Катализаторы гидрирования и дегидрирования реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Гидрирование или гидрогенизация (от позднелатинского hydrogenium – водород), деструктивная гидрогенизация, – совокупность химических процессов, происходящих при воздействии водорода на органическое вещество. В топливоперерабатывающей промышленности гидрогенизацию применяют для получения из твёрдых горючих ископаемых (угли, сланцы), а также низкосернистых нефтей и тяжёлых нефтяных остатков моторного горючего, смазочных масел и химических продуктов. Гидрогенизация твёрдого топлива является универсальным методом получения из него синтетического жидкого топлива. Также важный резерв для замены сырой нефти горючими сланцами, битумами, углями [5,6].

Развитие исследований в области гидрогенизации относится к 1897-1900 гг., когда П. Сабатье (Франция) и Н.Д. Зелинский (Россия) со своими учениками разработали основы гидрогенизации катализа органических соединений. Влияние давления водорода на ускорение реакций гидрогенизации органических соединений было установлено вначале XX в. В.Н. Ипатьевым. Промышленное применение гидрогенизации твёрдого топлива впервые было получено в 30-40-х гг., в Германии. Перед 2-й мировой войной (1939-1945) установки по гидрогенизации угля и угольных смол работали также в Великобритании, Италии, Корее; в СССР были построены два опытных завода. В послевоенный период в основе переработки нефти сырья применяли гидрогенизацию. Начиная с 60-х гг. ведутся работы по гидрогенизации твёрдого топлива с целью создания экономически эффективных процессов производства синтетических жидких топлив.

В СССР был разработан процесс гидрогенизации угля для получения моторного горючего, котельного топлива и химикатов. Процесс осуществляется при температуре 420-430 °С, давлении водорода 10 Па, в присутствии активных катализаторов, растворителя и органических добавок-ингибиторов реакций радикальной полимеризации. В зависимости от исходного сырья выход жидких продуктов 85-95% (технологическая схема процесса дана на рис.1.).

hello_html_388e1862.jpg

Рис.1. Процесс гидрогенизации угля для получения моторного горючего, котельного топлива и химикатов.

В США, Великобритании, ФРГ разрабатывается ряд процессов по гидрогенизации угля с катализатором и без катализатора, под давлением водорода 1-7 и 15-30 Па, температура 400-500 °С, а также экстракции угля растворителями с последующей гидрогенизации экстрактов. Исследования по гидрогенизации твёрдого топлива и тяжёлых нефти остатков ведутся в Японии, Индии, Австралии, Польше и др. [3,5].

Процесс гидрирования

Реакцию гидрирования ненасыщенных соединений водородом можно рассматривать как реакцию восстановления. При этом атомы углерода кратной связи восстанавливаются, а молекулярный водород окисляется. Присоединение водорода к алкенам происходит только в присутствии катализаторов:

В качестве катализаторов применяют тонкоизмельченные металлы – платину, палладий, никель. Наиболее часто используются никель Ренея и катализатор Адамса. Никель Ренея получают обработкой никель-алюминиевого сплава гидроксидом натрия, в результате чего получают тонко измельченный никель, насыщенный водородом. Катализатор Адамса – это платиновая чернь, получаемая восстановлением оксида платины( IV ) водородом непосредственно в процессе реакции. Палладий для увеличения поверхности наносят на инертный материал – уголь. Все эти катализаторы не растворяются в органических растворителях.

Водород и алкен адсорбируются на большой поверхности тонкоизмельченного металла, где и происходит реакция. Оба атома водород присоединяются с одной стороны π-связи, т.е. процесс идет как син-присоединение:

Молекула ненасыщенного соединения может содержать другие функциональные группы, способные к восстановлению. Во многих случаях удается подобрать условия, при которых происходит селективное восстановление двойной связи. В приведенных ниже примерах восстановление не затрагивает бензольное кольцо и карбонильную группу:

Гидрирование является экзотермической реакцией. Значения теплот гидрирования дают ценную информацию об относительной устойчивости ненасыщенных соединений. На основании этих данных было установлено, что чем более замещенным является алкен, тем он термодинамически стабильнее [7,8].

Дегидрирование или дегидрогенизация – это химическая реакция отщепления водорода от молекул органических соединений; одна из фаз процесса биологического окисления. Осуществляется в присутствие катализаторов или под действием акцепторов водорода. Каталитическое дегидрогенизация и обратная реакция – гидрирование – связаны подвижным термодинамическим равновесием. Протеканию дегидрогенизация способствует повышение температуры и понижение давления. Осуществляют дегидрогенизация обычно при температуре > 300 °С и давлении 0,1-5 МПа; при необходимости применение более высоких давлений сочетают с соответствующим повышением температуры. Катализаторы дегидрогенизации – обычно многокомпонентные системы, содержащие переходные металлы, их оксиды или сульфиды. При дегидрогенизации молекула реагирующего соединений образует комплекс с катализатором, распадающийся затем на Н2 и продукт, десорбируемые с поверхности катализатора [3,5].

Дегидрогенизация парафинов в ароматических соединениях (дегидроциклизация) – одна из стадий каталитического риформинга; осуществляется на оксиднохромовом катализаторе при 330-400 °С, давление 0,2-0,8 МПа. Каталитическая дегидрогенизации используют в промышленности для получения 1,3-бутадиена, изопрена, стирола и др. В СССР в 1984 путем дегидрогенизация было получено более 2 млн. бутадиена и около 11 млн. стирола. К каталитической дегидрогенизации относят также так называемая окислительная дегидрогенизации, протекающее в газовой фазе под действием окислителей (например: О2, SO2, H2O2, I2, Вr2 и др.). Реакция практически необратима, что способствует увеличению выхода целевых продуктов. Так, метанол в присутствии серебра (Ag) окисляется О2 воздуха при ≈ 400 °С в формальдегид с выходом около 80%. Окислительное дегидрогенизация олефинов и алкилбензолов осуществляют в присутствие фосфатов алюминия, молибдатов висмута, цеолитoв, активированного угля и др.

В качестве акцепторов водорода при дегидрогенизация используют обычно 2,3-дициано-1,4-бензохинон, пероксиды Ni, SeO2, Se, S, а также металлы, способные образовывать гидриды (Zr, Ti, интерметаллиды и др.). Выше указаны некоторые примеры [5].

Процесс дегидрирования

Отщепление водорода от алканов (дегидрирование) является обратимым высокотемпературным каталитическим процессом и используется главным образом в промышленности. Ввиду сложности протекания гетерогенных каталитических реакций будут рассмотрены только некоторые общие закономерности.

В качестве катализаторов дегидрирования применяют оксиды металлов (С r 2Оэ, Fe 2 O 3, ZnO и др.), а также металлы ( Pt , Pd , Ni , Fe ); при катализе оксидами температура процесса 450-650 °С, при катализе металлами – около 300 оС.

Низшие алканы (С2–С4) при дегидрировании превращаются в алкены, а из бутана, в зависимости от применяемого катализатора и условий реакции, может получаться и бутадиен-1,3:

Алканы, содержащие пять атомов углерода в цепи (но не более), подвергаются дегидроциклизации с образованием циклопентанового углеводорода:

Если в цепи алкана содержится шесть и более атомов углерода, то образующийся в подобных условиях циклогексан (или его гомологи) подвергается дальнейшему дегидрированию с образованием энергетически выгодного ароматического кольца:

В процессах промышленной переработки нефтяного сырья реакции дегидроциклизации приводят к ароматизации насыщенных углеводородов и составляют основу каталитического риформинга.

Дегидрирование алканов – реакция, обратная гидрированию ненасыщенных углеводородов. Положение равновесия определяется температурой и давлением. Обычно дегидрирование проводят при более высоких температурах, а гидрирование – при сравнительно низких (до 200 °С), согласно принципу Л e Шателье.

Принцип Ле Шателье-Брауна ( 1884 ) – если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия ( температура , давление , концентрация , внешнее электромагнитное поле ), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Анри Ле Шателье ( Франция ) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном .

Принцип устойчивости применим к равновесию любой природы: механическому, тепловому, химическому, электрическому ( эффект Ленца , явление Пельтье ) [3].

Дегидрированию благоприятствует пониженное давление; на практике используют давление 1-10атм (1атм = 101,3 кПа.), а иногда – ниже атмосферного. Кроме того, для каждого соединения существует довольно узкий диапазон температур, в котором протекает прямой или обратный процесс [6,7,8].

Особенности оформления реакционного узла жидкофазного гидрирования углеводородов. Классификация реакций жидкофазного гидрирования в зависимости от формы применяемого катализатора. Влияние термодинамических факторов на выбор условий процесса. Селективность реакций гидрирования.


Жидкофазное гидрирование проводят путем барботирования водорода через жидкую реакционную массу. Таким способом всегда гидрируют высококипящие вещества (жиры, высшие карбоновые кислоты и их эфиры, динитросоединения), поскольку для перевода их в состояние насыщенного пара потребовались бы слишком большие затраты. Однако в жидкой фазе можно гидрировать и более летучие соединения (при высоком давлении).

Процессы жидкофазного гидрирования можно классифицировать в зависимости от формы применяемого катализатора:

· С гомогенным катализатором, нередко получаемым непосредственно в массе гидрируемого вещества. Такой катализатор очень активен, но его трудно отделять от гидрогенизата при последующей переработке (чаще всего – комплексные металлоорганические соединения).

· с суспендированным в реакционной среде катализатором, который или формируется в реакционной среде, например, при разложении неустойчивых соединений или измельчается вне реактора и вводится в виде пасты в сырье. В обоих случаях достаточно сложным оказывается отделение катализатора от продуктов реакции; кроме того, возникают затруднения, связанные с эрозией аппаратов, трубопроводов, арматуры. Катализатор быстро истирается, поэтому суспендирование применяется для быстро дезактивирующихся катализаторов.

· Со стационарным (неподвижным) гранулированным катализатором. Гранулы должны быть достаточно крупными, чтобы их не выносили из реактора потоки продуктов реакции и водородсодержащие газы. Исключается стадия фильтрования гидрогенизата. Т.к. перегрузка катализатора – сложная операция, а простои во время перегрузки снижают технико-экономические показатели процесса, то стационарный катализатор следует применять в случае его высокой стабильности (продолжительного срока службы).

Многие процессы гидрирования протекают через ряд промежуточных стадий. Так, карбоновые кислоты, альдегиды и кетоны восстанавливаются последовательно в спирты и углеводороды:



а нитрилы – в имины, амины и углеводороды:



При дальнейшем развитии этих реакций может произойти гидрогенолиз органического соединения с образованием нежелательных продуктов деструкции



Во всех случаях всегда требуется остановить реакцию на определенной стадии, т.е. провести частичное гидрирование исходного вещества, ограничив протекание последующих превращений. С другой стороны, в молекуле органического соединения нередко находятся несколько функциональных групп, способных к гидрированию, причем должно протекать гидрирование только одной из них. Так, при гидрировании ненасыщенных кислот можно получить ненасыщенный спирт или ненасыщенную кислоту, из фенолов – спирт циклогексанового ряда или ароматический углеводород.




На одном и том же катализаторе селективность процесса зависит от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора (например, двойные связи арилолефинов гидрируются быстрее ароматического ядра; альдегидные группы быстрее кетонных). Но иногда хемосорбция и реакционная способность изменяются в противоположных направлениях. Тогда вещество лучше сорбируемое вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется то, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефин6ы, несмотря на более высокую реакционную способность образующихся олефинов.

Сорбционная способность катализатора по отношению к различным веществам или функциональным группам является важным показателем, учет которого при выборе контакта служит средством повышения селективности реакции. Металлические катализаторы (особенно платина, палладий, никель) не имеют специфической способности к адсорбции полярных соединений и функциональных групп, и на поверхности их легче протекает адсорбция реагентов по С-С связи. Поэтому ненасыщенные кетоны, карбоновые кислоты и некоторые производные ароматических углеводородов гидрируются на металлических контактах главным образом по С-С связям с сохранением полярной группы.

Оксидные катализаторы, имеющие полярную кристаллическую решетку, обладают специфической сорбционной способностью к полярным группам органических соединений. Полифункциональное соединение при адсорбции на поверхности оксидного катализатора оказывается ориентированным по полярной группе, в связи с чем, ненасыщенные и ароматические альдегиды, кетоны, карбоновые кислоты и другие вещества гидрируются на оксидных катализаторах преимущественно по кислородсодержащим группам с сохранением ненасыщенных связей.

При прочих равных условиях селективность зависит от времени контакта, определяющего фактическую степень конверсии исходного вещества. Чем ближе она к равновесной, тем значительнее развитие последовательных реакций более глубокого гидрирования. Обычно гидрирование проводят до высокой (до 90%) степени конверсии. Но для каждого процесса время контакта определяется экспериментально.

Все реакции присоединения водорода являются экзотермическими и обратимыми. Теплота гидрирования алкенов с двойной связью на конце молекулы (пропилен, бутен-1) больше, чем алкенов с двойной связью, расположенной ближе к середине цепи (бутен-2).

При расчете на одну молекулу присоединяющегося водорода тепловой эффект наиболее высок для соединений со связью СºС.

Для ароматических систем он меньше, чем для олефинов, что может быть обусловлено нарушением устойчивости ароматической системы.

При гидрировании двойной связи между углеродом и кислородом в карбонильных соединениях тепловой эффект ниже, чем для двойной углерод - углеродной связи



(-DН = 67-68 кДж/моль)

при этом гидрирование альдегидов более экзотермично, чем гидрирование кетонов:



(-DН = 67-68 кДж/моль)

Близкий к ним тепловой эффект (в расчете на одну молекулу водорода) имеет гидрирование нитрилов:

Наименьший тепловой эффект наблюдается при гидрировании кислот:

и деструктивном гидрировании связи С-С

Особенности оформления реакционного узла газофазного гидрирования углеводородов. Равновесие реакций гидрирования. Специфика применения катализаторов различного типа при проведении реакций гидрирования. Кинетика реакций гидрирования .


Реакционные аппараты для газофазного гидрирования:

а) трубчатый реактор; б) колонна со сплошными слоями гетерогенного катализатора и охлаждением холодным водородом

Реакция гидрирования обратима. Обратный процесс – дегидрирование. Вследствие экзотермичности реакций гидрирования равновесная степень превращения увеличивается при понижении температуры.

Термодинамически наиболее благоприятно протекает гидрирование ацетиленовых производных, наименее – гидрирование кислот.

Поскольку при гидрировании (за исключением деструктивного) всегда происходит уменьшение объема. Для увеличения равновесной степени превращения, особенно при высокой температуре, применяют повышенное давление. Другим методом повышения степени превращения является применение избытка водорода по сравнению со стехиометрическим от 5010-кратного до 100-кратного и более. Часто одновременно применяется и повышенное давление, и избыток водорода.

Равновесие благоприятно для гидрирования неразветвленных углеводородов с небольшой молекулярной массой, а также для гидрирования низших олефинов, диенов и, как уже говорилось выше, для ацетиленовых углеводородов, причем наличие фенильных заместителей и разветвления углеродной цепи сказывается отрицательно. Менее выгодны условия гидрирования альдегидов, нитрилов, кетонов и ароматических ядер. Если провести сравнение для температуры, при которой Кр = 1, получим следующий ряд способности к гидрированию, учитывающий только термодинамические факторы:



В процессах гидрирования, сопровождающихся выделением воды, равновесие обычно смещено вправо в большей мере, чем в других случаях.

Для гидрирования вещества Кр равна А + Н2 ® АН2


.

Для реакций перераспределения водорода А + ВН2 ® АН2 + В


Равновесие реакции перераспределения будет смещено вправо, когда в термодинамическом отношении вещество А более склонно к гидрированию, чем вещество В, например:

Гидрирование может протекать в гомогенной (газовой или жидкостной), гетерогенной (газ-жидкость, газтвердое тело, жидкостьтвердое тело) системах в присутствии катализаторов или без них.

Скорость реакций гидрирования в общем случае может зависеть от диффузионных и кинетических факторов. Первые из них играют тем меньшую роль, чем интенсивнее перемешивание и чем ниже температура. Скорость гидрирования определяется в большей степени, чем для других процессов, влиянием следующих факторов:

· величиной окислительно-восстановительного потенциала системы;

· скоростью диффузии реагентов из одной фазы в другую;

· скоростями адсорбции, хемосорбции и диффузии в адсорбированный слой;

· ориентацией адсорбированных молекул и т.д.

Процессы гидрирования обычно осуществляются в условиях, когда равновесие реакции значительно смещено вправо и можно пренебречь обратной реакцией дегидрирования. Кроме того, насыщенный продукт гидрирования имеет небольшой адсорбционный коэффициент и поэтому обычно не входит в кинетическое уравнение процесса. И, наоборот, при высоком давлении становится существенной сорбция не только исходного вещества, но и водорода.


,

где Р – парциальные давления реагентов;

b – адсорбционные коэффициенты реагентов.

С такими катализаторами, как платина, палладий, никель, энергично сорбирующими водород, скорость реакции при умеренных температурах (100 о С) не зависит от парциального давления водорода. Оно начинает влиять на скорость только при повышении температуры - вначале незначительно, а затем пропорционально возрастанию давления. Наблюдается и отчетливое самоторможение реакции исходными ненасыщенными соединениями. Как уже говорилось, на оксидных катализаторах сорбция водорода менее значительна, чем на металлах, вследствие чего скорость обычно зависит от парциального давления водорода линейно. Этим обусловлена большая эффективность применения высоких давлений и избытка водорода при гидрировании на оксидных катализаторах.

В жидкофазных процессах высокое давление оказывает дополнительное влияние, повышая растворимость водорода в реакционной массе. Возможна линейная, квадратичная и даже более сильная зависимость скорости реакции от давления. Так, при гидрировании этиллаурата в лауриловый спирт на медь – хромоксидном катализаторе скорость возрастает в 7 раз при повышении давления от 10 до 20 МПа, а с увеличением до 30 Мпа – в 28 раз.

По способности к гидрированию разные классы соединений располагаются в следующие ряды:

· Олефин > ацетилен и его производные > ароматические углеводороды;

· Этилен > пропилен > бутен-2 > i- бутилен

138 11 1,3 1 Относительная скорость гидрирования

Т.е. скорость уменьшается с увеличением количества и степени разветвления заместителей. Скорость зависит также и от природы катализатора (Pt > Pd > Ni).

Соотношение между скоростями, установленное для чистых углеводородов не сохраняется при гидрировании их смесей. Поэтому, несмотря на то, что скорость гидрирования чистого бутадиена в бутен и чистого бутена в бутан практически являются теми же, в смеси этих соединений (бутадиен – бутен - бутан) гидрирование бутадиена в бутен протекает намного быстрее. Возможно, это объясняется большей величиной коэффициента хемосорбции бутадиена, возможно, каким-либо возникающим в данной системе эффектом синергизма.

На одном и том же катализаторе селективность процесса зависит от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора (например, двойные связи арилолефинов гидрируются быстрее ароматического ядра; альдегидные группы быстрее кетонных). Но иногда хемосорбция и реакционная способность изменяются в противоположных направлениях. Тогда вещество лучше сорбируемое вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется то, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефин6ы, несмотря на более высокую реакционную способность образующихся олефинов.

Сорбционная способность катализатора по отношению к различным веществам или функциональным группам является важным показателем, учет которого при выборе контакта служит средством повышения селективности реакции. Металлические катализаторы (особенно платина, палладий, никель) не имеют специфической способности к адсорбции полярных соединений и функциональных групп, и на поверхности их легче протекает адсорбция реагентов по С-С связи. Поэтому ненасыщенные кетоны, карбоновые кислоты и некоторые производные ароматических углеводородов гидрируются на металлических контактах главным образом по С-С связям с сохранением полярной группы.

Оксидные катализаторы, имеющие полярную кристаллическую решетку, Обладают специфической сорбционной способностью к полярным группам органических соединений. Полифункциональное соединение при адсорбции на поверхности оксидного катализатора оказывается ориентированным по полярной группе, в связи, с чем ненасыщенные и ароматические альдегиды, кетоны, карбоновые кислоты и другие вещества гидрируются на оксидных катализаторах преимущественно по кислородсодержащим группам с сохранением ненасыщенных связей.

В органическом синтезе в реакциях гидрирования участвуют любые молекулы, имеющие ненасыщенные связи. Синтезы Фишера-Тропша. Обратная гидрированию реакция - процесс дегидрирования в промышленном органическом синтезе и в процессах нефтепереработки.

Процессы гидрирования и дегидрирования в органическом синтезе и в нефтехимии

В органическом синтезе в реакциях гидрирования (присоединения H2) участвуют любые молекулы, имеющие ненасыщенные связи - С=С, СС, СN, -N=N-, C=O и др. Синтезы Фишера-Тропша из СО и Н2, синтез метанола из СО, СО2 и Н2 также относят к реакциям гидрирования, однако в синтезе углеводородов по Фишеру-Тропшу, кроме присоединения Н2, происходит и деструктивное гидрирование с разрывом С-О связи. К деструктивному гидрированию относится и гидрогенолиз связи С-С - процессы гидрокрекинга, например,

и гидрогенолиз связи С-S (процессы гидрообессеривания нефтяных фракций)

Обратная гидрированию реакция - процесс дегидрирования - занимает важное место в промышленном органическом синтезе и в процессах нефтепереработки. Дегидрируют алканы и алкилбензолы (синтезы бутадиена, изопрена, стирола), нафтены (бензол из циклогексана), спирты (синтезы формальдегида, ацетона, изовалерианового альдегида, циклогексанона). В качестве катализаторов гидрирования используют металлы и их соединения:

Металлические катализаторы - Pt, Pd, Ni, Co, Rh, Ru, Cu - в форме массивных металлов, сплавов, нанесенных катализаторов (М/носитель) и скелетных металлов (никель Ренея, медь Ренея), которые получают выщелачиванием Al из сплавов Al-Ni, Al-Cu и др.

Сульфиды металлов - NiS, CoS, Mo2S3, W2S3.

Комплексы переходных металлов.

Оксиды металлов применяют для процессов дегидрирования, поскольку при высоких температурах (> 200оС) металлы слишком активны и ведут деструктивные процессы. Катализаторами дегидрирования являются следующие оксиды: ZnO, Cr2O3, Mo2O3, W2O3, MgO. При высоких температурах (> 450оС) дегидрирование спиртов наблюдается и на -Al2O3.

Важнейшая стадия процессов гидрирования - активация молекулы водорода. В случае комплексов металлов в растворах механизм активации водорода сейчас уже ясен:

Превращение первичного -комплекса зависит от природы металла, его степени окисления и лигандов в координационной сфере. Возможны гомолиз (2) и гетеролиз (3) связи Н-Н:

Участия недиссоциированной молекулы H2 в процессах гомогенного гидрирования пока не установлено. Гидрогенолиз связи М-С, например, в процессе гидроформилирования олефинов

также рассматривают как результат гомолитического расщепления молекулы Н2 на атоме Со. Не исключена, однако, возможность элементарного акта (метатезис -связей) через четырехчленное циклическое переходное состояние

На поверхности металлов имеет место гомолитическое расщепление Н2 с образованием поверхностных атомов водорода и атомов водорода, растворенных в решетке металла. При наличии полярного растворителя (S) процесс адсорбции Н2 на металлах может проходить гетеролитически и даже сопровождаться полной ионизацией с переносом 2з на металл.

В этом случае молекулу гидрируемого соединения восстанавливают электроны, связанные с металлом.

При построении кинетических моделей процессов гидрирования на металлах используют представления об однородной поверхности, о равномерно-неоднородной поверхности (модели Лэнгмюра-Хиншельвуда) и о неоднородной поверхности. Например, при гидрировании этилена в рамках гипотезы о взаимодействии адсорбированных на поверхности Niтв этилена и водорода

На однородной поверхности

На равномерно-неоднородной поверхности

Для процесса дегидрирования бутана до бутилена на катализаторе Cr2O3/Al2O3 при 520 - 550оС используют эмпирическое уравнение (8) (для промышленного интервала парциальных давлений):

Процесс используют для получения легких бензинов, дизельного топлива и смазочных масел. Высококипящие фракции (главным образом, вакуумный дистиллят) обрабатывают водородом при Р = 50 - 300 атм и 330 - 450оС в присутствии катализаторов - Rh, Ni, Co, Mo, Pt на Al2O3. В случае Ni преимущественно происходит активация и гидрогенолиз концевых С-С связей в алканах с образованием СН4 и более коротких углеводородов. Металлическая Pt активирует все связи, в том числе и связи С-Н, катализируя процессы деструкции и дегидрирования. Алюмокобальтмолибденовый катализатор гидрокрекинга используют при ~400оС и Р = 50 атм.

Основные реакции в процессе гидрокрекинга - гидрирование ароматических полициклических соединений, раскрытие нафтеновых колец, гидродеалкилирование алкилароматических и нафтеновых углеводородов, изомеризация и гидрирование образующихся продуктов, а также гидрогенолиз сера-, азот- и кислородсодержащих соединений (до H2S, NH3 и H2O), т.е. процессы гидроочистки.

Важное место среди процессов гидрокрекинга, позволяющих получить средний дистиллят в качестве дизельного топлива с пониженной плотностью и повышенным цетановым числом занимают процессы гидрирования полициклических ароматических соединений и последующего гидрогенолиза полученных нафтенов (раскрытие циклов) без потери молекулярной массы нафтенов, например,

Для таких процессов наилучшие результаты получены для катализаторов Pt/Al2O3, Rh/Al2O3 и Ir/Al2O3. В гидрокрекинге применяют и полифункциональные катализаторы, содержащие Pt и цеолиты средней или низкой кислотности.

Процесс риформинга направлен на изомеризацию и ароматизацию н-пара-финов без изменения молекулярной массы (числа атомов углерода) в исходных молекулах в процессе превращений. Основные реакции:

б) дегидроциклизация парафинов

в) скелетная изомеризация

(с последующей скелетной изомеризацией олефинов)

Процессы гидрокрекинга являются нежелательными.

Риформинг используют для получения из нафты (температура кипения 80 - 160оС) высокооктановых бензинов и ароматических соединений, которые экстрагируют из бензинов и используют в качестве сырья для гидрокрекинга или для органического синтеза. Процесс проводят в интервале 380 - 520оС при давлении 10 - 40 атм на гетерогенных бифункциональных катализаторах - металлических и кислотных - Pt на промотированном Cl- или F- оксиде алюминия (или алюмосиликате). В последнее время используют Pt-Re/Al2O3 или полиметаллические катализаторы на Al2O3. Основной проблемой в процессе риформинга является процесс дезактивации и закоксовывания катализатора. Наличие Pt и, особенно, Re способствует уменьшению коксообразования по сравнению с процессом каталитического крекинга на алюмосиликатах - происходит гидрирование отлагающегося на носителе кокса и полимерных пленок. На рисунке представлена упрощенная диаграмма реакций (на примере превращений С6-углеводородов), развивающихся на кислотных центрах (вдоль оси абсцисс) и на металлических центрах (вдоль оси ординат):

Установлено также, что процессы дегидроциклизации парафинов могут проходить и целиком на металлических центрах, минуя стадию образования олефина, представленную на диаграмме. Разрыв С-Н связей в парафине на соседних центрах (атомах Pt) происходит с образованием -металлоорганических и металлкарбеновых интермедиатов:

Гидрогенолиз связей 2-3, 3-4 и 4-5 приводит к продуктам скелетной изомеризации н-алканов.

Изучена кинетика 53 индивидуальных реакций, характерных для риформинга бензиновой фракции, определены константы скорости первого порядка для различного вида углеводородов С6 - С10 и различных реакций. Получена упрощенная кинетическая модель очень сложного мультимаршрутного процесса риформинга, которую используют для расчета промышленных реакторов.

Процессы удаления серасодержащих соединений, присутствующих в нефтяных фракциях (и природном газе), включают процессы демеркаптанизации (окисление RSH) и гидрообессеривания (гидрирование алифатических и гетероциклических сульфидов). Последний процесс используют для предварительной обработки сырья риформинга и для обработки бензина, полученного в процессе каталитического крекинга. Обессеривание тяжелых фракций нефти дает продукты, включающие дизельное и реактивное топливо, котельное топливо и топливный мазут.

Катализаторы процесса - оксиды Co и Mo на Al2O3 или оксиды Ni и W на Al2O3, которые в условиях процесса взаимодействуют с H2S и переходят в сульфиды металлов. Такие катализаторы существенно менее активны по сравнению с Pt/Al2O3, но они не отравляются H2S. Процесс проводят в интервале температур 330 - 425оС и давлений 35 - 140 атм, в зависимости от вида фракции, подвергаемой гидроочистке. Регенерация катализаторов достигается путем выжигания кокса, образующегося на катализаторах.

При исследовании кинетики реакций (9), (10) и (11)

на катализаторах CoS-Mo2S3/Al2O3 были получены кинетические уравнения в рамках схемы Лэнгмюра-Хиншельвуда

где РТ - парциальное давление тиофена, Pi - парциальные давления тиофена и др. ароматических углеводородов.

Из уравнений (12) и (13) следует, что оба процесса - гидрогенолиз (9) и гидрирование бутена (11) происходят на разных центрах катализатора. Механизм реакции пока не ясен, однако упрощенная стадийная схема включает активацию Н2 на металле восьмой группы (Ni2+, Co2+) и адсорбцию тиофена на анионной вакансии, связанной с Mo(III) или W(III). Восстановленные атомы Ni(0) и осуществляют разрыв связи C-S:

Схематически на поверхности сульфидного катализатора, представленного в ионной форме, происходят следующие процессы ( - анионная вакансия):

На ионах, расположенных в прямоугольнике, могут находиться делокализованные электроны. Появились уже примеры гидрогенолиза связей C-S с участием комплексов переходных металлов. Исследования таких систем позволят установить механизм процесса и природу возможных интермедиатов.

Вопросы для самоконтроля

Назовите катализаторы гидрирования и дегидрирования органических соединений.

Охарактеризовать механизм активации водорода комплексами металлов и металлами.

Варианты кинетических моделей процессов гидрирования.

Назвать основные реакции в процессе гидрокрекинга - газоочистки нефтяных фракций.

Основные реакции процесса риформинга.

Описать механизм реакции дегидрирования на платиновых катализаторах.

Представить схематически возможный механизм гидрогенолиза тиофена на Ni-W-катализаторах.

Литература для углубленного изучения

Гейтс Б., Кетцир Дж., Шуйт Г., Химия каталитических процессов, М., Мир, 1981, с. 227 - 390, с. 476 - 543.

Шапиро Р.Н., Каталитический риформинг бензинов, Химия и технология, Л., 1985.

Эрих В.Н., Расина М.Г., Рудин М.Г., Химия и технология нефти и газа, Л., Химия, 1985, с. 214 - 281.

Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте. Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.

>>>>> Перейти к скачиванию файла с работой
Кстати! В нашей группе ВКонтакте мы бесплатно помогаем с поиском рефератов, курсовых и информации для их написания. Не спешите выходить из группы после загрузки работы, мы ещё можем Вам пригодиться ;)

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.

Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.


Заказать реферат (курсовую, диплом или отчёт) без рисков, напрямую у автора.


Похожие работы:
Воспользоваться поиском


Похожие учебники и литература 2019:
Готовые списки литературы по ГОСТ


Аналитическая химия

Характеристика переходных элементов – меди, цинка, хрома, железа

Фармацевтическая химия. Конспект лекций

Белки и аминокислоты


Перейти в список рефератов, курсовых, контрольных и дипломов по
дисциплине Химия

Процессы дегидрирования связаны с отщеплением водорода от молекул органических веществ. Напротив, гидрирование – химические превращения веществ, состоящее в присоединении водорода к этим веществам. Гидрирование-дегидрирование часто это пара обратимых реакций: СН3 – СН3 ↔ СН2 = СН2 + Н2.

Реакции гидрирования можно разделить на несколько групп.

1.Каталитическое гидрирование, или присоединение водорода по месту кратных связей (С==С, С≡С, С=N, Салиф.—Сар. и т. д.). Изменяя условия проведения реакции, можно получать частично или полностью насыщенные водородом соединения:


2. Присоединение водорода к гетероатомным соединениям без вытеснения или с вытеснением этих гетероатомов в виде воды, сероводорода, аммиака и т. д. (например, гидрирование альдегидов и кетонов до спиртов; гидрирование азот-, кислород- или серосодержащих соединений с выделением аммиака, воды, сероводорода соответственно — так называемый процесс гидроочистки):


3. Деструктивное гидрирование (гидрогенолиз, гидрокрекинг) — процесс, сопровождающийся расщеплением углерод-углеродных связей, причем получающиеся осколки молекул присоединяют водород, образуя насыщенные соединения меньшей молекулярной массы:


4. Реакции сопряженного гидрирования — дегидрирования, т. е. перераспределение водорода между двумя молекулам без участия молекулярного водорода:


Каталитическое гидрирование осуществляется в присутствии некоторых металлов или их оксидов, которые активируют водород или переводят его в атомарное состояние (в молекулярном состоянии водород неактивен). Некаталитическое гидрирование практически не проводят, так как энергия диссоциации связи Н—Н очень высока (435 кДж/моль).

Многие органические соединения при нагревании в присутствии катализаторов способны выделять водород, превращаясь при этом в ненасыщенные соединения.

Каталитическое дегидрирование подробно изучал Н. Д. Зелинский с сотрудниками. Реакции каталитического дегидрирования очень многочисленны и разнообразны. Их можно классифицировать следующим образом:

1) дегидрирование углеводородов;

2) дегидрирование кислородсодержащих соединений;

3) дегидрирование азотсодержащих соединений.

Процессы дегидрирования очень тесно связаны с процессами гидрирования, и, по существу, они являются системой обратимых превращений.

Реакции гидрирования протекают с выделением тепла, а дегидрирования — с поглощением тепла. С учетом только термодинамических факторов способность к гидрированию для различных соединений уменьшается в ряду:


Теплота реакции гидрирования зависит от класса исходного соединения (теплоты реакций дегидрирования, обратных соответствующим реакциям гидрирования, имеют ту же абсолютную величину, но противоположны по знаку):


Реакции дегидрирования и гидрирования широко используются в промышленности для получения топлива, синтетического каучука, циклогексана, получение олефинов С2—С4, высших изоолефинов из парафинов, получение бутадиена и изопрена, стирола, ацетилена и некоторые другие.

Применяемые для процессов гидрирования и дегидрирования катализаторы можно разделить на следующие группы:

1. Металлы VIII группы и 1 группы ;


2. Оксиды металлов и др.);


3. Сульфиды металлов ;

4. Сложные катализаторы, состоящие из двух и более металлов , оксидов , сульфидов .

Обычно катализаторы используют:

-в диспергированном виде (коллоидные Рd, Ni и др.); такие катализаторы получают путем термического разложения или восстановления солей соответствующих металлов непосредственно в реакционной массе;

-в измельченном или таблетированном виде; такие катализаторы получают осаждением из солей с последующей промывкой, сушкой, прокаливанием;

-на носителях; такие катализаторы получают восстановлением оксидов, осажденных на поверхность носителя.

Температура оказывает на скорость гидрирования (в отличие от дегидрирования) небольшое влияние. Обычно при повышении температуры на 30—50 0 С скорость примерно удваивается, что соответствует энергии активации 5—10 ккал/моль (21—42 кДж/моль).

По способности к гидрированию разные классы соединений располагаются в следующие ряды:

Олефины> Ацетилены > Ароматические углеводороды

Адьдегиды> Кетоны> Нитрилы> Карбоновые кислоты.

Гидрирование можно проводить при самых различных условиях: в газовой или в жидкой фазе, с растворителем или без него, при температурах от —100 до +500°С и давлениях от 0,1 до 1∙10 7 кПа в зависимости от активности катализатора, причем в случае катализаторов с низкой активностью высокую температуру сочетают с высоким давлением.

Реакция дегидрирования обратима, идет с поглощением тепла и увеличением объема (за счет выделения водорода) по общей схеме:


По принципу Ле Шателье смещению равновесия вправо способствуют высокая температура и низкое давление.

Теоретически дегидрирование может протекать при 200 °С и выше, но при этом увеличивается продолжительность времени нагревания реакционной массы, что способствует вторичным реакциям расщепления. При температурах выше 700°С скорость дегидрирования возрастает, но одновременно ускоряются и реакции расщепления, причем во много раз быстрее, чем реакции дегидрирования. Оптимальной температурой дегидрирования является 500—650 °С, что определяет осуществление процесса в газовой фазе.

Применение катализаторов позволяет увеличить скорость дегидрирования при сравнительно низкой температуре, когда еще не получили развития вторичные реакции.

от нескольких месяцев до 1—2 лет.

Механизм реакций гидрирования и дегидрирования: Эти процессы относятся к типу гомолитических превращений, в принципе подобных гетерогеннокаталитическим реакциям окисления. Важную роль играет хемосорбция реагентов на активных центрах (К), при которой за счет электронных переходов с участием катализатора ослабляются или полностью разрываются химические связи в адсорбированной молекуле. Так, разными методами показано, что, когда водород сорбируется металлами, за физической адсорбцией следует частичное ослабление связей и затем диссоциация молекулы:


Насыщенные углеводороды сорбируются в меньшей степени, но для них также возможна диссоциация по С—Н-связи:


Олефины, ароматические соединения и в еще большей мере ацетилен и его гомологи обладают высокой способностью к сорбции, которая протекает в основном за счет частичного или полного раскрытия ненасыщенной связи:


Окисные катализаторы ведут себя подобным же образом, но их способность к хемосорбции водорода и углеводородов меньше, чем у металлов. Органические кислородсодержащие и азотистые соединения лучше сорбируются на окисных катализаторах, чем на металлах.

Дальнейшее взаимодействие протекает между двумя хемосорбированными частицами, находящимися на соседних активных центрах поверхности, или между хемосорбированной частицей и физически адсорбированной или налетающей из объема молекулой. При этом в равновесных процессах гидрирования-дегидрирования обратима каждая элементарная стадия:


Реакции гидрирования карбонильных соединений и дегидрирования спиртов имеют некоторые особенности. Для них возможен карбонильный механизм с хемосорбцией по С—О- связи, а также енольный механизм, когда реакция протекает по С—С-связи и включает стадию енолизации карбонильного соединения. Опыты с мечеными веществами показали, что при низкой температуре преобладает первый, а при более высокой — второй механизм:

Читайте также: