Кибернетика и робототехника реферат

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Кибернетика и ее виды

Кибернетика как наука 4

Значение кибернетики 5

Электронно-вычислительные машины и персональные компьютеры 6

Моделирование систем 7

Сферы использования кибернетики 8

Системный анализ и теория систем 10

Теория автоматического управления 11

Экономическая кибернетика 11

Молекулярная кибернетика 12

Список использованной литературы 14

Кибернетика как наука

Системы изучаются в кибернетике по их реакциям на внешние воздействия, другими словами, по тем функциям, которые они выполняют. Наряду с вещественным и структурным подходом, кибернетика ввела в научный обиход функциональный подход как еще один вариант системного подхода в широком смысле слова.

Энергия (от греческого energeia - деятельность) характеризует общую меру различных видов движения и взаимодействия в формах: механической, тепловой, электромагнитной, химической, гравитационной, ядерной. Точность сигнала, передающего информацию, не зависит от количества энергии, которая используется для передачи сигнала.

Значение кибернетики

Общее значение кибернетики обозначается в следующих направлениях:

Философское значение, поскольку кибернетика дает новое представление о мире, основанное на роли связи, управления, информации, организованности, обратной связи и вероятности.

Социальное значение, поскольку кибернетика дает новое представление об обществе, как организованном целом. О пользе кибернетики для изучения общества не мало было сказано уже в момент возникновения этой науки.

Методологическое значение кибернетики определяется тем, что изучение функционирования более простых технических систем используется для выдвижения гипотез о механизме работы качественно более сложных систем с целью познания происходящих в них процессов - воспроизводства жизни, обучения и так далее.

Наиболее известно техническое значение кибернетики - создание на основе кибернетических принципов ЭВМ, роботов, ПЭВМ, породившее тенденцию кибернетизации и информатизации не только научного познания, но и всех сфер жизни.

Электронно-вычислительные машины и персональные компьютеры

Введенное чуть позже в кибернетике понятие самообучающихся машин аналогично воспроизводству живых систем. И то, и другое есть созидание себя, возможное в отношении машин, как и живых систем. Обучение онтогенетически есть то же, что и само воспроизводство филогенетически.

Такова гипотеза воспроизводства Винера, которая позволяет предложить единый механизм само воспроизводства для живых и неживых систем.

Современные ЭВМ значительно превосходят те, которые появились на заре кибернетики. Еще 10 лет назад специалисты сомневались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, но теперь он почти на равных сражается с чемпионом мира. То, что машина чуть не выиграла у Каспарова за счет громадной скорости перебора вариантов (100 миллионов в секунду против двух у человека), остро ставит вопрос не только о возможностях ЭВМ, но и о том, что такое человеческий разум.

Предполагалось два десятилетия назад, что ЭВМ будут с годами все более мощными и массивными, но вопреки прогнозам крупнейших ученых, были созданы персональные компьютеры, которые стали повсеместным атрибутом нашей жизни. В перспективе нас ждет всеобщая компьютеризация и создание человекоподобных роботов.

Моделирование систем

Благодаря кибернетике и созданию ЭВМ одним из основных способов познания, наравне с наблюдением и экспериментом, стал метод моделирования. Применяемые модели становятся все более масштабными: от моделей функционирования предприятия и экономической отрасли до комплексных моделей управления биогеоценозами, эколого-экономических моделей рационального природоиспользования в пределах целых регионов, до глобальных моделей.

Простираясь на изучение все более сложных систем, метод моделирования становится необходимым средством, как познания, так и преобразования действительности. В настоящее время можно говорить как об одной из основных, о преобразовательной функции моделирования, выполняя которую оно вносит прямой вклад в оптимизацию сложных систем. Преобразовательная функция моделирования способствует уточнению целей и средств реконструкции реальности. Свойственная моделированию трансляционная функция способствует синтезу знаний - задаче, имеющей первостепенное значение на современном этапе изучения мира.

Прогресс в области моделирования следует ожидать не на пути противопоставления одних типов моделей другим, а на основе их синтеза. Универсальный характер моделирования на ЭВМ дает возможность синтеза самых разнообразных знаний, а свойственный моделированию на ЭВМ функциональный подход служит целям управления сложными системами.

Сферы использования кибернетики

В нашей стране кибернетика как наука о наиболее общих законах управления начала интенсивно развиваться примерно с 1955 года. Большую роль в этот период становления кибернетики сыграли ученые А.А.Ляпунов 4 и В.М.Глушков 5 .

А.А.Ляпунов дает следующее определение: "Кибернетика - это наука об общих закономерностях строения управляющих систем и течения процессов управления. Она изучает процессы хранения, передачи, переработки и восприятия информации".

Большое влияние на развитие кибернетики в СССР оказывал академик В.М.Глушков, работавший в основном в области теории цифровых автоматов, формальных языков, искусственного интеллекта. Ему же принадлежит идея создания первых автоматизированных систем управления предприятия (АСУП) "Кунцево", "Львов", а также общегосударственной автоматизированной системы управления (ОГАС).

Данное им определение кибернетики, вошедшее в Советскую энциклопедию и ряд энциклопедий других стран, выглядит следующим образом: "Кибернетика - это наука об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах". Следует отметить, что это определение раскрывает только теоретическую сторону исследований. В.М.Глушков вместе с тем отмечал, что кибернетика, как и физика, подразделяется на теоретическую и прикладную.

Основными категориями методами теоретической кибернетики являются следующие понятия: "сложная система", "междисциплинарность", "межсистемный изоморфизм", "черный ящик", "управление", "обратная связь", наблюдатель", "гомеостаз", "внешнее дополнение", "принцип необходимого разнообразия". В сочетании с обще познавательными методами "классификация", "обобщение", "абстрагирование", "анализ-синтез" кибернетика добросовестно выполняет свою миссию методологии изучения сложных систем.

Области приложения кибернетики как прикладной науки также достаточно обширны, появляются направления: техническая кибернетика, экономическая кибернетика, биологическая кибернетика, медицинская кибернетика, нейрокибернетика и т.д.

Наука кибернетика изучает проблемы анализа и синтеза сложных целенаправленных систем, законы управления и вопросы построения и исследования моделей этих систем и т.д. Применительно к организационно-технологическим системам кибернетика как наука об управлении включает следующие основные направления:

системный анализ и общая теория систем;

теория автоматического управления;

теория оптимального управления экономикой;

теория выбора и принятия решений;

теория распознавания образов;

теория массового обслуживания и т.д.

Основное прикладное назначение кибернетики - проектирование автоматических, автоматизированных и интегрированных систем различного класса и назначения. При этом с точки зрения управления в организационных системах можно выделить следующие уровни предметной области кибернетики:

общегосударственная автоматизированная система сбора и обработки информации (ОГАС);

территориальные (республиканские, областные, городские, районные) автоматизированные системы обработки информации и управления (ТАСУ);

отраслевые автоматизированные системы управления (ОАСУ); автоматизированные системы управления акционерными обществами, предприятием (АСУП);

автоматизированные учрежденческие системы (АУС);

автоматизированные рабочие места руководителей (АРМ).

C точки зрения управления в технических системах выделяют обычно следующие предметные области исследования:

отдельные устройства автоматики;

гибкие производственные модули, участки производства;

автоматизированные системы управления технологическими процессами и установками;

автоматизированные системы комплексных испытаний;

автоматизированные системы научных исследований;

системы автоматизированного проектирования.

Рассмотрим кратко некоторые из направлений применения кибернетики.

Системный анализ и теория систем

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке Началом науки "Теория принятия решений" следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение "бери больше, кидай дальше" неверен. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления "Теории принятия решений":

удорожание "цены ошибки". Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;

ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться, и требовалось применение более развитого математического аппарата в проектировании;

развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические методы.

Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.

В научно-технической литературе существует ряд термином, имеющих отношение к исследованию сложных систем. Наиболее общий термин "теория систем" относится к всевозможным аспектам исследования систем. Ее основными частями являются

системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,

кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Здесь следует заметить, что понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ - совокупность процессов и процедур.

Очень близкое к термину "системный анализ" понятие - "исследование операций", которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин "исследование операций" не является чисто математическим и приближается к термину "системный анализ". Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как

постановка задач принятия решения;

описание множества альтернатив;

исследование многокритериальных задач;

методы решения задач оптимизации;

обработка экспертных оценок;

работа с макромоделями системы.

Теория автоматического управления

Теория автоматического управления - это наука, которая изучает процессы управления и проектирования автоматических систем, работающих по замкнутому циклу. Иначе говоря, она изучает любые системы с обратной связью.

Экономическая кибернетика

Современное управление сложными социально-экономическими и производственными системами в рамках рыночных отношений требует принятия решений, учитывающих влияние большого числа случайных возмущающих факторов, взаимосвязанных динамических процессов, неполноты исходной информации, множественности стратегий развития, многовариантности путей достижения конечных результатов, разнообразия оценок их эффективности. Все это обусловливает необходимость формирования у современного специалиста в области экономики системных представлений о сфере профессиональной деятельности, глубокого изучения математических методов и вычислительной техники, навыков анализа экономических проблем, постановки задач и оценки последствий альтернативных вариантов принимаемых решений с использованием моделей разных классов и эффективной компьютерной поддержки. Подобные возможности предоставляет специальность "Экономическая кибернетика". Зарубежным аналогом нашего "экономиста-математика" является "системный аналитик", специализирующийся в сфере экономики.

Молекулярная кибернетика

Еще в 60-е годы был сформулирован тезис: человечеству необходимо осознавать свою генетическую природу. Но тогда он был постулатом генетиков, а сегодня стал популярен не только среди специалистов очень широкого круга наук, вплоть до археологов, но и вообще среди людей, задумывающихся о происхождении человека, смысле жизни, будущем планеты.

Концепция молекулярно-генетических систем управления (МГСУ) возникла в середине 60-х годов как приложение идей и методов кибернетики для описания, анализа и моделирования явлений молекулярно-генетической организации. К этому времени в теоретической кибернетике были получены крупные результаты, открывшие возможность обосновать и решить эти проблемы. Дж. фон Нейман 6 разработал основы теории самовоспроизводящихся автоматов, имея ввиду проблемы и прообразы из генетики и молекулярной биологии. К.Шеннон 7 , Л.Бриллюэн 8 и др. прояснили понятие количества информации. А.Ляпунов и С.Яблонский 9 описали центральный объект кибернетики - системы управления, а И.Полетаев уточнил понимание "информации по смыслу", физических особенностей актов управления, принципа лимитирования в сложных системах. Кибернетика была активной и бурно развивавшейся наукой, приложение которой пытались найти в самых разных областях знания.

Весь опыт молекулярной генетики показывает, что наиболее существенными молекулярными компонентами клетки являются фракции кодирующих биополимеров - ДНК, РНК и белков. С ними связаны все наиболее важные процессы и свойства клеток: самовоспроизведение, наследование, транспорт веществ, развитие, иммунитет и т.д. Совокупность кодирующих биополимеров клетки обладает несколькими общими, фундаментальными свойствами, и эту систему биополимеров клетки и назвали молекулярно-генетической системой управления. При ее информационно-кибернетическом описании на первый план выходят принципы организации и управления, самовоспроизведение, информационные процессы, помехоустойчивость, кодирование, память, языки и т.п., а структурные, физико-химические свойства отходят на второй план.

Список использованной литературы

Винер Н. Кибернетика. М.: Наука, 1968.

Ершов А., Кузнецов А., Гольц Я. Основы вычислительной техники. М.: 1985.

Клаус Г. “Кибернетика и философия”, М.: Иностранная литература, 1963

Эшби У. Р. Введение в кибернетику. М., 1959.

2 Максвелл Джеймс Клерк (Clerk) (1831-79), английский физик, создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Создал теорию электромагнитного поля; ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии, оптике, теории упругости, термодинамике, истории физики и др.

3 Форрестер Джей Райт (р. 14 июля 1918, Анселмо, шт. Небраска), американский инженер-электронщик и эксперт по менеджменту. Изобрел запоминающее устройство на магнитных сердечниках, применяемое в настоящее время в большинстве цифровых компьютеров.

4 Ляпунов Алексей Андреевич (1911-73), российский математик, член-корреспондент АН СССР (1964). Труды по теории множеств, математическим вопросам кибернетики, математической лингвистике.

5 Глушков Виктор Михайлович (1923-82), математик, академик АН Украины (1961) и АН СССР (1964), Герой Социалистического Труда (1969). Организатор и первый директор Института кибернетики АН Украины (с 1962; ныне имени Глушкова). Основные труды по теоретической и прикладной кибернетике: теория цифровых автоматов, автоматизация проектирования ЭВМ, применение кибернетических методов в народном хозяйстве.

6 Нейман Джон (Янош) фон (1903-57), американский математик и физик. Родился в Будапеште, с 1930 в США. Труды по функциональному анализу, теории игр и квантовой механике. Внес большой вклад в создание первых ЭВМ и разработку методов их применения.

7 Шеннон Клод Элвуд (р. 1916), американский инженер и математик. Один из создателей математической теории информации. Основные труды по теории релейно-контактных схем, математической теории связи, кибернетике.

8 Бриллюэн Леон (1889-1969), французский физик, с 1941 в США. Труды по теории твердого тела, квантовой механике, магнетизму, радиофизике, теории информации, философии естествознания.

9 Яблонский Сергей Всеволодович (р. 1924), российский ученый, член-корреспондент РАН (1991; член-корреспондент АН СССР с 1968). Труды по математической логике и математическим вопросам кибернетики.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




Робототехника в современном мире


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Робототе́хника (от робот и техника ; англ. robotics — роботика , роботехника ) — прикладная наука , занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой развития производства.

Робототехника опирается на такие дисциплины:

Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.(Википедия)

В робототехнике соединяются механика, система управления и искусственный интеллект, поэтому она является важнейшим направлением научно-технического прогресса. Робототехнику требуются знания в вышеперечисленных дисциплинах, в результате робототехник, в отличие от узкого специалиста, обладает широким кругозором и системным мышлением.

Робот – устройство, управляемое с помощью электронной платы или компьютера, который можно запрограммировать на выполнение определенных операций. Он является электромеханическим, гидравлическим, пневматическим устройством или их сочетанием, в зависимости от сферы применения, предназначенный для замены человека или облегчения его труда.

Управление роботами делится на:

телеуправление – то есть с участием человека;

Существует три класса устройств робототехники, это сборные устройства, манипуляторы и уже готовые работы.

Системы управления робототехнических устройств строятся на том же техническом базисе, что и все другие автоматические устройства. В отличие от автоматов робот не просто следует заранее вложенному в него алгоритму, а способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия в изменяющейся ситуации. Важно понимать, что на данный момент ещё нет универсальных роботов, которых можно было бы использовать для любой задачи. Инженеры-изобретатели разрабатывают и программируют роботов отдельно для каждой конкретной задачи.

По уровню применения робототехника подразделяется на:

Игровая робототехника может быть предназначена для детей и для взрослых. Игровая робототехника для детей направлена на выработку у них интереса к программированию и инженерным наукам. Игровая робототехника может быть полезна и для взрослых, так как её применение может способствовать выработке навыков поведения в типичных жизненных и опасных ситуациях.

В рамках обучающей робототехники используются робототехнические комплекты для детских, учебных и досуговых центров на базе Huna, Lego, Fishertechnik, Arduino. Например, компания LEGO выпустила первый робототехнический конструктор в рамках новой линейки конструкторов MINDSTORMS в 1998 году, открывая детям дверцу в волшебный мир роботов.

Актуальность темы.

В 21веке робототехника используется во всех видах промышленности, строительства, быта, авиации, особенно в экстремальных сферах деятельности человечества таких, как военная, космическая и подводная.

Цель реферата.

Целью реферата является рассмотрение видов и типов роботов, а также сферы их использования в современном мире.

Строительная робототехника.

Строительная робототехника, как это понятно из её названия, связана со сферой строительства. То есть работа идёт над разработкой роботов, которых можно будет использовать как при строительстве различных объектов, так и, что интересно, при их разрушении. Трудоёмкость обоих этих процессов высока, да и технологичность каждой операции процесса строительства должна быть на должном уровне. Поэтому использование роботов в этой сфере поможет соблюдать установленные технические стандарты и требования, а также может помочь максимально исключить ошибки, допускаемые из-за человеческого фактора.

Промышленная робототехника.

Промышленные роботы уже активно используются на заводах и фабриках, при производстве игрушек, чайников, мотоциклов, конфет, а также в производстве действительно сложных изделий, например, автомобилей. Роботы могут без помощи человека варить металл, штамповать, собирать по частям готовые продукты, всё это происходит благодаря особым конструкциям и программам, которые определяют функционал каждого робота. Говоря иными, а именно научными словами, такие устройства предназначены для автоматизации производства — изготовления чего-либо без помощи человека.

Бытовая робототехника.

Роботы для использования в домохозяйствах, включая персональных роботов, как правило, узкоспециализированные - каждый под какой-то один вид деятельности. В перспективе можно ожидать появления многофункциональных, универсальных роботов, способных выполнять различные виды деятельности. Жаргонное название - "домашники". Отличаются многообразием видов, в зависимости от назначения. Они могут быть: помощниками для пожилых людей, дворецкими, кухонными работниками, охранниками и т.д.

В данное время всё усиливается спрос на умные дома, они позволяют быстро реконфигурировать одно и то же помещение в соответствие с текущими задачами в режиме реального времени. Электроприводы, повинующиеся заложенной программе или нажатию кнопок в приложении, выдвигают из недр робо-комплекса кроватили или столы, настраивают конфигурацию шкафов и полок. А в роботизированном доме даже перегородки между комнатами могут передвигаться так, как нужно сейчас хозяину. Как в ручном режиме, так и автоматически, например, в таком доме занавески раздвинутся как раз тогда, когда хозяин встает, одновременно включится, например, кофеварка.

Медицинская робототехника.

Главной целью развития медицинской робототехники является высокая точность и повышение эффективности лечения, уменьшение рисков нанесения вреда здоровью человека. В настоящее время роботы играют колоссальную роль в развитии современной медицины. Они способствуют точной работе при операциях, помогают провести диагностику и поставить правильный диагноз. Заменяют отсутствующие конечности и органы, восстанавливают и улучшают физические возможности человека, снижают время на госпитализацию, обеспечивают удобство, быстроту реагирования и комфорт, экономят финансовые затраты на обслуживание. Вот некоторые роботы применяемые в медицине: роботы хирурги, роботизированные протезы, нанороботы и многие другие медицинские роботы.

Авиационная робототехника.

Авиация в плане роботизации не отстаёт от других сфер деятельности человека.

В нынешнее время очень популярным являются беспилотные летательные аппараты (БПЛА). БПЛА - беспилотный летательный аппарат военного назначения, разновидность военного робота. В задачу этих автономных систем, созданных для полёта, входит выполнение миссий, потенциально опасных для человека.

Также в авиации широко используются промышленные роботы, задействованные в производстве, обслуживании и ремонте самолётов.

Военная робототехника.

К группе военных роботов относят всевозможные беспилотные разведчики, машины для минирования и разминирования местности. Был разработан даже настоящий робот-медик. Называется этот робот Bloodhound, а предназначен он для оказания помощи раненым, к которым невозможно приблизиться врачам из-за сильного огня со стороны противника. Bloodhound оснащён видеокамерами, радиостанцией с микрофоном и динамиками, а также стетоскопом. Все эти элементы робота позволяют медикам дистанционно управлять им, проводить первичный осмотр раненого и даже беседовать с ним. После постановки диагноза Bloodhound может остановить кровотечение (например, наложить повязку на рану) и сделать назначенный укол, который позволит раненому дождаться эвакуации. Благодаря таким роботам можно спасти огромное количество человеческих жизней.

В 2004 российские инженеры создали робота, способного обнаруживать и обезвреживать взрывные устройства. Такой робот способен проникать и доставлять в труднодоступные зоны средства наблюдения и разведки, а также осматривать подозрительные объекты и в случае необходимости осуществлять их транспортировку до места назначения или разминирование. Робот может работать индивидуально или в группе таких же машин.

Космическая робототехника.

Космороботы – это роботы, приспособленные работать в космическом пространстве. Преимущество космических роботов перед человеком заключается в том, что они могут работать в крайне неблагоприятных условиях и обходиться без каких-либо ресурсов, так как в большинстве случаев они работают на солнечных батареях. Также гораздо легче будет пережить потерю такого робота, чем гибель астронавта. Обычно, задача косморобота заключается в проведении какой-нибудь научной деятельности. Вообще-то, тоже самое может сделать и обычный робот, работающий на земной поверхности, но к космороботу есть несколько основных требований, которым он должен соответствовать.

функционировать в сложных условиях враждебной среды;

весить как можно меньше;

потреблять мало энергии и иметь долгий срок службы;

работать в автоматическом режиме;

обладать чрезвычайной надежностью;

Для того, чтобы соответствовать всем этим требованиям, учёные создают все новые и новые устройства, механизмы, приводы, микроконтроллеры, обладающие высокой прочностью и использующим как можно меньше энергии. Эксперты подсчитали, что отправление на Марс человека будет стоить примерно 200-300 миллиардов долларов, при том, что это будет безвозвратное отправление. Еще придется потратить несколько месяцев на психологическую адаптацию участников экспедиции. А отправка корабля, на борту которого будет робот, обойдется примерно в 5-10 миллиардов долларов. Так что роботы в космосе обходятся намного дешевле, чем люди.

Подводная робототехника.

В современной жизни человек уже использует роботов во всех сферах своей деятельности. В большинстве своём роботы являются не заменимыми помощниками, но всё чаще они используются там, где человек справлялся без особого труда. Благодаря своему интеллекту человек развил науку, и смог создать робототехнику, но из-за своей лени он всё чаще стремится заменить свой труд роботами. Но и этого человеку мало, теперь человек пытается создать, для своих роботов, искусственный интеллект. С искусственным интеллектом роботы смогут самостоятельно оценивать происходящее вокруг них и принимать решения по действиям, которые им необходимо произвести. Человеку не надо уже будет тратить силы и время на подачу необходимых команд и алгоритмов. Но такое положение дел может привести к деградации человечества, а возможно и исчезновения, как вида, с лица земли. Вполне возможно, что великие достижения человеческого разума и человеческая лень, могут обернуться против самого человека.

Прейко М., Устройства управления роботами: схемотехника и программирование – М.: Издательство ДМК, 2004, 202с.

Реферат по ОПД на тему Мехатроника и робототехника в современной жизни


Гусь-Хрустальный, 2020
Содержание

1. ОСНОВНЫЕ ПОНЯТИЯ О МЕХАТРОННИКЕ

2. СФЕРЫ ПРИМЕНЕНИЯ МЕХАТРОНИКИ И РОБОТОТЕХНИКИ

2.1 Строительная робототехника

2.2 Промышленная робототехника

2.3 Бытовая робототехника

2.4 Медицинская робототехника

2.5 Авиационная робототехника

2.6 Военная робототехника

2.7 Космическая робототехника

2.8 Подводная робототехника

Сегодня мехатронные модули и системы находят широкое применение в следующих областях: станкостроение и оборудование для автоматизации технологических процессов; робототехника (промышленная и специальная); авиационная, космическая и военная техника; автомобилестроение (например, антиблокировочные системы тормозов, системы стабилизации движения автомобиля и автоматической парковки); нетрадиционные транспортные средства (электровелосипеды, грузовые тележки, электророллеры, инвалидные коляски); офисная техника (например, копировальные и факсимильные аппараты); элементы вычислительной техники (например, принтеры, плоттеры, дисководы); медицинское оборудование (реабилитационное, клиническое, сервисное); бытовая техника (стиральные, швейные, посудомоечные и другие машины); микромашины ( для медицины, биотехнологии, средств связи и телекоммуникации); контрольно-измерительные устройства и машины; фото- и видеотехника; тренажеры для подготовки пилотов и операторов; шоу-индустрия (системы звукового и светового оформления). Безусловно, этот список может быть расширен.

Актуальность: В XXI веке мехатроника и робототехника используется во всех видах промышленности, строительства, быта, авиации, особенно в экстремальных сферах деятельности человечества таких, как военная, космическая и подводная.

Цель: рассмотрение видов и типов мехатронных и робототехнических систем, а также сферы их использования в современном мире.

Объект: мехатронные и робототехнические системы.

Предмет: мехатроника и робототехника в современной жизни.

Для достижения выбранной цели поставлены следующие задачи:

1. Дать основные понятия о мехатронике

2. Рассмотреть сферы применения мехатроники и робототехники

3. Охарактеризовать способы применения мехатроники и робототехники в различных сферах

Методологической базой для написания работы послужили общенаучные методы исследования: обобщения, анализа и синтеза, систематизации, а также изучение научной и учебной литературы, технических справочников, самоучителей, материалы различных Интернет-ресурсов.

1. ОСНОВНЫЕ ПОНЯТИЯ О МЕХАТРОННИКЕ

Мехатроника — область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающими проектирование и производство качественно новых механизмов, машин и систем с интеллектуальным управлением их функциональными движениями.

Мехатроника опирается на такие дисциплины:

Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) мехатронику.

В мехатронике соединяются механика, система управления и искусственный интеллект, поэтому она является важнейшим направлением научно-технического прогресса. Мехатронику требуются знания вышеперечисленных дисциплин, в результате мехатроник, в отличие от узкого специалиста, обладает широким кругозором и системным мышлением.

Робот – устройство, управляемое с помощью электронной платы или компьютера, который можно запрограммировать на выполнение определенных операций. Он является электромеханическим, гидравлическим, пневматическим устройством или их сочетанием, в зависимости от сферы применения, предназначенный для замены человека или облегчения его труда.

Управление мехатроными системами делится на:

· телеуправление – то есть с участием человека;

Существует три класса устройств мехатронике, это сборные устройства, манипуляторы и уже готовые работы.

Системы управления устройств строятся на том же техническом базисе, что и все другие автоматические устройства. В отличие от автоматов робот не просто следует заранее вложенному в него алгоритму, а способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия в изменяющейся ситуации. Важно понимать, что на данный момент ещё нет универсальных роботов, которых можно было бы использовать для любой задачи. Инженеры-изобретатели разрабатывают и программируют роботов отдельно для каждой конкретной задачи.

По уровню применения робототехника подразделяется на:

2. СФЕРЫ ПРИМЕНЕНИЯ МЕХАТРОНИКИ И РОБОТОТЕХНИКИ

2.1 Строительная робототехника

Строительная робототехника, как это понятно из её названия, связана со сферой строительства. То есть работа идёт над разработкой роботов, которых можно будет использовать как при строительстве различных объектов, так и, что интересно, при их разрушении. Трудоёмкость обоих этих процессов высока, да и технологичность каждой операции процесса строительства должна быть на должном уровне. Поэтому использование роботов в этой сфере поможет соблюдать установленные технические стандарты и требования, а также может помочь максимально исключить ошибки, допускаемые из-за человеческого фактора.

2.2 Промышленная робототехника

Промышленные роботы уже активно используются на заводах и фабриках, при производстве игрушек, чайников, мотоциклов, конфет, а также в производстве действительно сложных изделий, например, автомобилей. Роботы могут без помощи человека варить металл, штамповать, собирать по частям готовые продукты, всё это происходит благодаря особым конструкциям и программам, которые определяют функционал каждого робота. Говоря иными, а именно научными словами, такие устройства предназначены для автоматизации производства — изготовления чего-либо без помощи человека.

2.3 Бытовая робототехника

Роботы для использования в домохозяйствах, включая персональных роботов, как правило, узкоспециализированные - каждый под какой-то один вид деятельности. В перспективе можно ожидать появления многофункциональных, универсальных роботов, способных выполнять различные виды деятельности. Жаргонное название - "домашники". Отличаются многообразием видов, в зависимости от назначения. Они могут быть: помощниками для пожилых людей, дворецкими, кухонными работниками, охранниками и так далее.

В данное время всё усиливается спрос на умные дома, они позволяют быстро реконфигурировать одно и то же помещение в соответствие с текущими задачами в режиме реального времени. Электроприводы, повинующиеся заложенной программе или нажатию кнопок в приложении, выдвигают из недр робо-комплекса кроватили или столы, настраивают конфигурацию шкафов и полок. А в роботизированном доме даже перегородки между комнатами могут передвигаться так, как нужно сейчас хозяину. Как в ручном режиме, так и автоматически, например, в таком доме занавески раздвинутся как раз тогда, когда хозяин встает, одновременно включится, например, кофеварка.

2.4 Медицинская робототехника

Главной целью развития медицинской робототехники является высокая точность и повышение эффективности лечения, уменьшение рисков нанесения вреда здоровью человека. В настоящее время роботы играют колоссальную роль в развитии современной медицины. Они способствуют точной работе при операциях, помогают провести диагностику и поставить правильный диагноз. Заменяют отсутствующие конечности и органы, восстанавливают и улучшают физические возможности человека, снижают время на госпитализацию, обеспечивают удобство, быстроту реагирования и комфорт, экономят финансовые затраты на обслуживание. Вот некоторые роботы, применяемые в медицине: роботы хирурги, роботизированные протезы, нанороботы и многие другие медицинские роботы.

2.5 Авиационная робототехника

Авиация в плане роботизации не отстаёт от других сфер деятельности человека.

В нынешнее время очень популярным являются беспилотные летательные аппараты (БПЛА). БПЛА - беспилотный летательный аппарат военного назначения, разновидность военного робота. В задачу этих автономных систем, созданных для полёта, входит выполнение миссий, потенциально опасных для человека.

Также в авиации широко используются промышленные роботы, задействованные в производстве, обслуживании и ремонте самолётов.

2.6 Военная робототехника

К группе военных роботов относят всевозможные беспилотные разведчики, машины для минирования и разминирования местности. Был разработан даже настоящий робот-медик. Называется этот робот Bloodhound, а предназначен он для оказания помощи раненым, к которым невозможно приблизиться врачам из-за сильного огня со стороны противника. Bloodhound оснащён видеокамерами, радиостанцией с микрофоном и динамиками, а также стетоскопом. Все эти элементы робота позволяют медикам дистанционно управлять им, проводить первичный осмотр раненого и даже беседовать с ним. После постановки диагноза Bloodhound может остановить кровотечение (например, наложить повязку на рану) и сделать назначенный укол, который позволит раненому дождаться эвакуации. Благодаря таким роботам можно спасти огромное количество человеческих жизней.

В 2004 российские инженеры создали робота, способного обнаруживать и обезвреживать взрывные устройства. Такой робот способен проникать и доставлять в труднодоступные зоны средства наблюдения и разведки, а также осматривать подозрительные объекты и в случае необходимости осуществлять их транспортировку до места назначения или разминирование. Робот может работать индивидуально или в группе таких же машин.

2.7 Космическая робототехника

Космороботы – это роботы, приспособленные работать в космическом пространстве. Преимущество космических роботов перед человеком заключается в том, что они могут работать в крайне неблагоприятных условиях и обходиться без каких-либо ресурсов, так как в большинстве случаев они работают на солнечных батареях. Также гораздо легче будет пережить потерю такого робота, чем гибель астронавта. Обычно, задача косморобота заключается в проведении какой-нибудь научной деятельности. Вообще-то, тоже самое может сделать и обычный робот, работающий на земной поверхности, но к космороботу есть несколько основных требований, которым он должен соответствовать.

· функционировать в сложных условиях враждебной среды;

· весить как можно меньше;

· потреблять мало энергии и иметь долгий срок службы;

· работать в автоматическом режиме;

· обладать чрезвычайной надежностью;

Для того, чтобы соответствовать всем этим требованиям, учёные создают все новые и новые устройства, механизмы, приводы, микроконтроллеры, обладающие высокой прочностью и использующим как можно меньше энергии. Эксперты подсчитали, что отправление на Марс человека будет стоить примерно 200-300 миллиардов долларов, при том, что это будет безвозвратное отправление. Еще придется потратить несколько месяцев на психологическую адаптацию участников экспедиции. А отправка корабля, на борту которого будет робот, обойдется примерно в 5-10 миллиардов долларов. Так что роботы в космосе обходятся намного дешевле, чем люди.

2.8 Подводная робототехника

В современной жизни человек уже использует роботов во всех сферах своей деятельности. В большинстве своём роботы являются не заменимыми помощниками, но всё чаще они используются там, где человек справлялся без особого труда. Благодаря своему интеллекту человек развил науку, и смог создать робототехнику, но из-за своей лени он всё чаще стремится заменить свой труд роботами. Но и этого человеку мало, теперь человек пытается создать, для своих роботов, искусственный интеллект. С искусственным интеллектом роботы смогут самостоятельно оценивать происходящее вокруг них и принимать решения по действиям, которые им необходимо произвести. Человеку не надо уже будет тратить силы и время на подачу необходимых команд и алгоритмов.

Актуальность: В XXI веке мехатроника и робототехника используется во всех видах промышленности, строительства, быта, авиации, особенно в экстремальных сферах деятельности человечества таких, как военная, космическая и подводная.

Цель данной работы: рассмотрение видов и типов мехатронных и робототехнических систем, а также сферы их использования в современном мире.

Объектом работы являются мехатронные и робототехнические системы.

Предметом данной работы является мехатроника и робототехника в современной жизни.

Для достижения выбранной цели выполнены следующие задачи:

1. Дать основные понятия о мехатронике

2. Рассмотреть сферы применения мехатроники и робототехники

3. Охарактеризовать способы применения мехатроники и робототехники в различных сферах

Методологической базой для написания работы послужили общенаучные методы исследования: обобщения, анализа и синтеза, систематизации, а также изучение научной и учебной литературы, технических справочников, самоучителей, материалы различных Интернет-ресурсов.


Здесь размещены рефераты, курсовые проекты и расчётно-графические задания по роботам робототехнике и искусственном интеллекте. Работы помогут разработать свой проект ученикам старших классов школ, а также студентам ВУЗов. Вы можете прислать свою работу и мы обязательно разместим её на сайте

Военные корейские роботы атакуют!

В прошлом году правительство Южной Кореи запустила проект по внедрению роботов в оборонные системы для уменьшения человеческих потерь во время вооружённых конфликтов. В р. Лазерный гравировальный станок какую мощность лазера брать.

Миниатюрные дроны-акробаты от компании Parrot

Миниатюрные дроны-акробаты от компании Parrot

Управление дронами осуществляется по старой традиции при помощи мобильного приложения FreeFlight 3, которое необходимо установить на планшет или смартфон.Также доступна в.

Рубрика: Бесплатные рефераты по роботам и информатике


Не нашли работу? Воспользуйтесь ПОИСКОМ в верхней части экрана рубрика Рефераты по информатике и ИКТ

Рефераты по информатике и ИКТ [393]

Рефераты, курсовые и доклады по высшей математике пригодятся всем, кто учится в ВУЗе. Высшая математика — курс обучения в средних и высших учебных заведениях, включающий высшую алгебру и математический анализ. Конспект лекций и курсовые по высшей математике разбиты по темам и подписаны в рубрикаторе, предназначены для студентов первого и второго курса.
рубрика Автоматизация и автоматика производственных процессов

Автоматизация и автоматика производственных процессов [174]

Доступны рефераты по системам автоматизированного проектирования, разработке технологических процессов, сервоприводам и др.
рубрика Информационные системы и технологии

Информационные системы и технологии [160]

Здесь представлены курсовые и дипломы по роботам и роботехническим комплексам (РТК). Доступны для бесплатного скачивания рефераты об индустриальном применении робототехники, системах управления РТК и роботизированным системам.
рубрика Рефераты: Механические и мехатронные изделия

Рефераты: Механические и мехатронные изделия [70]

Бесплатные рефераты о робототехнических комплексах.
рубрика Рефераты: Промышленные роботы и установки

Рефераты: Промышленные роботы и установки [5]

Здесь собраны курсовые и дипломные проекты о промышленных роботах. Сфера применения огромная от производства спичек до автомобилей и военных спутников. Все материалы в рубрике бесплатны и предназначены для студентов ВУЗов и техникумов.
рубрика Механика и механизация

Механика и механизация [135]

В данной рубрике собраны материалы по механике и механизации. Это все виды механизации - редукторы и мосты автомобилей, автокраны, автопогрузчики.
рубрика 3D-моделирование

3D-моделирование [36]

Проекты, модели и трёхмерные работы разных технических устройств, спроектированных и напечатанных на 3D-принтере или изготовленных на фрезерных или гравировальных станках
рубрика Программирование и станки ЧПУ

Программирование и станки ЧПУ [22]

Бесплатные курсовые и рефераты по программированию и программному обеспечению роботов. В том числе NXT-G, ROBOLAB, LAB-VIEW, ROBOT-C. А также курсовики и рефераты по станкам и оборудованию с числовым программным управлением, станкам, комплексам, элементам РПК.
рубрика Рефераты: Электроэнергетика

Рефераты: Электроэнергетика [97]

Различные тексты по энергетике прямо или косвенно связанных с энергетикой. Вы также можете скачать рефераты по злектродвигателям и электроустановках
рубрика Кибернетика, САУ, САПР, УВТС

Кибернетика, САУ, САПР, УВТС [66]

Теория и системы автоматического управления, а также системы автоматизации производственных работ и управление в технических системах - это перспективные направления инженеров профессионалов. Изучайте эту сферу деятельности, за этим будущее!
рубрика Рефераты: Машиностроение

Рефераты: Машиностроение [80]

Всё для студентов инженерно-экономических специальностей. Машиностроение - вид производственной деятельности предприятий обрабатывающей промышленности и сферы услуг, специализирующихся на проектировании, производстве, обслуживании и утилизации всевозможных машин, технологического оборудования и их деталей.
рубрика Алгоритмы и алгоритмизация ПП

Алгоритмы и алгоритмизация ПП [7]

Всего рефератов: [2415]
Условные обозначения
- Ссылка для загрузки бесплатного реферата (скачать файл бесплатно)
- Особо интересная и качественная работа по предмету
- Реферат
- Курсовой
- Диплом

Читайте также: