Классическое естествознание и его методология реферат

Обновлено: 02.07.2024

Хронологически этот период, а значит становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени, — доньютоновскую и ньютоновскую – создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Ньютоновская ступень – Чаще всего ее связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленъютоновскую ступень развития механистического естествознания.

В учении Галилея уже были заложены достаточно прочные основы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Согласно Галилею, научное познание должно базироваться на планомерном и точном эксперименте — как мысленном, так и реальном. Для последнего характерно непосредственное изменение условий возникновения явлений и установление между ними закономерных причинных связей, обобщаемых посредством математического аппарата.

Будучи одним из основателей современного экспериментально-теоретического естествознания, Галилей заложил основы классической динамики, сформулировал принцип относительности движения, идею инерции, закон свободного падения тел. Его открытия обосновали гелиоцентрическую систему Коперника в борьбе со схаластической аристотелевско-птолемеевской традицией. Он развивал принципы механистического материализма.

Галилей выделял два основных метода экспериментального исследования природы:

1. Аналитический — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности, не доступные непосредственному восприятию (. Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

2. Синтетически-дедуктивный — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта.

Гейзенберг выделяет две характерные черты нового метода Галилея:

а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены;

б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.

Иоганн Кеплер установил три закона движения планет относительно Солнца:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади: скорость движения планеты тем больше, чем ближе она к Солнцу.

3. Квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.

Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др.

Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизирован-ной структуре материи, о механической причинности и др.

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

Сам Ньютон с помощью своего метода решил три кардинальных задачи.

1. четко отделил науку от умозрительной натурфилософии и дал критику последней. - Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени.

Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам:

1. Весь мир, вся Вселенная (от атомов до человека) понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.


12. Революция в естествознании конца XIX – начала XX века и становление идей и методов неклассической науки.

В 1895—1896 гг. были открыты лучи Рентгена, радио­активность (Беккерель), радий (Мари и Пьер Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу —. электрон и понял, что электро­ны являются составными частями атомов всех веществ. Он предложил первую (электромагнитную) модель ато­мов, но она просуществовала недолго.

В 1911 г. английский физик Э. Резерфорд в экспери­ментах обнаружил, что в атомах существуют ядра, положи­тельно заряженные частицы, размер которых очень мал по сравнению с размерами атомов, но в которых сосредоточе­на почти вся масса атома. Он предложил планетарную мо­дель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл ос и р-лучи, пред­сказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла.

Все вышеназванные научные открытия кардинально из­менили представление о мире и его законах, показали ог­раниченность классической механики. Последняя, разу­меется, не исчезла, но обрела четкую сферу применения своих принципов — для характеристики медленных дви­жений и больших масс объектов мира.

В 1928 г. английский физик Поль Дирак разработал релятивистскую теорию электрона и через три года пред­сказал существование позитрона, который буквально че­рез год был экспериментально обнаружен в космических лучах. Открытия Дирака показали, что элементарные ча­стицы оказались совсем не элементарными. Эта факти­чески сложная многоэлементная система многих тел, ко­торая обнаруживает в себе все те структурные взаимосвя­зи, какие характерны для молекулы или любого объекта подобного рода.

В нашу задачу не входит подробный анализ величай­ших достижений естествознания неклассического перио­да. Укажем лишь некоторые важнейшие философско-методологические выводы из них.

1. Возрастание роли философии в развитии естествозна­ния и других наук.

В центре научных дискуссий в естествознании конца XIX — начала XX в. оказались философские категории материи, движения, пространства, времени, противоре­чия, детерминизма, причинности и другие, то или иное понимание которых определяло понимание специально-научных проблем.

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения.

В конце XIX — начале XX в. начался переход к новому типу рациональности, который исходил из того, что по­знающий субъект не отделен от предметного мира, а на­ходится внутри него. Мир раскрывает свои структуры и закономерности благодаря активной деятельности челове­ка в этом мире. Только тогда, когда объекты включены в человеческую деятельность, мы может познать их сущностные связи. В. Гейзенберг был первым, кто произнес фра­зу о том, что в общем случае разделение субъекта и объек­та его наблюдения невозможно. Формирование отчетли­вой философской позиции современного рационализма на­чалось именно с квантовой механики, давшей первые на­глядные и неопровержимые доказательства о включенно­сти человека в качестве активного элемента в единый ми­ровой эволюционный процесс.

После работ Вернадского создавалась реальная возмож­ность нарисовать всю грандиозную картину мироздания как единого процесса самоорганизации от микромира до че­ловека и Вселенной. И она нам представляется совсем по-новому и совсем не так, как она рисовалась классическим рационализмом. Вселенная — это не механизм, од­нажды заведенный Внешним Разумом, судьба которого оп­ределена раз и навсегда, а непрерывно развивающаяся и самоорганизующаяся система. А человек не просто актив­ный внутренний наблюдатель, а действующий элемент системы.

3. Укрепление и расширение идеи единства природы, по­вышение роли целостного и субстанциального подходов.

Как доказывает современная физика, формой выраже­ния причинности в области атомных объектов является вероятность, поскольку вследствие сложности протекаю­щих здесь процессов (двойственный, корпускулярно-волновой характер частиц, влияние на них приборов и т. д.) возможно определить лишь движение большой совокуп­ности частиц, дать их усредненную характеристику, а о движении отдельной частицы можно говорить лишь в пла­не большей или меньшей вероятности.

Природа микрочастицы внутренне противоречива (есть диалектическое противоречие) и что соответствующее по­нятие должно выражать это объективное противоречие, быть также внутренне противоречивым. Иначе оно не бу­дет адекватно отражать свой объект, так как он есть в себе, а стало быть будет выражать лишь часть истины, а не всю ее в целом. С достаточной определенностью проблему син­теза противоположных представлений, внутреннего един­ства противоположностей (волновых и квантовых свойств света) поставил А. Эйнштейн. Он задался вопросом: «А может ли свет быть и тем и другим? Эйнштейн, конечно, знал, что известные опыты по дифракции и интерферен­ции могут быть объяснены только на основе волновых пред­ставлений. Он также не мог оспаривать наличие полного противоречия (здесь и далее выделено мною. — В. К.) между своей гипотезой световых квантов и волновыми представ­лениями. Эйнштейн даже не пытался устранить внутрен­ние противоречия своей интерпретации. Он принял про­тиворечия как нечто, которое, вероятно, может быть понято много позднее, благодаря совершенно новому методу мышления*1, т. е. диалектическому по своему существу. Так оно и произошло.

- Попытки осознать причину появления противоречивых образов, связанных с объектами микромира, привели Н. Бора к формулированию принципа дополнительнос­ти. Согласно этому принципу, для полного описания квантово-механических явлений необходимо применять два вза­имоисключающих (дополнительных) набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях. Изучение взаимо­дополнительных явлений требует взаимоисключающих эк­спериментальных установок.

6. Определяющее значение статистических закономер­ностей по отношению к динамическим.

Законы статистического характера являются основной характеристикой современной квантовой физики. Поэто­му метод, применяемый для рассмотрения движения пла­нет, здесь практически бесполезен и должен уступить ме­сто статистическому методу, законам, управляющим из­менениями вероятности во времени.

Развитие квантовой механики показало:

а. Предсказания квантовой механики неоднозначны, они дают лишь вероятность того или иного результата.

б. Причинность в лапласовском смысле нарушена, но в более точном квантовомеханическом смысле она соблю­дается.

Таким образом, огромный прогресс наших знаний о стро­ении и эволюции материи, достигнутый естествознанием, начиная со второй половины XIX в., во многом и решаю­щем обусловлен методами исследований, опирающимися на теорию вероятностей. Поэтому везде, где наука сталки­вается со сложностью, с анализом сложноорганизованных систем, вероятность приобретает важнейшее значение.

7. Кардинальное изменение способа (стиля, структуры) мышления, вытеснение метафизики диалектикой в науке.

Эту сторону, особенность неклассического естествозна­ния подчеркивали выдающиеся его представители. Так, Гейзенберг неоднократно говорил о границах механистическо­го типа мышления, о недостаточности ньютоновского спосо­ба образования понятий, о радикальных изменениях в ос­новах естественнонаучного мышления, указывал на важ­ность требований об изменении структуры мышления.

8. Изменение представлений о механизме возникновения научной теории.

Иначе говоря, теории современной науки создаются не просто путем индуктивного обобщения опыта (хотя такой путь не исключается), а за счет первоначального движе­ния в поле ранее созданных идеализированных объектов, которые используются в качестве средств конструирова­ния гипотетических моделей новой области взаимодей­ствий. Обоснование таких моделей опытом превращает их в ядро будущей теории.

Идеализированный объект выступает таким образом не только как теоретическая модель реальности, но он неяв­но содержит в себе определенную программу исследова­ния, которая реализуется в построении теории. Соотно­шения элементов идеализированного объекта — как ис­ходные, так и выводные, представляют собой теоретичес­кие законы, которые (в отличие от эмпирических зако­нов) формулируются не непосредственно на основе изу­чения опытных данных, а путем определенных мыслитель­ных действий с идеализированным объектом.

Хронологически этот период, а значит, становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика.

Активное деятельностное отношение к миру требовало познания его существенных связей причин и закономерностей. Одной из ключевых проблем стала проблема метода. Механистическое естествознание начинает развиваться ускоренными темпами.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и ньютоновскую, — связанные соответственно с двумя глобальными на­учными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую сту­пень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его на­учных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание.

Галилей выделял два основных метода экспериментального исследования природы:

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением.

Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточ­нил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном.

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

Сам Ньютон с помощью своего метода решил три кардинальные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии (точная наука о природе) и дал критику последней. В вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала эталоном научной теории вообще. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира.

Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам.

1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

2. Согласно этому принципу любые события жестко предопределены законами классической механики.

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

Механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание есте­ственных причин и законов природных явлений.

Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, вы­винул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных Волн, выдвинул идею об электромагнитной прир­де света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явленийи более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.).

С тех пор механистические представления о мире были существенно поколеблены и будучи не в силах объяснить новые явления — механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.

Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.

Хронологически этот период, а значит становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени, — доньютоновскую и ньютоновскую – создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Ньютоновская ступень – Чаще всего ее связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленъютоновскую ступень развития механистического естествознания.

В учении Галилея уже были заложены достаточно прочные основы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Согласно Галилею, научное познание должно базироваться на планомерном и точном эксперименте — как мысленном, так и реальном. Для последнего характерно непосредственное изменение условий возникновения явлений и установление между ними закономерных причинных связей, обобщаемых посредством математического аппарата.

Будучи одним из основателей современного экспериментально-теоретического естествознания, Галилей заложил основы классической динамики, сформулировал принцип относительности движения, идею инерции, закон свободного падения тел. Его открытия обосновали гелиоцентрическую систему Коперника в борьбе со схаластической аристотелевско-птолемеевской традицией. Он развивал принципы механистического материализма.

Галилей выделял два основных метода экспериментального исследования природы:

1. Аналитический — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности, не доступные непосредственному восприятию (. Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

2. Синтетически-дедуктивный — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта.

Гейзенберг выделяет две характерные черты нового метода Галилея:

а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены;

б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.

Иоганн Кеплер установил три закона движения планет относительно Солнца:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади: скорость движения планеты тем больше, чем ближе она к Солнцу.

3. Квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.

Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др.

Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизирован-ной структуре материи, о механической причинности и др.

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

Сам Ньютон с помощью своего метода решил три кардинальных задачи.

1. четко отделил науку от умозрительной натурфилософии и дал критику последней. - Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени.

Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам:

1. Весь мир, вся Вселенная (от атомов до человека) понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.


12. Революция в естествознании конца XIX – начала XX века и становление идей и методов неклассической науки.

В 1895—1896 гг. были открыты лучи Рентгена, радио­активность (Беккерель), радий (Мари и Пьер Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу —. электрон и понял, что электро­ны являются составными частями атомов всех веществ. Он предложил первую (электромагнитную) модель ато­мов, но она просуществовала недолго.

В 1911 г. английский физик Э. Резерфорд в экспери­ментах обнаружил, что в атомах существуют ядра, положи­тельно заряженные частицы, размер которых очень мал по сравнению с размерами атомов, но в которых сосредоточе­на почти вся масса атома. Он предложил планетарную мо­дель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл ос и р-лучи, пред­сказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла.

Все вышеназванные научные открытия кардинально из­менили представление о мире и его законах, показали ог­раниченность классической механики. Последняя, разу­меется, не исчезла, но обрела четкую сферу применения своих принципов — для характеристики медленных дви­жений и больших масс объектов мира.

В 1928 г. английский физик Поль Дирак разработал релятивистскую теорию электрона и через три года пред­сказал существование позитрона, который буквально че­рез год был экспериментально обнаружен в космических лучах. Открытия Дирака показали, что элементарные ча­стицы оказались совсем не элементарными. Эта факти­чески сложная многоэлементная система многих тел, ко­торая обнаруживает в себе все те структурные взаимосвя­зи, какие характерны для молекулы или любого объекта подобного рода.

В нашу задачу не входит подробный анализ величай­ших достижений естествознания неклассического перио­да. Укажем лишь некоторые важнейшие философско-методологические выводы из них.

1. Возрастание роли философии в развитии естествозна­ния и других наук.

В центре научных дискуссий в естествознании конца XIX — начала XX в. оказались философские категории материи, движения, пространства, времени, противоре­чия, детерминизма, причинности и другие, то или иное понимание которых определяло понимание специально-научных проблем.

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения.

В конце XIX — начале XX в. начался переход к новому типу рациональности, который исходил из того, что по­знающий субъект не отделен от предметного мира, а на­ходится внутри него. Мир раскрывает свои структуры и закономерности благодаря активной деятельности челове­ка в этом мире. Только тогда, когда объекты включены в человеческую деятельность, мы может познать их сущностные связи. В. Гейзенберг был первым, кто произнес фра­зу о том, что в общем случае разделение субъекта и объек­та его наблюдения невозможно. Формирование отчетли­вой философской позиции современного рационализма на­чалось именно с квантовой механики, давшей первые на­глядные и неопровержимые доказательства о включенно­сти человека в качестве активного элемента в единый ми­ровой эволюционный процесс.

После работ Вернадского создавалась реальная возмож­ность нарисовать всю грандиозную картину мироздания как единого процесса самоорганизации от микромира до че­ловека и Вселенной. И она нам представляется совсем по-новому и совсем не так, как она рисовалась классическим рационализмом. Вселенная — это не механизм, од­нажды заведенный Внешним Разумом, судьба которого оп­ределена раз и навсегда, а непрерывно развивающаяся и самоорганизующаяся система. А человек не просто актив­ный внутренний наблюдатель, а действующий элемент системы.

3. Укрепление и расширение идеи единства природы, по­вышение роли целостного и субстанциального подходов.

Хронологически период классического естествознания начинается с научной революции 16-17 вв. и завершается на рубеже 19-20 вв.

Основные методологические ориентации классического естествознания:

1) Догматическая интерпретация истины в ее абсолютно завершенном и не зависящем от условий познания виде.

2) Установка на однозначное причинно-следственное описание событий и явлений, исключающее учет случайных и вероятных факторов, которые оценивались как результат неполноты знания и субъективных привнесений в его содержание.

3) Зависимость научного знания только от объекта познания, исключение из контекста естествознания всех субъективных компонентов познания, а также характерных для него условий и средств осуществления познавательных действий.

4) Интерпретация любых предметов научного познания как простых механических систем, подчиняющихся требованиям неизменности своих основных характеристик.

В свою очередь классический период можно разделить на два этапа:

- этап механистического естествознания (до 1830-х гг.);

- этап зарождения и формирования эволюционных идей в естествознании (с 1830-х гг. до рубежа 19-20 вв.).

Этап механистического естествознания

Лидирующее положение на этом этапе принадлежало физике, и, прежде всего, классической механике. В ее русле происходило формирование и развертывание основного понятийного аппарата, методологического инструментария для специальных исследований. Успехи механики, являвшейся в то время единственной математизированной областью естествознания, в немалой степени способствовали утверждению ее методов и принципов познания в качестве эталонов научного исследования природы.

Доминирование механики в системе научного знания той эпохи обусловило ряд особенностей стиля мышления классической науки. Объяснение сводилось к поиску механических причин и носителей сил, детерминирующих изучаемые явления, а обоснование предполагало сведение знания из любой области естественнонаучного исследования к фундаментальным принципам и идеям классической механики. Идеалом построения научного знания служили закономерности динамического типа. Исследовательские программы классического естествознания, заданные механической картиной мира, позволяли осваивать в качестве объектов познания лишь малые системы, включавшие в свой состав сравнительно небольшое количество элементов. В силу этого важнейшим методом специальных научных исследований выступал анализ – математический анализ в физике, количественный анализ в химии и т.д.

Начало формированию методологии классического естествознания было положено еще Г. Галилеем. По его мнению, исходным пунктом познания является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание.

1) проведение опытов в форме наблюдений и экспериментов;

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

2) вычленение посредством индукции в чистом виде отдельных сторон естественного процесса;

3) выявление управляющих этими процессами фундаментальных закономерностей и принципов;

4) осуществление математического выражения этих принципов, т.е. математическая формулировка взаимосвязи естественных процессов;

5) построение целостной теоретической системы путем дедуктивного развертывания фундаментальных принципов;

6) использование теоретических знаний на практике.

В результате синтеза знаний на основе вышеуказанных установок сформировалась механическая картина мира, основное содержание которой составляли следующие постулаты:

1) Весь мир представляет собой совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту.

2) Все события и процессы жестко детерминированы законами классической механики.

4) Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Пространство и время – арена движущихся тел, свойства которых неизменны и независимы от самих тел.

До середины 19 в. механическая картина мира выступала в роли общенаучной картины мира, оказывая существенное влияние и на исследовательские стратегии в других отраслях естествознания, прежде всего в химии и биологии. Успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. Поэтому к началу 19 в. механика прямо отождествлялась с естествознанием. Ее задачи и сфера применения казались безграничными.

Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые трудно было согласовать с принципами механической картины мира. В итоге к середине 19 в. она утеряла свой универсальный характер.

Во второй половине 19 в. французский химик Антуан Лавуазье предложил новую теорию, суть которой состоит в следующем:

- никакой особой субстанции в виде флогистона не существует;

- химические элементы – это простые вещества, которые не разлагаются в химических процессах;

Этап зарождения и формирования эволюционных идей в естествознании

Данный этап был связан в значительной степени с появлением дисциплинарно-организованной науки. Механическая картина мира окончательно потеряла статус общенаучной. С развитием специализированных отраслей естественнонаучного исследования произошли значительные изменения в методологии естествознания.

Подрыв механической картины мира шел, главным образом, с двух сторон: со стороны самой физики, и со стороны биологии и геологии.

Изменения в физике связаны с исследованиями в области электрического и магнитного полей. В 1820 год датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции – возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля. В 1864 г. английский физик Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла.

В результате данных открытий материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (Ампера, Ома, Био-Савара-Лапласа). Поскольку электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания – не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.

Однако главную роль в падении механистически-метафизического естествознания сыграли три научных открытия, совершенных в 1830-1850-е гг.:

1) клеточная теория (М. Шлейден, Т. Шванн) – доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ;

3) эволюционная теория Ч. Дарвина – все растительные и животные организмы, а также человек, являются результатом длительного естественного развития органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли из неживой природы.

Вместе с тем и на этом этапе сохранялся присущий классическому естествознанию объективизм. Достижения эволюционизма 19 в. лишь дополняли, но не отвергали классический подход к проблемам естествознания.

Гост

ГОСТ

Становление классического естествознания

Классическое естествознание по сути это и есть исходная точка отсчёта становления естествознания как научной дисциплины. Хронологически этот период начинается в 16 веке и завершается к середине 19 века. Становлению классического естествознания предшествует эпоха Возрождения, которая как раз заканчивается к 16 веку, с идеями натурфилософии. В это время происходит радикальная трансформация взглядов учёного сообщества на окружающий мир. Что же послужило предпосылками для столь кардинальных изменений?

Во-первых, это бурный рост городов, во-вторых, переход от феодализма к капитализму, а также активное развитие промышленности, естественно не обошлось и без локальных военных конфликтов, таких как 30 летняя война, война за испанское наследство. Битвы проходили как на земле, так и на воде. Как следствие более активная деятельность человека потребовала новых открытий, технологических решений, расширения горизонтов познания, выявление причин, закономерностей, усилило внимание к методам познания. Случилось, правда, всё не в одночасье.

Этапы становления классического естествознания

В своём становлении классическое естествознание прошло несколько этапов, а именно:

  • доньютоновский этап приходится на эпоху Возрождения. Коперник выдвигает свою гипотезу о гелиоцентрическом учении. Итак, в центре Вселенной находится не Земля, как считалось ранее, а Солнце. Мало того, что это была революционная идея, повлиявшая на представление о мире в целом и месте человека в нем, так она ещё и пошатнула религиозную картину мира. Однако Коперник в своих взглядах придерживалась концепции конечности Вселенной, немногим позже несостоятельность этой идеи была доказана Дж. Бруно, утверждавшего, что Вселенная бесконечна
  • ньютоновский этап, это собственно механика Ньютона с тремя законами, а также принцип относительности Галилея. В законах Ньютона речь шла о движении, а точнее о силе, которая способна изменить скорость предмета, движущегося равномерно в определённом направлении. Галилей в своей работе, по сути, продолжил развивать мысль Ньютона, он также размышлял о движении. Однако основывался он на опыте, который, по его мнению, должен быть пропущен через теорию. Механические явления, по Галилею, протекают одинаково не зависимо от системы отсчёта. Именно работы Ньютона и Галилея послужили основой дальнейшего развития не только физики, но и всего научного естествознания в целом.

Готовые работы на аналогичную тему

По сути, в классический период естествознания именно физика как научная дисциплина выступала эталоном научного знания, картина мира, построенная на основе механической модели, считалась единственно верной.

Отличительные черты классического естествознания

Естествознание того периода занималось исследованиями объектов на макроуровне и соответственно все законы и открытия, которые были совершены, так же распространялись на объекты макроуровня. Эти объекты зачастую были теоретизированны, но им всегда можно сопоставить объекты реального материального мира или области природных явлений.

Классическое естествознание во многом опиралось на опыт, в основе которого в свою очередь лежало наблюдение. Затем на основе полученных данных строились практические модели, в случае, если это было невозможно, выдвигались предположения о механической природе явления, и модель строилась аналогично.

Наука того времени при изучении объекта старалась полностью устранить субъект из процесса, поскольку это был необходимо для получения истинных знаний о предмете исследования. Человек как познающий элемент системы полностью исключался. Мир должен быть познан так, как, если бы в нём не существовало сознания, только в этом случае, возможно, получить достоверный результат.

Научные обоснования носили причинно-следственный характер и были строго определены (детерминированы), например, это означает, что если нам известно положение объекта в определённый момент, мы можем предсказать его положение через определённый промежуток времени.

Считалось, что наука единственная может точно и истинно объяснить природные явления, дать им обоснование и в итоге постичь тайны природы. Научное знание рассматривалось как дополнение истин к уже имеющимся, а не смена или уточнение теоретических положений. Научные теории строились как отражение природы, и так, чтобы каждому природному явлению соответствовала одна теория и какой-либо объект материального мира, с тем, чтобы его можно было исследовать опытным путём. Классическое естествознание было ориентировано на экспериментальное обоснование научных теорий.

Итак, подведём итог, за три столетия классическое естествознание претерпело значительные изменения, сформировавшись в отдельную научную дисциплину, целью которого было объяснить окружающий мир. В то время считалось, что природные законы нельзя изменить, а учёным могут лишь постигать всё новые и новые истины мира и Вселенной. В конце 19 века сложилось мнение, что в науке уже всё открыто и учёные смогли найти реальное обоснование почти всем явлениям природы.

Читайте также: