Классификация неоднородных систем реферат

Обновлено: 05.07.2024

Фильтрование применяют в промышленности для тонкого разделения жидких или газовых гетерогенных систем. С его помощью можно добиться значительно более полной, чем в процессах осаждения, очистки жидкости или газа от взвешенных частиц и, соответственно, более высокого выхода продукта (если им является твердая фаза суспензии).

В процессе фильтрования твердые частицы либо задерживаются на поверхности фильтровальной перегородки, образуя осадок, либо проникают в ее глубину, задерживаясь в порах. В соответствии с этим различают фильтрование с образованием осадка и фильтрование с закупориванием пор. Иногда их совмещают (применяя фильтрование с образованием осадка и закупориванием пор).

Движущей силой процесса фильтрования является разность давлений до и после фильтра. Если эта разность создается с помощью насоса, компрессора или вакуум-насоса, то происходит фильтрование под действием перепада давления, если с помощью центробежных сил - центробежное фильтрование (центрифугирование).

2. Фильтрование суспензий

В простейшем случае фильтр представляет собой сосуд, корпус которого разделен на две части фильтровальной перегородкой. Суспензию помещают в верхнюю часть сосуда таким образом, чтобы она в течение всего процесса фильтрования соприкасалась с фильтровальной перегородкой. В разделенных частях сосуда создают разность давлений

под действием которой жидкость проходит через поры фильтровальной перегородки, образуя фильтрат. Твердые частицы задерживаются на поверхности перегородки, формируют осадок. Этот процесс является примером фильтрования с образованием осадка. Он предпочтительнее фильтрования с закупориванием пор, так как в последнем случае сильно осложняется или становится вообще невозможной регенерация фильтровальной перегородки.

Разность давлений по обе стороны фильтровальной перегородки создают разными способами, соответственно и фильтрование проходит при различных условиях.

Если пространство над суспензией сообщают с источником сжатого газа или пространство под фильтровальной перегородкой присоединяют к источнику вакуума, происходит фильтрование при постоянной разности давлений. При этом скорость фильтрования уменьшается вследствие повышения гидравлического сопротивления слоя осадка возрастающей толщины.

Если суспензию подают на фильтр поршневым насосом, производительность которого практически не зависит от напора, фильтрование осуществляется при постоянной скорости. Разность давлений при этом увеличивается по мере роста сопротивления осадка.

3. Фильтры и фильтрующие центрифуги

По режиму работы различают фильтры периодического и непрерывного действия; оба типа широко применяют в промышленности для процессов фильтрования с образованием осадка. Для фильтрования с закупориванием пор используют только фильтры периодического действия.

На фильтрах непрерывного действия осуществляют режим фильтрования при постоянной разности давлений (в случае промывки осадка - одновременно и при постоянной скорости). На фильтрах периодического действия осуществляют любой режим фильтрования.

По способу создания разности давлений различают вакуум-фильтры и фильтры, работающие под давлением. Последние наиболее целесообразно использовать, когда осадок малосжимаем, но обладает высоким гидравлическим сопротивлением. В других случаях вакуум-фильтры предпочтительнее, поскольку проще по конструкции.

По взаимному направлению силы тяжести и движения фильтрата различают фильтры с совпадающими, противоположными и перпендикулярными направлениями.

Нутч-фильтры. Нутч представляет собой простейший фильтр периодического действия, работающий под вакуумом или под избыточным давлением. Направления силы тяжести и движения фильтрата в нем совпадают. К достоинствам конструкции, помимо перечисленных выше для открытого нутча, добавляются большая движущая сила и пригодность для разделения суспензий, выделяющих токсичные пары. К недостаткам относятся ручная выгрузка осадка, громоздкость. По этим причинам нутчи используют в основном в производствах малой мощности. Нутч небольшого размера применяют в лабораторных исследованиях.


Рис. 1. Открытый нутч-фильтр

1-корпус; 2-суспензия; 3 - фильтровальная перегородка; 4—пористая подложка; 5 - штуцер для выхода фильтрата, соединенный с вакуум-насосом

На рис.1 изображен нутч-фильтр, работающий под вакуумом. Он представляет собой открытый резервуар 1, над дном которого расположена пористая подложка (ложное дно) 4, поддерживающая фильтровальную перегородку 3. Суспензию 2 загружают сверху, затем в пространстве под ложным дном создают вакуум (соединяя его с вакуум-насосом), вследствие чего жидкая фаза проходит в виде фильтрата через фильтровальную перегородку З и удаляется из нутча через штуцер внизу. Твердая фаза суспензии образует осадок на фильтровальной перегородке. После этого в случае необходимости нутч заполняют промывной жидкостью и проводят отмывку осадка от фильтрата. По окончании процесса фильтрования нутч некоторое время остается под вакуумом, что позволяет уменьшить влажность осадка. Затем осадок удаляют из фильтра сверху вручную.

Основными достоинствами вакуумных нутч-фильтров являются простота и надежность в работе, возможность тщательной промывки осадка. К недостаткам относятся громоздкость, ручная выгрузка осадка, негерметичность. Кроме того, для них, как и для других вакуум-фильтров (которые будут рассмотрены ниже), характерна невысокая движущая сила (на практике Ар не более 75 кПа).

На рис.2. изображен закрытый нутч-фильтр, работающий под давлением (до 0,3 МПа). Нутч состоит из корпуса 1 с рубашкой 2, съемной крышки 8 и перемещающегося дна 4. На опорной решетке б располагается фильтровальная перегородка 5. Иногда в качестве перегородки применяют слой волокон. В этом случае необходимо использовать защитную сетку 7. Над фильтровальной перегородкой располагают кольцевую перегородку 3, поддерживающую осадок во время его выгрузки. При этом дно 4 опускается и поворачивается на такой угол, чтобы осадок было удобно снимать вручную с фильтровальной перегородки. Нутч снабжен штуцерами 9, 10 и 11 соответственно для подачи суспензии и сжатого воздуха и для удаления фильтрата. для того чтобы давление в аппарате не превысило допустимого, он снабжен предохранительным клапаном 12. В рубашку 2 обычно подают насыщенный водяной пар для повышения температуры фильтрования, что обеспечивает снижение вязкости фильтрата и соответствующее увеличение производительности.

Цикл работы на нутче обычно состоит из следующих стадий: заполнение нутча суспензией, собственно фильтрование под давлением сжатого газа, подсушка осадка, заполнение нутча промывной жидкостью, промывка осадка, его сушка, удаление с фильтровальной перегородки, регенерация последней.

К достоинствам конструкции, помимо перечисленных выше для открытого нутча, добавляются большая движущая сила и пригодность для разделения суспензий, выделяющих токсичные пары. К недостаткам относятся ручная выгрузка осадка, громоздкость. По этим причинам нутчи используют в основном в производствах малой мощности. Нутч небольшого размера применяют в лабораторных исследованиях.


Рис. 2. Закрытый нутч-фильтр:

Фильтр-прессы. Они относятся к фильтрам периодического действия, работающим под давлением. Направления сил тяжести и движения фильтрата в них перпендикулярны.


а- плита; б рама; в - сборка, 1-отверстия в плитах и рамах, образующие при сборке канал для подачи суспензии, 2 отверстия в плитах и рамах, образующие канал для подачи промывной жидкости, 3- отводы для прохода суспензии внутрь рам; 4-внутренние пространства рам; 5-фильтровальные перегородки; б- рифления плит, 7- каналы в плитах для выхода фильтрата на стадии фильтрования или промывной жидкости - на стадии промывки осадка, 8 -центральные каналы в плитах для сбора фильтрата или промывной жидкости; 9 -краны на линиях вывода фильтрата или промывной жидкости

фильтрование гетерогенный центрифуга суспензия

На стадии фильтрования суспензия по каналу 1 и отводам З поступает в полое пространство (камеру) 4 внутри рам. Жидкость проходит через фильтровальные перегородки 5, по желобкам рифлений б движется к каналам 7 и далее в каналы 8. Отсюда фильтрат выводится через краны 9, открытые на стадии фильтрования.

После заполнения пространства (камеры) 4 осадком подачу суспензии прекращают. Затем начинается стадия промывки осадка. Промывная жидкость проходит по каналам 2, омывает осадок и фильтровальные перегородки и выводится через краны 9. По окончании промывки осадок обычно продувают сжатым воздухом для удаления остатков промывной жидкости. После этого плиты и рамы раздвигают, и осадок частично падает под действием силы тяжести в сборник, установленный под фильтром. Оставшуюся часть осадка выгружают вручную.

К достоинствам фильтр-прессов относятся большая удельная поверхность фильтрования, возможность проведения процесса при высоких давлениях (до 1,5 М Па), простота конструкции, отсутствие частей, движущихся в процессе эксплуатации, возможность отключения отдельных неисправных плит закрытием выходного крана.

Недостатками являются ручное обслуживание, невозможность полной промывки осадка, быстрый износ фильтровальных салфеток из-за частой разборки фильтра и работы его при повышенных давлениях.

Среди фильтров непрерывного действия наиболее распространены барабанные вакуум-фильтры. Схема такого фильтра представлена на рис.4. Фильтр имеет вращающийся цилиндрический перфорированный барабан 1, покрытый металлической волнистой сеткой 2, на которой располагается тканевая фильтрующая перегородка 3. Барабан на 30—40% своей поверхности погружен в суспензию. Поскольку в данном фильтре направление осаждения твердых частиц противоположно направлению движения фильтрата, в корыте 6 для суспензии установлена качающаяся мешалка 7, поддерживающая ее однородность.


Рис.4. Барабанный вакуум-фильтр:

1 - перфорированный барабан, 2 - волнистая сетка; З - фильтровальная перегородка; 4 - осадок; 5 - нож для съема осадка, б - корыто для суспензии; 7 - касающаяся мешалка; 8 - устройство для подвода промывной жидкости; 9 - камеры (ячейки) барабана;10 - соединительные трубки; 11 - вращающаяся чаегь распределительной головки; 12 - неподвижная часть распределительной головки; I - зона фильтрования и отсоса фильтрата; II – зона промывки осадка и отсоса промывных вод; III - зона съема осадка; IV - зона очистки фильтровальной ткани

Барабан разделен радиальными перегородками на ряд изолированных друг от друга ячеек (камер) 9. Каждая камера соединяется трубой 10 с различными полостями неподвижной части 12 распределительной головки. Трубы объединяются во вращающуюся часть 11 распределительной головки. Благодаря этому при вращении барабана 1 камеры 9 в определенной последовательности присоединяются к источникам вакуума и сжатого воздуха. В результате при полном обороте барабана каждая камера проходит несколько зон, в которых осуществляются процессы фильтрования, промывки осадка и другие.

Зона 1 — фильтрования и отсоса фильтрата. Здесь камера соприкасается с суспензией. В это время камера соединена с источником вакуума. Под действием вакуума фильтрат проходит через фильтровальную ткань, сетку и перфорацию барабана внутрь камеры и через трубу выводится из аппарата. На наружной поверхности барабана, покрытой фильтровальной тканью, образуется осадок 4.

Зона II — промывки осадка и отсоса промывных вод. Здесь камера, вышедшая из корыта с суспензией, также сообщена с источником вакуума, а на осадок с помощью устройства 8 подается промывная жидкость. Она проходит через осадок и по трубе выводится из аппарата.

Зона III — съема осадка. Попав в эту зону, осадок сначала подсушивается вакуумом, а затем камера соединяется с источником сжатого воздуха. Воздух не только сушит, но и разрыхляет осадок, что облегчает его последующее удаление. При подходе камеры с просушенным осадком к ножу 5 подача сжатого воздуха прекращается. Осадок падает с поверхности ткани под действием силы тяжести. Нож служит в основном направляющей плоскостью для слоя осадка, отделяющегося от ткани.

Зона IV — очистки фильтровальной перегородки. В этой зоне фильтровальная ткань продувается сжатым воздухом или водяным паром и освобождается от оставшихся на ней твердых частиц.

После этого ячейки с регенерированной тканью вновь входят в корыто с суспензией, и весь цикл операций повторяется.

Таким образом, на каждом участке поверхности фильтра все операции проводятся последовательно одна за другой, но участки работают независимо, и поэтому в целом все операции проводятся одновременно. т. е. процесс протекает непрерывно. Это одно из достоинств данного фильтра. Среди других следует отметить простоту обслуживания, возможность фильтрования суспензий с большим содержанием твердой фазы, хорошие условия для промывки осадка.

К недостаткам фильтра относятся сравнительно небольшая удельная поверхность фильтрования, относительно высокая стоимость, сложность герметизации, необходимость перемешивания суспензии в корыте б из-за противоположного направления движений частиц под действием силы тяжести и фильтрата.

Ленточный вакуум-фильтр. Фильтр представляет собой работающий под вакуумом аппарат непрерывного действия, в котором направления силы тяжести и движения фильтрата совпадают.

Схематически фильтр изображен на рис.5.

Перфорированная резиновая лента 2 перемещается по замкнутому пути с помощью приводного 8 и натяжного З барабанов. Фильтрующая ткань 5 прижимается к ленте при натяжении роликами б. Из лотка 4 на фильтрующую ткань подается суспензия. Фильтрат отсасывается в вакуум-камеры 1, находящиеся под лентой, и выводится из аппарата. Отложившийся на ткани осадок промывается жидкостью, подаваемой из форсунок 9. Промывная жидкость отсасывается в другие вакуум-камеры и также отводится из аппарата.


Рис.5. Ленточный вакуум-фильтр

1 -вакуум-камеры, 2 - перфорированная лента, З натяжной бара6ан, 4—лоток для подачи суспензии; 5 - фильтровальная ткань, б -натяжные ролики; 7- валик для перегиба ленты; 8 - приводной барабан 9—форсунки для подачи промывной жидкости

Осадок благодаря вакууму подсушивается и при перегибе ленты через валик 7 отделяется от ткани и сбрасывается в бункер. На обратном пути между роликами б фильтровальная ткань обычно регенерируется: очищается с помощью механических щеток, пропаривается или промывается жидкостью.

К достоинствам ленточных фильтров, помимо упомянутого выше совпадения направлений фильтрования и осаждения, относятся простота устройства (отсутствие специальной распределительной головки), хорошие условия промывки и обезвоживания осадка. Благодаря простоте съема осадка и регенерации ткани возможна обработка труднофильтруемых материалов.

Недостатками являются небольшая удельная поверхность и довольно быстрый износ фильтрующей ленты, громоздкость аппарата, сложность герметизации.

Дисковый вакуум-фильтр. Фильтр представляет собой аналог барабанного фильтра, в котором для увеличения поверхности фильтрования установлены диски с фильтрующими боковыми поверхностями.

Карусельный вакуум-фильтр. Такой фильтр обладает достоинствами нутчей, являясь аппаратом непрерывного действия. Фильтр состоит из ряда горизонтальных нутчей, размещенных по кругу и соединенных гибкими шлангами с распределительным устройством, аналогичным применяемому в барабанных и дисковых вакуум-фильтрах. При вращении рамы, на которую опираются нутчи, каждый из них последовательно проходит стадии заполнения суспензий, фильтрования, промывки осадка, его сушки, удаления осадка, промывки.

Фильтрующие центрифуги. Основной частью центрифуги является перфорированный барабан, насаженный на вращающийся вал. На барабане располагается фильтровальная ткань 4 (как правило, между барабаном и тканью помещают дренажную сетку).

Суспензию загружают в барабан сверху, после чего он приводится во вращение. Фильтрат (фугат) под действием центробежной силы проходит через осадок, фильтровальную перегородку и перфорацию барабана и попадает в кожух, откуда выводится. По окончании фильтрования осадок из барабана выгружают вручную.

1. Касаткин А.Г. Основные процессы и аппараты химической технологии 9-ое изд. М.: Химия, 1973г, 750 с.

2. Айнштейн В.Г., Захаров М.Н., Носов Г.А., Захаренко В.В., Зиновкина Т.В., Таран А.Л., Костанян А.Е. Общий курс процессов и аппаратов химической технологии. Учебник для вузов, в двух книгах. М.: Химия, 1999 (кн. 1, 888 с; кн.2, 872 с.)

3. Дытнерский Ю.И. Процессы и аппараты химической технологии. М.: Химия, 1995г, 768 с (ч.1, 400с.; ч.2,368 с.)

4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия: 1987, 576 с.

5.Основные процессы и аппараты химической технологии (Пособие по проектированию)./ Под ред. Ю.И. Дытнерского. М.: Химия, 1991, 496 с.

6. Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии. Под ред. П.Г. Романкова, 5-ое изд. Л.: Химия, 1979, 256 с.

7. Скобло А.И., Трегубов И.А. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. М.: Химия, 1982. 584 с.

8. Владимиров А.И. и др. Основные процессы и аппараты нефтегазопереработки. М.: ООО Недра-Бизнесцентр. 2002. 227 с.

9. Скобло А.И. и др. Процессы и аппараты нефтегазопереработки и нефтехимии. М.: Недра. 2000. 677 с.

10. Коган В.Б. Теоретические основы типовых процессов химической технологии. Л.: Химия, 1997. 512 с.

Неоднородными, или гетерогенными, называют системы, состоя­щие по меньшей мере из двух фаз. При этом одна из фаз является сплошной, а другая - дисперсной, распределенной в первой в раз­дробленном состоянии: в виде капель, пузырей, мелких твердых частиц и т. д. Сплошную фазу часто называют дисперсионной средой.

В зависимости от физического состояния фаз различают сле­дующие бинарные гетерогенные системы: суспензии, эмульсии, пены, пыли, дымы и туманы.

Суспензия -система, состоящая из жидкости и взвешенных в ней твердых частиц. В зависимости от размеров частиц суспензии условно подразделяют на грубые (с частицами размером более 100 мкм), тонкие (содержащие частицы размером 0,1-100 мкм) и коллоидные растворы (с частицами менее 0,1 мкм).

Эмульсия-система, состоящая из жидкости и распределенных в ней капель другой жидкости, не растворяющейся в первой.

Пена-система, состоящая из жидкости и распределенных в ней пузырьков газа.

Пыль-система, состоящая из газа и распределенных в нем твердых частиц размером более 5 мкм. В процессах химической технологии пыль образуется преимущественно при дроблении, сме­шивании и транспортировании твердых материалов.

Дым-система, состоящая из газа и распределенных в нем твердых частиц размером менее 5 мкм; образуется при горении.

Туман-система, состоящая из газа и распределенных в нем капель жидкости размером менее 5 мкм.

Пыли, дымы и туманы представляют собой аэродисперсные системы и носят общее название - аэрозоли.

В большинстве случаев дисперсные системы содержат частицы, различающиеся по размеру. Такие системы называют полидисперс­ными. Они характеризуются фракционным, или дисперсным, со­ставом, т. е. долей частиц определенного размера от общего содер­жания дисперсной фазы. Иногда встречаются системы, в которых все частицы близки по размерам. Их называют монодисперсными.

Большинство дисперсных систем неустойчиво, т.е. имеет тен­денцию к укрупнению частиц. Укрупнение капель или пузырей путем их слияния называют коалесценцией, а укрупнение твердых частиц вследствие их слипания - коагуляцией.

Процессы, связанные с разделением неоднородных систем, игра­ют большую роль в химической технологии при подготовке сырья и очистке готовых продуктов, при очистке сточных вод и отходящих газов, а также при выделении из них ценных компонентов.

Применяют следующие основные методы разделения: осажде­ние, фильтрование и мокрую очистку газов.

Осаждение представляет собой процесс разделения, при котором взвешенные в жидкости или газе твердые или жидкие частицы отделяются от сплошной фазы под действием сил тяжести (отстаи­вание), центробежной силы (циклонный процесс и центрифугирова­ние), сил инерции, электростатических сил (очистка газов в электри­ческом поле).

Фильтрование -это процесс разделения с помощью пористой перегородки, способной пропускать жидкость или газ, но задержи­вать взвешенные частицы. Движущей силой процесса фильтрования является разность давлений. В случаях, когда разность давлений создается центробежными силами, процесс называют центробеж­ным фильтрованием.

Мокрая очистка газов - процесс разделения, основанный на улав­ливании взвешенных в газе частиц жидкостью. Улавливание осу­ществляется, как правило, под действием сил инерции.

Выбор метода разделения зависит от концентрации дисперсных частиц, их размера, требований к качеству разделения, а также от разницы плотностей дисперсной и сплошной фаз и вязкости послед­ней.

Неоднородными, или гетерогенными, называют системы, состо¬ящие, как минимум, из двух фаз: дисперсной (внутренней), обычно находящейся в тонкораздробленном состоянии, и дисперсионной (внешней), окружающей частицы дисперсной фазы.
Суспензии состоят из жидкой дисперсионной и твердой дисперс¬ной фаз. В зависимости от размера взвешенных твердых частиц суспензии делятся на грубые с частицами размером >100 мкм; тон¬кие, когда размеры твердых частиц составляют 0,1…100 мкм, и кол¬лоидные растворы, содержащие твердые частицы размерами  0,1 мкм.

Вложенные файлы: 1 файл

2v.doc

2. Неоднородные системы, их классификация. Методы разделения

Неоднородными, или гетерогенными, называют системы, состоящие, как минимум, из двух фаз: дисперсной (внутренней), обычно находящейся в тонкораздробленном состоянии, и дисперсионной (внешней), окружающей частицы дисперсной фазы.

Суспензии состоят из жидкой дисперсионной и твердой дисперсной фаз. В зависимости от размера взвешенных твердых частиц суспензии делятся на грубые с частицами размером >100 мкм; тонкие, когда размеры твердых частиц составляют 0,1…100 мкм, и коллоидные растворы, содержащие твердые частицы размерами £ 0,1 мкм.

Эмульсии состоят из двух жидких фаз, не растворяющихся одна в другой: дисперсионной и дисперсной. Размер частиц дисперсной фазы может колебаться в значительных пределах. Под действием гравитационной силы эмульсии обычно расслаиваются, однако тонкие эмульсии с размером капель дисперсной фазы менее 0,4. 0,5 мкм, а также содержащие стабилизаторы, становятся устойчивыми и не расслаиваются в течение продолжительного времени.

С увеличением концентрации дисперсной фазы может возникнуть состояние, когда дисперсная фаза обращается в дисперсионную и наоборот. Такой взаимный переход называется инверсией фаз.

Пены состоят из жидкой дисперсионной и газовой дисперсной фаз. По своим свойствам пены близки к эмульсиям.

Пыли и дымы состоят из газовой дисперсионной и твердой дисперсной фаз. Образуются пыли обычно при дроблении, смешивании и транспортировке твердых материалов. Размеры твердых частиц пылей составляют от 3 до 70 мкм. Дымы образуются при горении. Размер твердых частиц в дымах составляет 0,3…5 мкм.

Туманы состоят из газовой дисперсионной и жидкой дисперсной фаз. Туманы образуются при конденсации. Размер жидких капель в тумане 0,3…3 мкм. Пыли, туманы и дымы представляют собой аэрозоли.

В пищевых производствах часто возникает задача разделения неоднородных систем на составные части. Так, в производстве вина требуется его осветление, т. е. отделение взвешенных твердых частиц от жидкой фазы; пивное сусло отделяют от дробины; в производстве сахара суспензию после сатурационных аппаратов разделяют с целью получения сока, а разделяя утфель, получают кристаллический сахар. В производствах, где для получения продукта (сухого молока, молочно-овощных концентратов) используются распылительные сушилки, отходящие газы улавливаются и очищаются во избежание уноса ценных продуктов и загрязнения окружающей среды.

Основные методы разделения неоднородных систем в пищевой промышленности – осаждение, фильтрование и центрифугирование.

Осаждение – процесс разделения жидких и газовых неоднородных систем под действием гравитационных сил, сил инерции (центробежной силы) или сил электрического поля. Соответственно различают гравитационное отстаивание, циклонное и отстойное центрифугирование, электроочистку.

Фильтрование – процесс разделения жидких и газовых неоднородных систем с использованием пористой перегородки, способной пропускать жидкость и газ, но задерживающей взвешенные частицы. Фильтрование осуществляется под действием сил давления или центробежных сил. Соответственно различают просто фильтрование и центробежное фильтрование.

Фильтрование более эффективно для разделения суспензий, эмульсий и пылей, чем осаждение.

Мокрое разделение – процесс улавливания взвешенных в газе частиц жидкостью. Применяется для очистки газов и разделения суспензий.

В пищевых производствах часто возникает задача разделения неоднородных систем на составные части. Так, в производстве вина требуется его осветление, т. е. отделение взвешенных твердых частиц от жидкой фазы; пивное сусло отделяют от дробины; в производстве сахара суспензию после сатурационных аппаратов разделяют с целью получения сока, а разделяя утфель, получают кристаллический сахар; в производствах, где для получения продукта (сухого молока, молочно-овощных концентратов) используются распылительные сушилки, отходящие газы улавливаются и очищаются во избежание уноса ценных продуктов и загрязнения окружающей среды

Файлы: 1 файл

методы разделения н.с..docx

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

В пищевых производствах часто возникает задача разделения неоднородных систем на составные части. Так, в производстве вина требуется его осветление, т. е. отделение взвешенных твердых частиц от жидкой фазы; пивное сусло отделяют от дробины; в производстве сахара суспензию после сатурационных аппаратов разделяют с целью получения сока, а разделяя утфель, получают кристаллический сахар; в производствах, где для получения продукта (сухого молока, молочно-овощных концентратов) используются распылительные сушилки, отходящие газы улавливаются и очищаются во избежание уноса ценных продуктов и загрязнения окружающей среды [1].

Неоднородными, или гетерогенными, называют системы, состоящие, как минимум, из двух фаз: дисперсной (внутренней), обычно находящейся в тонкораздробленном состоянии, и дисперсионной (внешней), окружающей частицы дисперсной фазы.

В зависимости от физического состояния фаз различают: суспензии, эмульсии, пены, пыли, дымы и туманы [2].

Суспензии состоят из жидкой дисперсионной и твердой дисперсной фаз. В зависимости от размера взвешенных твердых частиц суспензии делятся на грубые с частицами размером более 100 мкм; тонкие, когда размеры твердых частиц составляют от 0,1 до 100 мкм, и коллоидные растворы, содержащие твердые частицы размерами менее 0,1 мкм.

Эмульсии состоят из двух жидких фаз, не растворяющихся одна в другой: дисперсионной и дисперсной. Размер частиц дисперсной фазы может колебаться в значительных пределах. Под действием гравитационной силы эмульсии обычно расслаиваются, однако тонкие эмульсии с размером капель дисперсной фазы менее 0,4 мкм, а также содержащие стабилизаторы, становятся устойчивыми и не расслаиваются в течение продолжительного времени.

С увеличением концентрации дисперсной фазы может возникнуть состояние, когда дисперсная фаза обращается в дисперсионную и наоборот. Такой взаимный переход называется инверсией фаз.

Пены состоят из жидкой дисперсионной и газовой дисперсной фаз. По своим свойствам пены близки к эмульсиям.

Пыли и дымы – системы, состоящие из газа и распределенных, в нем частиц твердого вещества. Пыли образуются обычно при механическом распределении частиц в газе (при дроблении, смешивании и транспортировке твердых материалов и др.). Размеры твердых частиц пылей составляют приблизительно от 3 до 70 мкм. Дымы получаются в процессах конденсации паров (газов) при переходе их в жидкое или твердое состояние, при этом образуются твердые взвешенные в газе частицы размерами от 0,3 до 5 мкм.

Туманы состоят из газовой дисперсионной и жидкой дисперсной фаз. Туманы образуются при конденсации. Размер жидких капель в тумане от 0,3 до 3 мкм. Пыли, дымы и туманы представляют собой аэродисперсные системы, или аэрозоли.

Выбор метода разделения неоднородных систем обусловливается, главным образом, размерами взвешенных частиц, разностью плотностей дисперсной и сплошной фаз, а также вязкостью сплошной фазы.

Несмотря на общность принципов разделения жидких и газовых неоднородных систем некоторые методы их разделения, а также применяемое оборудование в ряде случаев имеют специфические особенности. Поэтому процессы разделения жидких и газовых систем ниже рассмотрены раздельно [1].

МЕТОДЫ РАЗДЕЛЕНИЯ НЕОДНОРОДНЫХ ЖИДКИХ СИСТЕМ

В пищевых производствах часто возникает задача разделения неоднородных систем на составные части. Основные методы разделения неоднородных систем в пищевой промышленности – осаждение, фильтрование и центрифугирование [1].

Осаждение представляет собой процесс разделения, при котором взвешенные в жидкости или газе твердые или жидкие частицы отделяются от сплошной фазы под действием, силы тяжести, сил инерции (в том числе центробежных) или электростатических сил. Осаждение, происходящее под действием силы тяжести, называется отстаиванием. В основном отстаивание применяется для предварительного, грубого разделения неоднородных систем [2].

1.1.1 Отстаивание под действием гравитационного поля

Отстаивание – это частный случай разделения неоднородных жидких или газообразных систем в результате выделения твердых или жидких частиц под действием гравитационной силы. Применяют отстаивание при грубом разделении суспензий, эмульсий и пылей. Этот способ разделения характеризуется низкой скоростью процесса. Отстаиванием не удается полностью разделить неоднородную смесь на дисперсную систему и дисперсионную фазы. Однако простое аппаратурное оформление процесса и низкие энергетические затраты определили широкое применение этого метода разделения в пищевой и смежных отраслях промышленности.

Отстаивание проводят в аппаратах различных конструкций, называемых отстойниками [1].

1.1.2 Осаждение под действием центробежной силы

С целью интенсификации разделения пылей, суспензий и эмульсий процесс осаждения проводят под действием центробежной силы.

Для создания поля центробежных сил используют два технических приема: поток жидкости или газа вращается в неподвижном аппарате; поток поступает во вращающийся аппарат и вращается вместе с ним. Центробежные силы, возникающие при этом, обеспечивают большую эффективность процесса по сравнению с процессом разделения, проходящим в поле только сил тяжести. В первом случае процесс называется циклонным, а аппарат – циклоном, во втором – отстойным центрифугированием, а аппарат – отстойной центрифугой или сепаратором [1, 3]

Фильтрование в промышленности применяют для тонкого разделения жидких или газовых гетерогенных систем. В процессе фильтрования твердые частицы задерживаются фильтровальной перегородкой, в качестве которой в зависимости от размера частиц, химического состава и вязкости жидкой фазы используются хлопчатобумажные, шерстяные, полимерные ткани, сетки из полимерных и металлических волокон, вату, пористую керамику и т.д. Обычно процесс фильтрования не завершается разделением на фильтрат и осадок [4].

Фильтрование осуществляется под действием сил давления или центробежных сил. Соответственно различают просто фильтрование и центробежное фильтрование. Фильтрование более эффективно для разделения суспензий, эмульсий и пылей, чем осаждение.

При разделении суспензий в зависимости от вида фильтровальной перегородки и свойств самой суспензии фильтрование может происходить с образованием осадка на поверхности перегородки, с закупориванием пор фильтрующей перегородки и с тем и другим явлениями одновременно (промежуточный вид фильтрования).

1.2.1 Фильтрование с образованием осадка на поверхности фильтрующей перегородки имеет место, когда диаметр твердых частиц больше диаметра пор перегородки. Этот способ осуществим при концентрации твердой фазы суспензии более 1 масс. %, когда создаются благоприятные условия для образования сводиков над входами в поры фильтровальной перегородки. Образованию сводиков способствует увеличение скорости осаждения и концентрации твердой фазы в суспензии [5].

1.2.2 Фильтрование с закупориванием пор происходит, когда твердые частицы проникают в поры фильтровальной перегородки. Закупоривание пор твердыми частицами наблюдается уже в начальный период процесса фильтрования, что снижает производительность фильтра. Для поддержания ее на должном уровне фильтр регенерируют, промывая обратным током жидкости либо прокаливая металлические фильтровальные перегородки [5].

1.2.3 Промежуточный вид фильтрования имеет место в случае одновременного закупоривания пор фильтровальной перегородки и отложения осадка на поверхности фильтровальной перегородки [5].

Для повышения скорости фильтрования при разделении суспензий с небольшой концентрацией твердой фазы либо содержащих слизистые вещества фильтрование проводят в присутствии вспомогательных веществ, препятствующих закупориванию пор фильтровальной перегородки. Слой вспомогательного вещества наносят на фильтровальную перегородку перед фильтрованием суспензии. В качестве вспомогательных веществ используют тонкодисперсные угли, перлит, асбест, кизельгур, фиброфло, асканит и другие материалы [1].

Очистку газов от взвешенных твердых или жидких частиц проводят в целях уменьшения загрязненности атмосферы и улавливания из отходящих газов ценных продуктов [5].

Для очистки газовых потоков от взвешенных частиц используют несколько способов: гравитационное осаждение, осаждение под действием инерционных и центробежных сил (центрифугирование), фильтрование газового потока через пористую перегородку, мокрую очистку, которая осуществляется в орошаемых водой скрубберах, осаждение в электрическом поле. Первые два способа применяют для очистки газов от крупных (свыше 100 мкм) взвешенных частиц, остальные – для тонкой очистки газов от частиц размером менее 20 мкм. Для достижения требуемой степени очистки газового потока способы часто комбинируют [5].

Закономерности процессов осаждения и фильтрования газовых неоднородных систем аналогичны закономерностям процессов осаждения и фильтрования твердых частиц в капельной жидкости [1].

Мокрую очистку газов применяют тогда, когда допустимы увлажнение и охлаждение газа, а взвешенные частицы имеют незначительную ценность. Охлаждение газа ниже температуры конденсации находящихся в нем паров способствует увеличению плотности взвешенных частиц. При этом частицы играют роль центров конденсации и тем самым обеспечивают выделение их из газового потока. Если взвешенные частицы не смачиваются жидкостью, то очистка газов в мокрых пылеулавливателях малоэффективна. В этом случае для повышения степени очистки к жидкости добавляют поверхностно-активные вещества [5].

Степень очистки газов от пыли в мокрых пылеулавливателях колеблется в зависимости от конструкции от 60 до 99 % [1].

Недостаток мокрой очистки – образование сточных вод, которые также должны очищаться [1].

В электрическом поле тонкодисперсным частицам сообщается электрический заряд, под действием которого происходит их осаждение. Разделение пылей, дымов и туманов в электрическом поле имеет значительные преимущества перед другими способами осаждения [5, 6].

Разделение газовых неоднородных смесей в электрическом поле осуществляется на электродах. Для разделения пылей и дымов применяются сухие фильтры, для разделения туманов – мокрые.

Простейший электрофильтр – это два электрода, один из которых – анод – выполняется в виде трубы или пластины, а другой – катод – в виде проволоки, которая натянута внутри трубчатого анода либо между пластинчатыми анодами, выполненными из проволочной сетки. Аноды заземляют.

При соединении электродов с источником постоянного тока на электродах создается разность потенциалов, равная 4. 6 кВ/см, обеспечивающая плотность тока 0,05…0,5 мА на 1 м длины катода [5].

  1. Коагуляция и укрупнение частиц, отделяемых при газоочистке

Степень очистки газов в аппаратах различных типов может быть повышена и процесс очистки ускорен путем предварительного укрупнения (коагуляции) взвешенных частиц. Для этой цели может быть применена акустическая коагуляция – воздействие на загрязненный газ упругих акустических колебаний звуковой и ультразвуковой частоты. Звуковые и ультразвуковые колебания вызывают интенсивную вибрацию мельчайших взвешенных частиц, что приводит к резкому увеличению числа их столкновений и укрупнению (коагуляции). Коагуляция частиц происходит более интенсивно в поле стоячих волн.

Читайте также: