоны в медицине и биологии, хелатотерапия ( реферат , курсовая , диплом , контрольная )

Содержание

  • Введение
  • 1. Строение комплексонов
  • 2. Исследования комплексонов
  • 3. Применение комплексонов в биологии и медицине
    • 3. 1. Комплексоны-антидоты, применяемые при отравлениях токсичными и радиоактивными металлами
    • 3. 2. Комплексоны — регуляторы обмена кальция в организме
    • 3. 3. Антивирусная и бактерицидная активность комплексонов
    • 3. 4. Применение комплексонов при онкологических заболеваниях
    • 3. 5. Антиаллергическая активность комплексонов
    • 3. 6. Диагностика различных заболеваний с помощью препаратов, содержащих комплексоны

    Актуальность темы

    Комплексные соединения — наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфиринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В12 (комплекс кобальта), платинол (комплекс платины) и т. д.

    Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами.

    Комплексоны (полиаминополикарбоновые кислоты) нашли широкое применение в аналитической химии, химической технологии, теплоэнергетике, биологии, медицине, сельском хозяйстве и многих других отраслях. Хотя первый комплексон — этилендиаминтетрауксусная кислота (ЭДТА) — был впервые синтезирован и предложен для практического использования еще в 1935 г., а общее количество известных комплексонов достигло с тех пор приблизительно 250, их ассортимент все еще не удовлетворял запросы практики. Это было связано с рядом недостатков, свойственных известным комплексонам: малая селективность действия в отношении отдельных катионов; относительно узкий интервал рН, в котором комплексоны являются достаточно эффективными; не достаточно высокая растворимость в воде самих комплексонов и их комплексов с металлами и т. д. Все эти обстоятельства и вызвали необходимость создания нового класса комплексонов — комплексонов, производных дикарбоновых кислот (КПДК), и обстоятельного изучения их комплексообразующей способности. За прошедшие годы различными синтетическими методами впервые получено около 40 новых комплексонов, содержащих в качестве кислотных заместителей фрагменты дикарбоновых кислот (малоновой, янтарной, глутаровой, адипиновой кислот).

    Целью данной работы является рассмотрение применения комплексонов в биологии и медицине.

    Читайте также: