Кибернетика в биологии реферат

Обновлено: 05.07.2024

Кибернетика биологическая, биокибернетика, научное направление, связанное с проникновением идей, методов и технических средств кибернетики в биологию. Зарождение и развитие кибернетика биологическая связаны с эволюцией представления об обратной связи в живой системе и попытками моделирования особенностей ее строения и функционирования (П.К. Анохин, Н.А. Бернштейн и др.). Эффективность математического и системного подходов к исследованию живого показали и многие работы в области общей биологии (Д.Ж. Холдейн, Э.С. Бауэр, Р. Фишер, И.И. Шмальгаузен и др.). Процесс "кибернетизации" биологии осуществляется как в теоретической, так и в прикладной областях. Основная теоретическая задача кибернетика биологическая - изучение общих закономерностей управления, а также хранения, переработки и передачи информации в живых системах.

Всякий организм - это система, способная к саморазвитию и управлению как внутренними взаимосвязями между органами и функциями, так и соотношениями с факторами среды. Стремясь понять природу живого, ученые часто старались отыскать в организме то, что можно было исследовать изолированно. Цель кибернетика биологическая - изучение организма с учетом основных взаимосвязей начиная с клеточного, тканевого, органного уровня и кончая организменным. Живая система характеризуется не только обменом вещества и энергии, но и обменом информации. Кибернетика биологическая рассматривает сложные биологические системы во взаимодействии со средой именно с точки зрения теории информации.

Одним из важнейших методов кибернетика биологическая является моделирование структуры и закономерностей поведения живой системы; оно включает конструирование искусственных систем, воспроизводящих определенные стороны деятельности организмов, их внутренние связи и отношения. Под моделированием понимается процесс разработки математического описания объекта. Известны, например, модели системы кровообращения Гайтона, модель терморегуляции Столвийка и др. Созданы модели практически всех физиологических систем организма, многих патологических процессов, модели экологических систем, поведения человеческих популяций и систем охраны здоровья.

Кроме того, термин "моделирование" означает процесс исследования системы с помощью математических моделей (эквивалентным по содержанию является понятие вычислительного эксперимента). Сущность вычислительного эксперимента состоит в том, что с помощью ЭВМ многократно решают математические уравнения, описывающие свойства биологического объекта в различных условиях и его реакции на внешние воздействия, а результаты различных вариантов решения представляются в удобном для исследователя виде. Полученные в результате вычислительных экспериментов данные анализируются специалистами точно так же, как и результаты обычных медико-биологических экспериментов.

Кибернетика в биологии это применение методов и средств кибернетики для изучения живых организмов, моделирования их функций, а также для создания устройств, поддерживающих нормальную работу организма.
Представим, что какая-то колония живых организмов обитает в благоприятных условиях. В зависимости от рождаемости и смертности число этих организмов будет меняться.

Работа состоит из 1 файл

Биокибернетика.docx

Кибернетика в биологии это применение методов и средств кибернетики для изучения живых организмов, моделирования их функций, а также для создания устройств, поддерживающих нормальную работу организма.

Представим, что какая-то колония живых организмов обитает в благоприятных условиях. В зависимости от рождаемости и смертности число этих организмов будет меняться. А как? По какому закону? Ведь на рождаемость влияет и недостаток пищи, и притеснение со стороны другого биологического вида, и продолжительность жизни, и многие другие факторы. Ученые построили так называемые абстрактные модели и с их помощью установили точные закономерности развития организмов и при неограниченных ресурсах питания и места, в условиях, когда отсутствуют вредные виды, и при условиях голода, недостатка места для жилья, и при истреблении со стороны врагов.

Такая модель помогла, например, выращивать грибки пенициллина. Их неограниченно подкармливали, следили, чтобы им не было тесно, оберегали от вредных видов. А будущий урожай совершенно точно предсказывали по специальной формуле.

Как видите, моделирование биологических процессов помогает разбираться в сложной системе связей между видами живых организмов, помогает решать проблемы в довольно широкой области биологических явлений.

Последние годы внимание ученых привлекла проблема возникновения жизни, механизмы биоэволюции, процессы биоэнергетики, информационное обеспечение вопросов охраны окружающей среды, особенно в промышленных зонах.

Одна из старейших наук, биология, зародившаяся как наука описательная и экспериментальная, смело взяла на вооружение самое современное из арсенала научных средств: методы абстрактного анализа, отвлеченных, умозрительных рассуждений, точный расчет.

Новая биология стремительно развивается благодаря многообещающим открытиям в молекулярной биологии, в биохимии, в биофизике, в цитологии, в генетике, благодаря возникновению в ней новых, неожиданных направлений - биостатистики, ,биоматематики, теории систем.

Помимо теоретических исследований, кибернетика в биологии занимается и практическими работами. Вот несколько примеров. С помощью специальных уравнений описывают, как протекает фотосинтез растений. Ученые разрабатывают математические модели процессов видообразования и селекции. Вычислительные машины дали возможность исследователям без долгих поисков синтезировать питательную среду, в которой исходные ткани растений превращаются в колонию одноклеточных организмов. Компьютер формирует структуру своеобразного сита, позволяющего сохранять в пробирке только те клетки, что дадут жизнестойкое и высокопродуктивное потомство определенной сельскохозяйственной культуры. Применение вычислительной техники в десятки раз ускоряет изыскания в селекции и сокращает путь к новому сорту.

Многое дала кибернетика медицине. Так, найдя для биологического объекта нужную, удачную, удобную модель, можно эксперимент, который часто приводит к гибели животного или связан с риском для здоровья человека, заменить расчетом на вычислительной машине. Математические модели в течение нескольких минут покажут, как будет развиваться болезнь у больного, как подействует на организм то или другое лекарство.

Даже мельчайшие изменения в тканях органа, которые трудно заметить с помощью микроскопа, обнаруживает электронный анализатор. Специальная система электронных блоков, снабженных оптическим устройством, рассматривает образец исследуемой ткани - тонкий срез (гистологическую пробу). Анализатор описывает его цифровыми обозначениями и соответствующими графиками. По этим данным экспериментатор делает заключение о состоянии ткани.

Существуют не только рентгеновские, но и эмиссионные (спектральные), ультразвуковые томографы. Томограф, использующий явление ядерно-магнитного резонанса, еще более зорок. С его помощью можно увидеть работающий мозг, его тонкие структуры. Цифровая субтрактивная ангиография позволяет видеть кровоток, сонография - вести компьютеризованное ультразвуковое обследование. Благодаря новой аппаратуре удается проследить за распределением отдельных веществ в тканях - вплотную подойти к изучению обмена веществ в организме. Новая диагностика безвредна для организма и дает огромный объем диагностической информации.

Построены медицинские диагностические системы, с помощью которых врачи ставят диагноз пороков сердца, заболеваний печени, желудка, некоторых инфекционных болезней, различных опухолей, в том числе опухолей мозга, инфаркта миокарда с прогнозом течения этого заболевания.

Сегодня мировая фармацевтическая промышленность выпускает сотни тысяч препаратов. Специальные банки данных о лекарствах помогают не только разобраться в обширном хозяйстве, но и с максимальной точностью определять дозировку лекарств в самых сложных случаях.

Большую пользу приносят медицине информационно-поисковые системы: они накапливают сведения, математически обрабатывают материал, быстро отыскивают аналогичные случаи болезни.

Компьютер используют и в самом процессе лечения. Вычислительные машины теперь проникли и в операционную. Они управляют жизненными функциями организма: следят за работой сердца, регулируют артериальное давление крови, контролируют глубину наркоза.

Живые существа объединяются в системы разного порядка (популяции (См. Популяция), Биоценозы и т.д.), образуя своеобразную иерархию живых систем. Во всех этих надорганизменных системах, как и в жизни клетки, развитии организма, эволюции органического мира в целом, имеются внутренние механизмы регуляции, для изучения которых также применимы принципы и методы К. б.

Механизмы управления определяют течение жизненных процессов не только в норме, но и в патологии (см. Кибернетика медицинская). Клетка — сложная саморегулирующаяся система. Она обладает многими регуляторными механизмами, одним из которых являются колебания её структуры, связанные с деятельностью Митохондрии и совпадающие с колебаниями окислительно-восстановительных процессов. Синтез белков (См. Белки) в клетке управляется генетически детерминированными механизмами, связанными с процессами хранения, переработки и передачи генетической информации (См. Генетическая информация). Изучение жизнедеятельности организма в целом и его разных функций, а также механизмов, управляющих работой отдельных органов и систем — это та область, где К. б. оказалась наиболее результативной. В связи с этим сформировались самостоятельные направления — физиологическая кибернетика и нейрокибернетика, изучающие механизмы поддержания Гомеостаза; принципы саморегуляции функций организма и протекания в нем переходных процессов; закономерности нервной и гуморальной регуляции в их единстве и взаимодействии; принципы организации и функционирования нейронов и нервных сетей; механизмы осуществления актов поведения и др. проблемы. Изучая закономерности работы человеческого мозга, в основе которой лежит комплекс алгоритмов, т. е. правил преобразования информации, К. б. позволяет моделировать (в том числе и на ЭВМ) различные формы работы мозга, выявляя при этом новые закономерности его деятельности. Созданы, например, программы для ЭВМ, обеспечивающие возможность обучения, игры в шахматы, доказательства теорем и др. Развивается так называемое эвристическое программирование, когда исследуют и моделируют правила обработки информации в мозге при тех или иных творческих процессах.

Анализ механизмов индивидуального развития и процессов управления в популяциях и сообществах, включающих хранение, переработку и передачу информации от особи к особи, — также сфера исследований К. б. На уровне биогеоценозов, включая и биосферу (См. Биосфера) в целом, К. б. пытается использовать метод моделирования для целей оптимизации биосферы, в частности для определения путей наиболее рационального вмешательства человека в жизнь природы.

Вопросы эволюции с позиций К. б. были впервые рассмотрены И. И. Шмальгаузеном, который отметил иерархичность управления, выделил основные каналы связи между особями, популяцией и биоценозом, определил возможности потери информации и ее искажений и описал эволюционный процесс в терминах теории информации. С этих же позиций исследуются механизмы различных форм отбора.

Примером применения К. б. в прикладных целях может служить создание устройств для автоматического управления биологическими функциями (так называемое биопротезирование), автоматических устройств для оценки состояния человека во время трудовой или спортивной деятельности, при творческой работе, в субэкстремальных и экстремальных условиях.

Использование методов и средств кибернетики для сбора хранения и переработки информации получаемой в ходе биологических исследований позволяет вскрывать новые количественные и качественные закономерности изучаемых процессов и явлений.

Большую роль в деле развития К. б. в СССР сыграли конференции совещания и симпозиумы по биологическим аспектам кибернетики по биоэлектрическому управлению, нейрокибернетике. Вопросы К. б. освещаются в ряде советских и зарубежных журналов.

Лит.: Анохин П. К., Физиология и кибернетика, в кн.: Философские вопросы кибернетики, М., 1961; Биологические аспекты кибернетики. Сб. работ, М., 1962; Эшби У. Р., Конструкция мозга, пер. с англ., М., 1962; Джордж Ф., Мозг как вычислительная машина, пер. с англ., М., 1963; Винер Н., Кибернетика, или Управление и связь в животном и машине, пер. с англ., М.,1968; Бернштейн Н. А., Очерки по физиологии движений и физиологии активности, М., 1966; Анохин П. К. [и др.], Биологическая и медицинская кибернетика, в кн.: Кибернетику — на службу коммунизму, т.5, М., 1967; Брайнес C. Н., Свечинский В. Б., Проблемы нейрокибернетики и нейробионики, М., 1968; Шмальгаузен И. И., Кибернетические вопросы биологии, Новосибирск, 1968; Ларин В. В., Баевский Р. М., Геллер Е. С., Процессы управления в живом организме, в кн.: Философские вопросы биокибернетики, М., 1969; Аптер М., Кибернетика и развитие, пер. с англ., М., 1970; Hassenstein B., Biologische Kybernetik, Hdlb., 1970.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Фото: Shutterstock

Что такое кибернетика?

Кибернетика — это междисциплинарная наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество. Это попытка ученых создать общую математическую теорию управления сложными системами, совместить на первый взгляд несовместимое и найти общность там, где ее не может быть.

Уникальность его идей в том, что он показал: животные, как и машины, могут быть включены в более обширный класс объектов, отличительной особенностью которого является наличие систем управления.

Академик Виктор Глушков — ключевая фигура советской кибернетики

Основные принципы кибернетики

Закон обратной связи заключается в простом факте: если есть объект управления и субъект управления, то для выработки адекватных управляющих воздействий, имея информацию о состоянии объекта, субъект может принимать адекватное решение по его управлению. То есть манипулируя входными сигналами, мы можем наблюдать некий результат работы системы на выходе. При этом принципы и законы кибернетики одинаково применимы к управлению автомобилем, крупным предприятием, поведением толпы или бионическим протезом.

Одно из важнейших достижений кибернетики — разработка и широкое использование метода математического моделирования. Он позволяет проводить эксперименты не с реальными физическими моделями изучаемых объектов, а с их математическим описанием в виде компьютерных программ.

Сферы кибернетики

Хоть и считается, что как наука кибернетика сегодня предана забвению, она успела породить много направлений:

  • искусственный интеллект;
  • медицинская кибернетика;
  • биологическая кибернетика;
  • инженерная кибернетика;
  • спортивная кибернетика;
  • экономическая кибернетика;
  • социальная кибернетика;
  • правовая кибернетика и другие.

Искусственный интеллект

Как отдельное направление исследований искусственный интеллект (ИИ) возник в середине XX века, в попытке понять организацию работы мозга с помощью математических методов.

Искусственный интеллект определяют как научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования интеллектуальных видов человеческой деятельности. Кроме этого под ИИ понимают свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека.

Решения на основе искусственного интеллекта сегодня внедряются во все сферы нашей жизни: медицина, образование, политика, сельское хозяйство, банки, безопасность и другие.

Другая сфера, которая тесно связана с ИИ — робототехника.

Фото:Сергей Бобылев / ТАСС

Медицинская кибернетика

Медицинская кибернетика — это междисциплинарное научное направление, связанное с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении. Медицина стала одной из тех сфер, наряду с робототехникой и компьютерными технологиями, где кибернетика получила большое распространение.

Врачи-кибернетики работают в тесном содружестве с врачами-клиницистами (терапевтами, хирургами, реаниматологами, неврологами, реабилитологами и так далее), физиологами, биохимиками, математиками, инженерами и другими специалистами.

В России как специальность высшего медицинского образования появилась в 1974 году.

Чем занимается медицинская кибернетика:

  • Разработка медицинских информационных технологий — единая государственная система здравоохранения, электронные медицинские карты и рецепты, телемедицина.
  • Развитие искусственного интеллекта в медицине позволяет осуществлять диагностику с помощью компьютерных технологий, прогнозировать состояние пациентов, автоматически расшифровывать специализированные медицинские снимки и изображения.
  • Внедрение сложных компьютеризированных комплексов — томографы, ангиографы, системы визуализации и радиоизотопные системы, системы лазерной микрохирургии и другие. А также создание портативных, комфортных и индивидуальных приборов, которые объективно оценивают показатели пациента и передают их в реальном времени в аналитические центры.
  • Исследования в области биологии и медицины — клиническая биоинформатика, 3D-моделирование лекарственных средств, исследование лекарств и лекарственного взаимодействия на молекулярном уровне.
  • Математическое моделирование физиологических процессов, эпидемий и др.

Кибернетическая биология

Кибернетическая биология изучает кибернетические системы в биологических организмах с упором на то, как животные адаптируются к окружающей среде и как информация в форме генов передается от поколения к поколению.


Основные направления кибернетической биологии:

Инженерная кибернетика

Инженерная кибернетика — междисциплинарное исследование и автоматическое управление техническими динамическими системами, такими как роботы, самолеты, морские суда, автомобильные системы и технологические установки.

Одно из направлений — разработка и создание автоматических устройств: технологических, измерительных (различные датчики, регистраторы, измерительные комплексы) и информационных.

Спортивная кибернетика

Спортивная кибернетика — научный подход к мониторингу физиологии игроков, оценки их психологического состояния, а также к изучению и разработке стратегии и тактики игр для командных видов спорта.

Одним из первых математические методы и принципы кибернетики в спорте применил кандидат биологических наук, доцент Валентин Петровский, преподаватель кафедры легкой атлетики Киевского физкультурного института и тренер-новатор. В 1960 годах Петровский рассчитал математическую модель тренировок для спортсмена Валерия Борзова, который стал чемпионом мира по легкой атлетике.

Команда киевского «Динамо» с завоеванным Суперкубком УЕФА, 1975 год

В 2017 году в России была создана Ассоциация компьютерных наук в спорте, объединившая ученых, в том числе математиков, физиологов, психологов, биомехаников, а также ИТ-специалистов, тренеров и спортивных врачей.

Экономическая кибернетика

Экономическая кибернетика — об­ласть нау­ки, которая изучает дви­же­ние ин­фор­ма­ции в эко­но­ми­ке и ее влия­ние на эко­но­мические про­цес­сы с учетом обратной связи. Воз­ник­ла на сты­ке ма­те­ма­ти­ки и ки­бер­не­ти­ки с эко­но­ми­кой и включает в себя ма­те­ма­ти­че­ское про­грам­ми­ро­ва­ние, ис­сле­до­ва­ние опе­ра­ций, эко­но­ми­ко-ма­те­ма­ти­че­ские мо­де­ли, эко­но­мет­ри­ку и ма­те­ма­ти­че­скую эко­но­мию.

В ка­че­ст­ве са­мо­сто­ятельного на­учного на­прав­ле­ния экономическая кибернетика поя­ви­лась в конце 1950 годов. Основателем экономической кибернетики считается британский теоретик и практик в области исследования операций Стаффорд Бир. С того времени она диф­фе­рен­ци­ро­ва­лась на мно­же­ст­во са­мо­сто­ятельных на­прав­ле­ний: сис­те­му ис­кус­ст­вен­но­го ин­тел­лек­та для под­держ­ки биз­нес-ре­ше­ний, тео­рию про­ек­ти­ро­ва­ния эко­но­мических ме­ха­низ­мов (кон­кур­сов, аук­цио­нов и так далее) и ор­га­ни­за­ций, ис­сле­до­ва­ния рын­ков ин­фор­ма­ции, а также ме­недж­мент зна­ний.

Cybersyn — проект централизованного компьютерного управления плановой экономикой в Чили в 1970–1973 годах под руководством кибернетика Стаффорда Бира.

Бир использовал для анализа экономики Чили модели жизнеспособной системы (viable system model), основанную на принципах нервной системы человека. Он критиковал иерархический процесс принятия решений, когда управление осуществляется директивно при накоплении статичных данных. Вместо этого он предложил закольцевать процесс принятия решений, расположив между правительством и производствами специальный аппарат управления. Этот аппарат должен собирать и передавать информацию от работников руководству, контролировать и обеспечивать выполнение распоряжений, поддерживать саморегуляцию всей системы за счет распределения выделенных ресурсов относительно потребностей. Гибкость процесса управления гарантировала постоянная обратная связь. А ключевыми элементами становились коммуникация, адаптация и действие.

Ситуационный центр Cybersyn

В 1973 году военные во главе с генералом Аугусто Пиночетом совершили переворот в Чили. Отказавшись от идей плановой системы свергнутого президента-социалиста Сальвадора Альенде, они закрыли проект Cybersyn.

Общегосударственная Автоматизированная Система сбора и обработки информации для учета, планирования и управлении народным хозяйством СССР — одна из первых глобальных сетей в мире для управления экономикой государства. Создавалась и разрабатывалась под руководством академика и кибернетика Виктора Глушкова в 1960–1980-х годах.

Целью ОГАС должен был стать перевод всего документооборота страны в электронный, безбумажный вид, возможность управления экономикой в том числе в режиме реального времени, оптимизация технологических, экономических и организационных процессов, реорганизация управления, создание индустрии информационных технологий. В первоначальном проекте предполагалась даже отмена бумажных денег и замена их электронными платежами.

Частично проект реализован в 1968 году как Автоматическая система плановых расчетов (АСПР), которая просуществовала до 1994 года. По некоторым данным, при переходе на новые компьютеры, комплекс программ АСПР и банк данных, хранившиеся на ЕС ЭВМ, просто не перенесли на новые носители.

Социальная кибернетика

Социальная кибернетика — раздел в социологии, основанный на общей теории систем и кибернетике. Задача ее состоит в том, чтобы изучить закономерности самоорганизующейся общественной системы и создать оптимальную модель управления социальными процессами.

В реальном мире социальная кибернетика применима для лучшего понимания поведения толпы, в том числе во время беспорядков, а также причин их формирования и способов их предотвращения.

В 2006 году Международная социологическая ассоциация утвердила премию имени Уолтера Бакли за выдающиеся достижения в области социокибернетики.

Правовая кибернетика

Правовая кибернетика — научные исследования в сфере закономерностей оптимального функционирования государственно-правовых систем. Она решает задачи автоматизации юридической деятельности и ее отдельных видов. Сегодня правовая кибернетика активно используется для понимания различных законов и нормативных актов и того, как они могут применяться или не применяться в отдельных случаях.

Будущее кибернетики

Ожидания от кибернетики как научной дисциплины, которая сотворит революцию в обществе, в середине XX века были очень велики, но не все они смогли оправдаться. По мнению ученых, это произошло не из-за ограничений самой науки, а ограниченности специалистов, не сумевших реализовать потенциал кибернетических идей из-за их технологической и экономической несвоевременности. Спустя 70 лет у кибернетики есть все шансы реабилитироваться. Сегодня мы живем во времена, когда вычислительные возможности кажутся безграничными. Уже сейчас правительства и компании соревнуются, чтобы использовать преимуществами инноваций.

Доктор биологических наук, профессор физического факультета и ведущий сотрудник Центра нейротехнологий ЮФУ Борис Владимирский считает, что интеграция мозга и кибернетики приведет к созданию виртуальной доли человеческого мозга. Она будет служить не только для распознавания образов или решения логических задач. Но и сообщать информацию, предлагать варианты разумного взаимодействия, отвечать на вопросы, а порой и задавать их.

Читайте также: