История возникновения и развития хроматографических методов анализа реферат

Обновлено: 05.07.2024

Жидкостную хроматографию используют при анализе смесей нелетучих загрязняющих веществ. Ионная хроматография представляет собой процесс, который позволяет разделение ионов и полярных молекул в зависимости от их заряда. Его можно использовать практически для любого вида заряженных молекул белков в том числе крупных, малых нуклеотидов и аминокислот. Часто используется в очистки белков, в анализе воды, и в контроле качества.

Содержание

ВВЕДЕНИЕ……………………………………………………………… …3
1 ТЕОРЕТИЧСЕКИЕ ОСНОВЫ ХРОМАТОГРАФИИ …………… . 4
1.1 Сущность хроматографического метода…………………………… …5
1.2 Основные характеристики хроматографического процесса……… ….7
1.3 Классификация хроматографических методов…………………… …..7
2 МЕТОДЫ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА………… …11
2.1 Газовая хроматография…………………………………………………14
2.2 Жидкостная хроматография……………………………………………14
2.3 Адсорбционная хроматография………………………………………..18
2.4 Ионообменная хроматография…………………………………………21
2. 5 Тонкослойная и бумажная хроматография…………………………. 26
ЗАКЛЮЧЕНИЕ…………………………………………………………….31
СПИСОК ЛИТЕРАТУРЫ ………………………………………………..32

Работа содержит 1 файл

хромотография.doc

Министерство образования и науки Республики Казахстан

Карагандинский государственный университет

им. академика Е.А.Букетова

Кафедра физической и аналитической химии

Допущена к защите

доцент Пустолайкина И.А.

Проверила: к.х.н., доцент

1 ТЕОРЕТИЧСЕКИЕ ОСНОВЫ ХРОМАТОГРАФИИ …………… . 4

1.1 Сущность хроматографического метода…………………………… …5

1.2 Основные характеристики хроматографического процесса……… ….7

1.3 Классификация хроматографических методов…………………… …..7

2 МЕТОДЫ ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА………… …11

2.1 Газовая хроматография…………………………………………… ……14

2.2 Жидкостная хроматография…………………………………………… 14

2.3 Адсорбционная хроматография……………………………………….. 18

2.4 Ионообменная хроматография………………………………………… 21

2. 5 Тонкослойная и бумажная хроматография…………………………. 26

Хроматографические методы анализа это одно из самых лучших средств контроля загрязнения окружающей среды. Он позволяет анализировать сложные смеси веществ.

Главные достоинства: точность, экспрессность, наибольшая чувствительность способность определять малое количество вещества. Как аналитический метод, произвел революцию химического анализа за последние 60 лет, и особенно важен для смесей трудно разделимых и трудно анализируемых.

Из всех хроматографических методов наиболее значимое место занимает тонкослойная, жидкостная и ионная хроматография.

Тонкослойная хроматография чаще всего используется при определении пестицидов и органических загрязнителей. Преимущество данного метода высокая скорость анализа, высокое качество разделения, так же возможность выбора одной из статичных фаз, обладающих наиболее подходящими свойствами.

Высокоэффективная жидкостная хроматография метод, который отделяет смесь соединений и используется в биохимии и аналитической химии для идентификации, количественного определения и очищение отдельных компонентов смеси.

Жидкостную хроматографию используют при анализе смесей нелетучих загрязняющих веществ. Ионная хроматография представляет собой процесс, который позволяет разделение ионов и полярных молекул в зависимости от их заряда. Его можно использовать практически для любого вида заряженных молекул белков в том числе крупных, малых нуклеотидов и аминокислот. Часто используется в очистки белков, в анализе воды, и в контроле качества.

1 ТЕОРЕТИЧСЕКИЕ ОСНОВЫ ХРОМАТОГРАФИИ

Хроматография – важнейший аналитический метод. Хроматографическими методами можно определять газообразные, жидкие, и твердые вещества с молекулярной массой от единиц до 106. Это могут быть неорганические вещества, например, ионы металлов, изотопы водорода, и органические – белки, синтетические полимеры и т.д. С помощью хроматографии получена обширная информация о строении и свойствах органических соединений многих классов.

Хроматографию с успехом применяют в исследовательских и клинических целях в различных областях биохимии и медицины, в фармацевтике, криминалистике, пищевой промышленности, для мониторинга окружающей среды. Универсальность, экспрессность, чувствительность метода обуславливают частое использование хроматографии в аналитических целях.

Возникновение хроматографии как научного метода связано с именем русского ученого-ботаника М.С.Цвета, который впервые применил явление адсорбции для анализа зеленой части хлорофилловых пигментов листьев. В 1903 г. М.С.Цвет опубликовал статью, в которой сформулировал принцип нового метода и наглядно показал возможность отделения зеленой части хлорофилловых пигментов от желтой и оранжевой с помощью углекислого кальция (адсорбента). Однако метод хроматографии не использовался вплоть до 1930 года, когда немецкие биохимики Кун, Ледерер, Винтерштейн повторили опыты Цвета и успешно разделили каротин на отдельные изомеры, предсказанные Цветом. С этого времени хроматография стала развиваться в самых разнообразных направлениях.

Первые публикации, посвященные применению метода Цвета в неорганическом анализе, относятся к 1937 году и принадлежат Швабу и его сотрудникам. В этих работах приведена методика качественного анализа смесей некоторых катионов и анионов на стеклянной колонке с оксидом алюминия. С 1938 г. широкое распространение получил метод тонкослойной хроматографии, разработанный Н.А.Измайловым и М.C.Шрайбер.

Значительные успехи в разделении и анализе неорганических веществ были достигнуты в 50-х годах, когда в практику хроматографии были введены в качестве адсорбентов ионообменные смолы, что способствовало развитию ионообменной хроматографии. В 1941 году английские ученые Мартин и Синдж предложили метод распределительной хроматографии в жидкостно-жидкостном варианте. В 1948 г. русские ученые Е.H. Гапон и Т.Б. Гапон предложили осадочную хроматографию, основанную на различной растворимости осадков в подвижной фазе. Первая работа по газовой хроматографии в России была выполнена Н.М. Туркельтаубом в 1949г. В 1952 году Джеймс и Мартин применили газожидкостную хроматографию к анализу жирных кислот. Дальнейшему развитию газовой хроматографии способствовали работы русских ученых А.A. Жуховицкого, М.C. Вигдергауза, A.B. Киселева, Д.A. Вяхирева, А.В. Березкина и других. Более 10 работ (1957–1980), выполненных с применением хроматографических методов, были удостоены Нобелевских премий

1.1 Сущность хроматографического метода

Метод хроматографии используются экспертами различных сфер биологии, физики, геологии и конечно химии. Преимущество хроматографического метода заключается в том, что часто возникает необходимость разделять смеси веществ на их составляющие по причине необходимости получения сверхчистых веществ.
Хроматографический метод основывается на распределении компонентов смесей между двумя фазами – неподвижной (статичной) и подвижной (элюент), идущей через неподвижную. Следовательно, компоненты находящиеся в разных фазах не представляют труда при разделении.

Когда же компоненты смеси однофазные, разделение происходит труднее.

В этом случае метод хроматографии осуществляет изменение агрегатного состояния некоторых компоненто в (например, выпадение осадка). Также может применить физические или химические методы разделения.

Дистилляция, кристаллизация, экстракция и адсорбция – в основе всех этих методов разделения, используемых в хроматографах, лежит изменение фазовых равновесий. Во время применения данных методов в хроматографах молекулы веществ, которые образуют смесь, переходят через границу раздела фаз, стремясь к такому распределению, при котором в каждой фаз устанавливается постоянная равновесная концентрация.
При близости свойств компонентов исследуемой смеси достаточной степени разделения в хроматографе можно достигнуть только многократным повторением элементарного акта разделения. В таких случаях полное разделение в хроматографах достигается только для простых систем, которые содержат не более трех компонентов. Примером является использование многократного разделения в насадочных или тарельчатых ректификационных колоннах (хроматографа).

Для получения более полного разделения, метод хроматографии использует наложение действия кинетического фактора на эффект, вызываемый многократным установлением фазовых равновесий. При использовании кинетических явлений (в хроматографии при молекулярной дистилляции), через границу раздела фаз только в одном направлении переносятся молекулы лишь одного вещества. Если хроматографом производится разделение смеси в таких системах, в которых подвижная фаза перемещается относительно неподвижной, то улавливание и удаление молекул, покидающих границу раздела фаз, происходит благодаря постоянному перемещению подвижной фазы. При этом молекулы, выходя из подвижной фазы, возвращаясь в нее, попадают в новый элемент объема.
Хроматография получает высокую эффективность разделения, если фазовые переходы повторяются многократно в процессе разделения. Так как в хроматографии фазовые переходы связаны с поверхностью раздела, то подвижная и неподвижная фазы должны обладать большой поверхностью соприкосновения, а из-за наличия диффузионных процессов, снижающих эффективность разделения, фазы должны иметь относительно небольшую толщину взаимодействующего слоя.

В определенной степени эти требования выполняются в методе разделения смеси веществ, получившем название собственно хроматографического.

В данном случае в качестве неподвижной фазы берется мелкоизмельченный сорбент, им наполняется стеклянная или металлическая трубка, и движение подвижной фазы (жидкости или газа) осуществляется за счет перепада давления на концах этой трубки. Подобное устройство представляет собой хроматографическую колонку (колонку хроматографа). Смесь веществ, которую нужно разделить, вместе с потоком подвижной фазы поступает в колонку хроматографа. При контакте с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси в соответствии с его свойствами (например, адсорбируемостью или растворимостью) распределяется между подвижной и неподвижной фазами. Из-за непрерывного движения подвижной фазы во взаимодействие с неподвижной фазой вступает только часть распределяющегося компонента. При этом другая его часть продвигается дальше в направлении потока и вступает во взаимодействие с другим участком поверхности неподвижной фазы. Поэтому только при достаточно медленном движении подвижной фазы, на небольшом слое неподвижной фазы происходит распределение вещества между подвижной и неподвижной фазами.

При хроматографии компоненты смеси, которые были поглощены неподвижной фазой, не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому для прохождения всего слоя неподвижной фазы в колонке хроматографа каждому из них потребуется большее время, чем молекулам подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсорбируемостью или растворимостью), то время пребывания их в этой фазе, а, следовательно, и средняя скорость передвижения по колонке хроматографа различны. Если колонка хроматографа имеет достаточную длину, то это различие может привести к полному разделению смеси на составляющие ее компоненты.

Хроматографический метод применяется не только для разделения и анализа смеси веществ. На данном этапе хроматография широко используется и как метод научного исследования, например, для исследования свойств сложных систем, в частности растворов.
Итак, хроматография – это процесс, основанный на перемещении дискретной зоны вещества вдоль слоя сорбента в потоке подвижной фазы и связанный с многократным повторением сорбционных и десорбционных актов. Хроматография осуществляется при сорбционном распределении вещества между двумя фазами, одна из которых перемещается относительно другой.
Состав смеси, которая покидает колонку хроматографа, постоянно меняется. Здесь, в отличии от экстракции или ректификации, нельзя отбирать в течение всего процесса непрерывно одну и ту же фракцию, или одно и то же вещество (за исключением специальных случаев, когда имеет место движение слоя сорбента).

1.2 Основные характеристики хроматографического процесса

Основные характеристики хроматографического процесса. Коэффициент распределения. Удерживаемый объем и время удерживания. Коэффициент емкости. Коэффициент удерживания, его физический смысл. Селективность и эффективность хроматографического разделения. Коэффициент разделения. Разрешение.

Теория равновесной хроматографии. Связь скорости перемещения вещества вдоль слоя неподвижной фазы с коэффициентом распределения и изотермой сорбции. Зависимость формы хроматографического пика от вида изотермы сорбции.

Размывание хроматографической зоны и его физические причины. Неравновесная хроматография. Основы концепции теоретических тарелок. Связь с противоточным распределением. Число теоретических тарелок и эффективность колонки. Понятие о ВЭТТ. Недостатки концепции теоретических тарелок.

Кинетические теории хроматографии. Факторы, влияющие на размывание зон (вихревая диффузия, молекулярная диффузия, сопротивление массопередачи в подвижной и неподвижной фазах). Зависимость ВЭТТ от скорости потока. Уравнение Ван-Деемтера. Принципиальная схема хроматографа. Выбор параметров хроматографического определения. Идентификация веществ. Количественный анализ. Измерение площадей и высот пиков. Методы внутреннего и внешнего стандартов. Источники ошибок, воспроизводимость измерений.

1.3 Классификация хроматографических методов

В основу классификации многочисленных хроматографических методов положены следующие признаки:

Помимо химических методов качественного анализа известны другие методы идентификации химических элементов и их соединений. Так, то или иное вещество можно обнаружить физическими методами анализа, не прибегая к химическим реакциям, или физико-химическими методами путем изучения и наблюдения физических явлений, происходящих при химических реакциях.

К таким методам, называемым часто инструментальными, относятся следующие методы качественного анализа;

Очень часто химические методы сочетают с физическими и физико-химическими методами анализа, что обеспечивает более высокую чувствительность и более точные результаты анализа. Повышение чувствительности и избирательности методов имеет большое значение для анализа особо чистых веществ, содержащих следовые количества примесей. Для определения малых количеств (следов) примесей используют методы предварительного выделения, концентрирования (обогащения) микропримесей. К числу этих методов относятся:

> дистилляция (отгонка) летучих соединений и некоторые другие методы.

Сочетая те или иные методы концентрирования с физическими или физико-химическими методами анализа, можно достичь высокой степени чувствительности, во много раз превышающей чувствительность отдельных методов. Так, сочетая предварительную экстракцию определяемых примесей с последующим использованием спектрального анализа, можно повысить чувствительность определения от 10—10% до 1О—1О%.

2. Хроматографический анализ

В широком смысле слова хроматография - это разделение двух- и многокомпонентных смесей газов, паров жидкостей или растворенных веществ сорбционными методами в динамических условиях: Обычно разделение происходит при прохождении потока смеси через колонку, содержащую слой зерненого сорбента. При этом даже близкие по составу или строению вещества различно поглощаются сорбентами, происходит избирательная адсорбция, сильно сорбирующиеся вещества поглощаются в верхней части колонки, а слабее сорбирующиеся продвигаются дальше. Достигается разделение смеси на отдельные компоненты по длине колонки при повторяющихся процессах сорбции и десорбции в элементарных слоях. Хроматографические разделения используются для качественного и количественного анализа.

Хроматография — современный и высокоэффективный метод, позволяет достаточно быстро и надежно определять содержание отдельных компонентов в смесях, концентрировать и идентифицировать эти компоненты. Она эффективна не только в химическом анализе, но и в химической технологии.

В биологии и агропромышленной сфере хроматографическое разделение и концентрирование используют перед количественным определением микроэлементов, а также для обнаружения пестицидных соединений в окружающей среде. При технологическом контроле пищевых производств хроматография служит для очистки веществ, анализа смесей органических кислот, аминокислот и других продуктов.

3. Классификация методов хроматографии

Хроматографические методы классифицируют по агрегатному состоянию среды, в которой осуществляется разделение смеси на компоненты; механизму (или химизму) процесса разделения; форме (аппаратуре или технике) проведения хроматографического процесса.

По агрегатному состоянию среды для разделения смеси различают газовую, жидкостную и газожидкостную хроматографию.

По механизму разделения смесей выделяют адсорбционную, ионообменную распределительную, осадочную, лигандообменную хроматографию. Иногда выделяют окислительно-восстановительную, адсорбционно-комплексообразовательную хроматографию и др.

Различают колоночную, капиллярную и плоскостную хроматографии, т. е. хроматографию на бумаге (бумажную) и хроматографию в тонком слое (тонкослойную).

Особо стоят ионная и высокоэффективная жидкостная хроматография. В некоторых вариантах разделение смесей веществ происходит в результате наложения нескольких механизмов, действующих одновременно. При этом образуются хроматограммы смешанного типа, но один из механизме всегда остается преобладающим.

По способу получения хроматограмм в хроматографическом методе различают фронтальный, вытеснительный и элюентный анализы. При фронтальном анализе исследуемую смесь непрерывно подают в верхнюю часть колонки сорбента. Если раствор двухкомпонентный, т.е.

содержит вещества А и В, то первым из колонки вытекает чистый растворитель, а после насыщения сорбента менее сорбирующимся веществом В, вытекает раствор, содержащий только компонент В. Но когда сорбент насытится веществом А, в приемник начинают поступать и компонент А и компонент В, т.е. оба компонента исходного раствора. Таким образом, при фронтальном анализе удается получить в чистом виде только одно, наименее сорбирующееся вещество двухкомпонентной (или многокомпонентной) смеси, полного разделения смеси на отдельные компоненты не происходит.

При вытеснительном анализе в колонку вводят порцию раствора, содержащего вещества А и В, которые поглощаются сорбентом. Затем эти компоненты вытесняются более сорбирующимся веществом О, т. е, компоненты вытесняются в соответствии с их избирательной сорбируемостью. Вследствие этого, компоненты А и В перемещаются вдоль слоя сорбента со скоростью, равной скорости движения вытесняющего вещества В. Сначала из колонки вытекает фракция, содержащая менее сорбируемый компонент В, а затем — компонент А, следовательно, при вытеснительном анализе получают в чистом виде веществ* двухкомпонентной (или многокомпонентной) смеси.

При элюентном анализе в колонку вводят порцию исследуемого раствора содержащего несколько компонентов (А, В, С) и непрерывный поток растворителя. В полученной хроматограмме положение компоненте соответствует их сорбируемости, например А> В > С, т.е. нижняя зон; хроматограммы содержит чистое вещество С. Затем колонну промывают чистым растворителем и компоненты смеси перемещаются вдоль нее вытесняя друг друга. Франции фильтрата содержат сначала компонент С затем В и, наконец, компонент А.

Массу каждого компонента, выделенного из смеси тем или иным хроматографическим методом, определяют обычными химическими, физико-химическими или физическими методами.

4. Краткие сведения о хроматографических методах анализа

В аналитической практике широко применяют хроматографические методы анализа.

Впервые хроматографический метод анализа был предложен 1903г. русским ученым М. С. Цветом.

Сущность хроматографического метода анализа заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку, наполненную твердым адсорбентом. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение (адсорбция) отдельных компонентов анализируемой смеси. Стеклянную трубку, заполненную адсорбентом, называют адсорбционной колонкой.

Вследствие различной адсорбируемости и скорости передвижения отдельных веществ, находящихся в анализируемом растворе, компоненты смеси удерживаются на различной высоте столба адсорбента в виде отдельных зон (слоев). Вещества, обладающие большей способностью адсорбироваться, поглощаются в верхней части адсорбционной колонии, хуже адсорбируемые - располагаются ниже. Вещества, не способные адсорбироваться данным адсорбентом, проходят через колонну, не задерживаясь, и собираются в фильтрате.

5. Виды хроматографического метода анализ.

По механизму разделения различают следующие, виды хроматографического метода анализа: адсорбционную, распределительную, ионообменную, осадочную, окислительно-восстановительную и адсорбционно-комплексообразовательную хроматографию.

Адсорбционная хроматография основана на избирательной адсорбции (поглощении) отдельных компонентов анализируемой смеси соответствующими адсорбентами. При работе этим методом анализируемый раствор пропускают через колонку, заполненную мелкими зернами адсорбента.

На характере получаемых хроматограмм сильно сказываются природа и структура адсорбента, свойства растворителя, состав и строение анализируемого вещества, скорость движения раствора, температура и т. п. Применяют адсорбционную хроматографию преимущественно для разделения неэлектролитов, паров и газов.

Распределительная хроматография основана на использовании различия коэффициентов распределения, отдельных компонентов анализируемой смеси между двумя несмешивающимися жидкостями. Одна из жидкостей (неподвижная) распределена на пористом веществе (носитель), а вторая (подвижная) представляет собой растворитель, не смешивающийся с первым. Этот растворитель пропускают через колонку с небольшой скоростью.

Различные значения коэффициентов распределения обеспечивают неодинаковую скорость движения, и разделения компонентов смеси.

Коэффициентом распределения вещества между двумя несмешивающимися растворителями называют отношение концентрации вещества в одном (в нашем случае подвижном) растворителе к концентрации того же вещества в другом (неподвижном) растворителе.

В распределительной хроматографии одним из растворителей обычно служит вода. Она является неподвижным растворителем и находится в порах носителя, например крахмала или силикагеля. Разделение при помощи распределительной хроматографии выполняют следующим путем. Анализируемую смесь веществ, растворенную в воде, вводят в колонку и, после того как раствор впитается верхней частью носителя, промывают колонку подвижным растворителем (например, бутиловым спиртом или смесью растворителей). В процессе промывания происходит непрерывное перераспределение веществ смеси между двумя несмешивающимися жидкостями (вода - растворитель). Поскольку разные компоненты смеси имеют различные коэффициенты распределения, то и скорость передвижения отдельных компонентов тоже различна. Наибольшей скоростью движения обладает то вещество, которое имеет наибольший коэффициент распределения. При промывании колонки образуются отдельные зоны чистых веществ.

В последнее время в качестве носителя для неподвижного растворителя вместо колонии используют полоски или листы фильтровальной бумаги, не содержащей минеральных примесей. В этом случае каплю водного испытуемого раствора, например смесь растворов солей железа (III) и кобальта; наносят на край полоски бумаги. Бумагу подвешивают в закрытой камере, опустив ее край с нанесенной на него каплей испытуемого раствора в сосуд с растворителем, например с н-бутиловым спиртом. Растворитель, перемещаясь по бумаге, смачивает ее. При этом каждое содержащееся в анализируемой смеси вещество с присущей ему скоростью перемещается в том же направлении, что и растворитель. По окончании разделения ионов бумагу высушивают и за тем опрыскивают реактивом. Образующиеся при этом зоны в виде окрашенных пятен позволяют установить состав смеси. Такой вид распределенной хроматографии называют бумажной хроматографией.

Бумажная хроматография в сочетании с применением органических реактивов дает возможность провести качественный анализ сложных смесей катионов и анионов. На одной хроматограмме при помощи одного реактива можно обнаружить ряд веществ, так как для каждого вещества характерно не только соответствующее окрашивание, но и определенное место локализации на хромато грамме.

Хроматография на бумаге с успехом применима для разделения очень близких по химическим свойствам компонентов, определение которых обычными химическими методами затруднительно.

Одним из видов распределительной хроматографии также является тонкослойная хроматография, или хроматография в тонких слоях, Разделение проводят на пластинках, покрытых тонким слоем носителя (оксид алюминия, кизельгур, силикагель и др.), удерживающего неподвижный растворитель.

Особым видом распределительной хроматографии является газо­жидкостная хроматография, широко применяемая в различных областях науки и промышленности для анализа газов и паров легкокипящих жидкостей. В качестве неподвижной фазы используют различные малолетучие растворители, а в качестве подвижной фазы — газообразные азот, водород, гелий. Для проведения газо-жидкостной хроматографии применяют приборы, называемые хроматографами.

Ионообменная хроматография основана на способности компонентов анализируемой смеси вступать в обменные реакции с подвижными нонами адсорбента. В этом случае анализируемый раствор пропускают через хроматографическую колонку, заполненную мелкими зернами ионообменного вещества (ионитом) - катионитом или анионитом. Иониты представляют собой нерастворимые неорганические и органические высокомолекулярные соединения, содержащие активные группы. Подвижные ноны этих групп способны при контакте с растворами электролитов обмениваться на катионы или анионы растворенного вещества. В качестве ионитов применяют оксид алюминия (для хроматографии), сульфоуголь и разнообразные синтетические органические, ионообменные смолы.

Иониты делят на катиониты, способные к катионному обмену; аниониты способные к анионному обмену, и ионообменные вещества, обладающие амфотерными свойствами, т. е. способные и к анионному, и к катионному обмену.

Ионообменную хроматографию применяют в аналитической химии для разделения ионов, отделения катионов от анионов и для концентрирования ионов.

Осадочная хроматография основана на различной растворимости осадков, образуемых компонентами анализируемой смеси со специальными реактивами, нанесенными па высокодисперсное вещество. Анализируемые растворы пропускают через колонку, заполненную пористым веществом (носителем). Носитель пропитан реактивом - осадителем, который образует с ионами раствора осадки, имеющие различную растворимость. Приготовление осадителя на носителе осуществляется либо путем пропитывания носителя раствором осадителя, либо путем рас тирания носителя с осадителем.

Образовавшиеся осадки в зависимости от растворимости располагаются в определенной последовательности по высоте колонки.

Осадки закрепляются на колонке в результате задержания их в порах носителя, поверхностного взаимодействия кристаллов осадка с зернами носителя и сорбции на носителе вступившего в реакцию осадителя.

Окислительно-восстановительная хроматография. В окислительно-восстановительной хроматографии разделение веществ обусловливается неодинаковыми скоростями реакций окисления — восстановления, протекающих между окислителем и восстановителем, которые содержатся в колонках, и нонами хроматографируемого раствора.

Адсорбционно-комплексообрааовательная хроматография. В адсорбционно-комплексообразовательной хроматографии разделение веществ обусловливается различием в константах устойчивости их комплексных соединений. В качестве носителей используют сорбенты, способные удерживать комплексообразующий реагент и продукты его реакции с катионами металлов.

Таким образом, хроматография это метод разделения, обнаружения и определения веществ, основанный на различии их поведения в системе из двух несмешивающихся фаз - подвижной и неподвижной. Это наиболее распространенный, надежный и универсальный прием разделения самых разнообразных смесей. Хроматография не только метод разделения. Поскольку хроматографические процессы зависят от природы и 11

концентрации веществ, хроматография является важным методом идентификации и определения веществ.

Список использованных источников

1. Аналитической химии. Физико-химические методы анализа. Под ред. Е. Н. Дорохова, Г. В. Прохорова, - М.: Высш. шк. 1991. - 256с.

2. Курс аналитической химии. Качественный анализ, книга первая. Под ред. А. П. Крешков. Изд. 5-е, исправленное. - М.: Химия, 1981. - 416 с.

3. Курс аналитической химии: Учеб. для с.-х. вузов. - 6-е изд., испр. и доп. - М .: Высш. шк. 1994. - 495с.

4. Аналитическая химия. Книга 2. Физико-химические методы анализа. Под ред. В.П. Васильева, - М.: Дрофа, 2004. - 384с

История возникновения хроматографии как науки относится к 1903 году, когда в трудах Варшавского университета появилась программная статья русского ученого Михаила Семеновича Цвета “О новой категории адсорбционных явлений и их применению к биохимическому анализу”(он впервые разделил растительные пигменты). Как оказалось впоследствии, именно в этой работе впервые были изложены основы хроматографического метода.

Содержание

Краткая история развития хроматографии. 2
Теоретические основы метода. 3
Порядок работы прибора. 5
Качественный газохроматографический анализ. 8
Количественный газохроматографический анализ. 10
V.I. Параметры пика как характеристика количества вещества. 10
V.II.Методы количественного анализа в хроматографии 13

Области применения газовой хроматографии. 14

Прикрепленные файлы: 1 файл

Контрольная работа.doc

    1. Краткая история развития хроматографии. 2
    2. Теоретические основы метода. 3
    3. Порядок работы прибора. 5
    4. Качественный газохроматографический анализ. 8
    5. Количественный газохроматографический анализ. 10

V.I. Параметры пика как характеристика количества вещества. 10

V.II.Методы количественного анализа в хроматографии 13

    1. Области применения газовой хроматографии. 14

I.Краткая история развития хроматографии.

История возникновения хроматографии как науки относится к 1903 году, когда в трудах Варшавского университета появилась программная статья русского ученого Михаила Семеновича Цвета “О новой категории адсорбционных явлений и их применению к биохимическому анализу”(он впервые разделил растительные пигменты). Как оказалось впоследствии, именно в этой работе впервые были изложены основы хроматографического метода.

Михаил Семенович Цвет был ботаником-биохимиком с широкими чисто химическими интересами. М. С. Цвет не только открыл само явление разделения, правильно понял физический смысл происходящих процессов, но даже предложил и терминологию, которая сохранилась до настоящего времени. Более того, М. С. Цвет прекрасно понимал, что открытый им метод успешно применим не только для разделения смесей окрашенных соединений, но и для разделения смесей бесцветных веществ, т.е. понимал универсальность этого метода. Он пишет: “Конечно, описанные адсорбционные явления наблюдаются не только в случае окрашенных пигментов хлорофилла. Можно предполагать, что все виды окрашенных и бесцветных веществ подчиняются тем же законам”. В настоящее время заслуги М. С. Цвета признаны во всем мире. Та хроматография, которую открыл М. С. Цвет, классифицируется по принятой классификации как адсорбционная хроматография или молекулярная хроматография. Однако, по существу, М. С. Цвет является первооткрывателем всей хроматографии, поскольку то, что начало развиваться потом, произошло на основе именно этих работ М. С. Цвета. Как развивались события в научном мире после работ М. С. Цвета?

Хроматографию сначала использовали очень редко, она появилась слишком рано и в то время еще не могла быть понята и принята по достоинству.

Скрытый период развития хроматографии окончился в 1931 году, после того, как Э. Ледерер, прочитав сделанный Г. Вильштетером рукописный перевод книги М. С. Цвета на немецкий язык, провел хроматографическое разделение каротинов. С этого времени хроматография и стала широко использоваться в ботанических и биохимических лабораториях.

В 1952−1953 годах А. Мартин и Д. Синг осуществили вариант газовой распределительной хроматографии.

С середины 70-х годов начинается период интенсивного раз- вития высокоэффективной жидкостной хроматографии.

С середины 80-х годов получили развитие практическое использование флюидной хроматографии и полная компьютеризация всего хроматографического процесса.

II. Теоретические основы метода.

Хроматография [гр. сhromatos − цвет + grapho − пишу] – метод разделения, анализа и физико-химических исследований веществ, основанный на перемещении зоны вещества вдоль слоя сорбента в потоке подвижной фазы с многократным повторением сорбционных и десорбционных актов. При этом разделяемые вещества распределяются между двумя несмешивающимися фазами (в зависимости от их относительной растворимости в каждой фазе): подвижной и неподвижной.

Несмотря на то, что метод газовой хроматографии был открыт только в 1952 году, теория процесса разделения смесей веществ этим методом на настоящее время разработана гораздо глубже, чем для других методов. Это объясняется прежде всего тем, что методы газовой хроматографии использовались в практике гораздо интенсивнее других. Отличительной особенностью газовой хроматографии от других методов хроматографических разделений является то, что используемая подвижная фаза должна обязательно находится в газообразном состоянии и выполнять роль газа-носителя, перемещающего разделяемые соединения по колонке. В качестве газов-носителей могут быть использованы индивидуальные газы, газообразные соединения или смеси газов и газообразных соединений. Например: водород, гелий, азот, аргон и углекислый газ. Наиболее часто используют азот, как более доступный и дешевый.

Характерными особенностями газовой хроматографии являются:

• Высокая разделительная способность: по своим возможностям анализа многокомпонентных смесей газовая хроматография не имеет конкурентов. Ни один другой метод не позволяет анализировать фракции нефти, состоящие из сотен компонентов, в течение одного часа.

• Универсальность: разделение и анализ самых различных смесей – от низкокипящих газов до смесей жидких и твердых веществ с температурой кипения до 500 о С и выше – характеризует универсальность метода. В нефтехимической и газовой промышленности 90−100 % всех анализов можно выполнять методом газовой хроматографии.

• Высокая чувствительность: высокая чувствительность метода обусловлена тем, что применяемые детектирующие системы позволяют надежно определять концентрации 10-8 – 10-9 мг/мл. Используя методы концентрирования и селективные детекторы, можно определять микропримеси с концентрациями до 10-10 %.

• Экспрессность: экспрессность газовой хроматографии подчеркивается тем, что продолжительность разделения в большинстве случаев составляет 10−15 минут, иногда при разделении многокомпонентных смесей 1−1.5 часа. Однако за это время анализируется несколько десятков или сотен компонентов. В некоторых специальных случаях время разделения может быть меньше одной минуты.

• Легкость аппаратурного оформления: газовые хроматографы относительно дешевы, достаточно надежны, имеется возможность полной автоматизации процесса анализа.

• Малый размер пробы: газовая хроматография по существу метод микроанализа, поскольку для анализа достаточно пробы в десятые доли мг.

• Высокая точность анализа: погрешность измерений ± 5 % относительных легко достигается практически на любой газохроматографической аппаратуре. В специальных условиях достигается погрешность ± 0.001−0.002 % относительных.

Следует отметить и существующие ограничения метода газовой хроматографии:

• невозможность разделения и анализа смесей нелетучих соединений;

• осложнения при разделении и анализе термически нестабильных соединений;

• невозможность разделения и анализа соединений, способных к диссоциации в анализируемых растворах (разделение ионов)

классификация вариантов основывается только на особенностях неподвижной фазы. В качестве неподвижной фазы в газовой хроматографии используется или твердый адсорбент, или жидкость, нанесенная в виде тонкой пленки на адсорбционно-инертный твердый носитель. В соответствии с типом используемых неподвижных фаз газохро- матографические методы подразделяются на газо-адсорбционный и газо-жидкостный.

Наиболее часто используемые в газовой хроматографии твердые адсорбенты целесообразно разделить на четыре группы: • углеродные адсорбенты( графитированная термическая сажа, активированный уголь, углеродные молекулярные сита); • адсорбенты с высоким содержанием кремниевой кислоты(силикагель, пористые стекла, цеолитовые молекулярные сита); • оксид алюминия; • органические адсорбенты(пористые сополимеры стирола и дивинилбензола).

В том случае, если используемый твердый носитель неподвижной жидкой фазы проявляет адсорбционные свойства, реализуется промежуточный вариант газовой хроматографии – газо-жидко-твердофазная хроматография.

III. Порядок работы прибора.

Устройство ввода подаёт в поток газа-носителя определенное количество анализируемой смеси в газообразном состоянии непосредственно перед колонкой. Правильный ввод пробы предполагает обязательное выполнение трех основных требований: • обеспечение минимального размывания пробы в системе ввода пробы; • обеспечение максимальной точности и воспроизводимости дозируемого количества образца; • обеспечение неизменности количественного и качественного состава смеси до и после дозирования.

В зависимости от агрегатного состояния анализируемой пробы используются различные способы их ввода. Ввод газообразных проб можно осуществить либо с помощью обычного медицинского шприца, либо используя специальные дозирующие устройства(газовый кран, газовый шток, газовая петля).

Ввод жидких проб. В первых газохроматографических приборах жидкая проба вводилась в колонку с помощью микропипетки. При этом поток газа- носителя прерывался. В 1954 году Рэй предложил метод ввода пробы в непрерывно движущийся поток газа-носителя с помощью шприца через самоуплотняющуюся резиновую мембрану. Устройство для ввода жидких проб должно быть обязательно снабжено испарителем, в котором образец мгновенно испаряется, смешивается с газом- носителем и поступает в хроматографическую колонку. В хроматографической колонке осуществляется разделение смеси на отдельные составляющие компоненты за счёт процессов сорбции и десорбции веществ на неподвижной фазе. При этом слабо сорбируемые вещества, будут переноситься подвижной фазой по колонке с большей скоростью и наоборот. Хроматографические колонки в соответствии с их назначением подразделяются на колонки аналитические, колонки препаративные и так называемые предколонки. Главное назначение аналитической хроматографической колонки состоит в том, чтобы разделить многокомпонентную смесь на серию бинарных смесей компонент-газ-носитель для которых уже может быть применен прибор, регистрирующий состав этой смеси и позволяющий установить качественный состав анализируемой смеси и количественное содержание каждого из компонентов. Препаративные хроматографические колонки предназначены для получения методами газовой хроматографии в чистом виде необходимых количеств тех или иных компонентов, присутствующих во вводимой в колонку пробе. Предколонки позволяют решить задачу предварительного концентрирования компонентов пробы из достаточно больших объемов для последующего их разделения или решить задачу извлечения из объема анализируемой пробы мешающих разделению компонентов

Из колонки разделённые компоненты смеси попадают в детектор. Детектор регистрирует присутствие веществ, отличающихся по физической или физико-химическим свойствам от газа-носителя, и преобразует возникающие изменение в электрический сигнал. В газовой хроматографии используют широкий круг детекторов, которые можно подразделить на интегральные и дифференциальные. Интегральные – регистрируют изменение во времени суммарного количества всех компонентов, дифференциальные – измеряют мгновенную концентрацию компонентов.

Дифференциальные детекторы в свою очередь подразделяют на концентрационные и потоковые. В концентрационном детекторе сигнал определяется текущей концентрацией в ячейке и многократно регистрируется, зависит от скорости потока. Детектор такого типа – катарометр.

Потоковый детектор регистрирует сигнал однократно, сигнал определяется мгновенным значением концентрации, не зависит от скорости потока. Пример такого детектора – пламенно-ионизационный детектор.

Прохождение в детекторе газа-носителя без пробы на хроматограмме отражается фоновым сигналом детектора, который называется нулевой линией. Нулевая линия имеет высокочастотные колебания – шум. Изменение сигнала нулевой линии детектора во времени называется дрейфом. При прохождении через детектор анализируемого компонента происходит отклонение уровня сигнала детектора от нулевой линии. Это отклонение отображается на хроматограмме в виде пика. Пик на хроматограмме имеет следующие характеристики: время удержания – время от начала анализа до выхода максимума пика. Время удержания – качественная характеристика анализируемого компонента, площадь и высота – количественной характеристики. Площадь – область, ограниченная профилем пика и базовой линией. Высота – расстояние от вершины пика до базовой линии.

Хроматография — способ разделения смесей, который изобрел русский ученый Михаил Семенович Цвет в 1900 году. Заключается в различии свойств компонентов смесей, разнице их реакций при нахождении в одинаковых условиях.

История хроматографии

Михаил Семенович Цвет

С 1910 по 1930 гг. этот метод почти не исследовался.

Следующее упоминание в истории принадлежит европейским ученым Р. Куну, А. Виртенштейну, Э. Ледеру. В 1931 году, используя этот метод, они выделили из сырого каротина составляющие a- и b-каротин.

Важным этапом развития стало открытие в 1941 году английскими естествоиспытателями А. Мартином и Р. Сингом жидкостного варианта, где подвижное вещество — бумага, смоченная водой с бутанолом.

В 1975 году ученые из США ввели в терминологию новый вариант хроматографии — ионную.

Суть метода хроматографии

Метод хроматографии основан на постоянно повторяющихся с конкретной периодичностью процессах сорбции-десорбции, которые происходят между подвижным веществом с растворенной в нем пробой (элюентом) и неподвижным (сорбентом). Компоненты исследуемой смеси имеют различную степень сорбции (впитывания), за счет чего поглощаются сорбентом с различной скоростью и степенью. Суть метода заключается в многократном повторении этих процессов. Получившиеся пробы после изучения в хроматограмме позволяют уточнить состав реактива.

Теоретические основы хроматографии

В теории этот метод представляет собой последовательный процесс уравновешивания составляющих смеси, когда происходит деление на 2 части — подвижную и недвижную.

Понятия и определения метода зафиксированы ГОСТ 17567-81.

Выделяют адсорбцию, когда поглощение происходит на поверхности границ и абсорбцию, когда вещества расходятся между 2-х фаз.

Виды хроматографии

Виды хроматографии классифицируют по особенностям процесса разделения (по данным Википедии):

  • агрегатное состояние неподвижной (сорбент) и подвижной (элюент) фазы: газовая, жидкостная, флюидная, полифазная;
  • природа взаимодействия сорбента (удерживающее вещество) и сорбата, сорбтива (удерживаемое вещество): адсорбционная, ионообменная, распределительная, осадочная;
  • способ введения элюента: фронтальная, вытеснительная, проявительная;
  • техника проведения (капиллярная, колоночная, на бумаге);
  • цели хроматографирования (аналитическая, препаративная, промышленная).

Хроматография

Классификация эта весьма условна. Все виды тесно связаны между собой. Так, в аналитической по цели использует проявительную по способу введения элюента. Кроме того, в каждом показателе могут выделяться дополнительные критерии. В технике проведения дополнительное влияние дают технические условия (высокое или низкое давление).

Капиллярная хроматография

Лекции по капиллярной начинаются с ответа на вопрос о том, для чего она нужна. Быстрое развитие метода привело к вопросу разделения смесей, состоящих из веществ, близких по физическим и химическим свойствам. Новую капиллярную колонку для решения этих задач изобрел М. Голей в 1957 году. Ее диаметр изменяется в пределах 0.05-0.15 мм, стандартный диаметр — 0.11 mm, а длина — 40-200 мкм. Самая длинная колонка достигала 477 м.

Данный вид позволяет решать различные экологические задачи — исследование воздуха на наличие летучих органических соединений (кратко — ЛОС), определение содержания пестицидов в почве. Разработаны методики:

  • измерения концентраций ЛОС в воздухе — методика 1633-2013;
  • определения содержания нефтяных продуктов в воде — ГОСТ 31953-2012;
  • определения состава газа — ГОСТ 3-2008 с правками 2019 года.

Первоначально этот метод использовался для исследования качества нефтепродуктов, определения процентного содержания нефти в бензине.

Препаративная хроматография

Препаративная ставит цель выделять чистое вещество из смеси, причем в значительных количествах. Особенность — выполнение непрерывного разделения смеси. Для получения большего количества вещества увеличивают объем колонки в хроматографической установке.

Аналитическая хроматография

Используя аналитическую, проводят качественный и количественный анализ соединений — оксидов, кислот, окисей, полимеров.

В конце колонки расположен аппарат, измеряющий концентрацию вещества в элюенте — детектор. Время, прошедшее с момента поступления вещества в колонку до наступления максимальной концентрации вещества, называется время удерживания в хроматографии. Эта величина постоянна для каждого вещества, если в колонке поддерживается постоянная внешняя и внутренняя температура, и на основе этих данных делают качественный анализ.

Бумажная хроматография

Количественный анализ осуществляется через измерение площади и расположения пиков на хроматограмме.

Хроматография практическая

Современный метод хроматографии предназначен для решения практических задач. Сегодня использование этого метода актуально в биологии, криминалистике, химии, медицине, быту. Самые простые примеры доступны для проведения даже дошкольнику. Для опыта с чернилами разного цвета и простой водой в качестве растворителя не требуется современного оборудования, сложных расчетов и технологичной лаборатории. Школьники и студенты вузов проводят опыт по размыванию чернил на уроках химии.

Флюидная хроматография

К высокоэффективным видам относится флюидная. Процесс в данном случае проходит в сверхкритических условиях, где в качестве подвижной фазы берут газ, больше похожий на гель. Достоинство этого вида — определение верного состава любых микросоединений, которые не дают сигнал спектроскопам или другим детекторам.

С помощью флюидной хроматографии успешно анализируется состав лекарственных средств, продуктов, полимеров, сырой нефти, ПАВов.

Хроматография аминокислот

Данный метод играет большое значение при идентификации аминокислот и белков. Проводится техникой на листе бумаги по распределительному принципу. Определение вида аминокислоты проходит в несколько этапов:

Основные достоинства этого метода: точность получаемых данных и легкость расчетов.

Разновидности хроматографии по механизму разделения веществ

  • Адсорбционная. Определение вещества происходит по степени его адсорбции, т. е. возможности его поглощения поверхностью вещества.
  • Распределительная основана на различных степенях растворимости определяемого вещества в подвижной и неподвижной фазах.
  • Ионообменная основана на способностях к обмену ионами в атомах вещества с неподвижной фазой. Происходит замещение ионов в неподвижной фазе ионами вещества, при этом возникновение разницы в скорости приближения ионов к неподвижной фазе приводит к разделению элюента вследствие изменения концентрации вещества в фазах.

Хроматограф аффинный

Процессы ионообменной хроматографии применяются для изучения биологических жидкостей (кровь, моча, плазма) и диагностики заболеваний.

  • Осадочная изучает степень растворимости осадка, получившегося после проведения химической реакции с компонентом твердой фазы, а также скорости его осаждения.
  • Аффинная основана на способности соединений притягиваться с высокой избирательностью к сорбенту. Элюирование (вымывание) вещества из общей массы — это аффинный метод хроматографии.

На характере взаимодействия между сорбентом и сорбатом основывается классификация по механизму разделения веществ.

Разновидности хроматографии по агрегатному состоянию фаз

По агрегатному состоянию фазы хроматографические методики бывают четырех видов.

Газовая: жидкостно-газовая и газо-твердофазная. Подвижной фазой выступает инертный газ (гелий, азот, водород, диоксид углерода) или воздух, который должен быть чистым, инертным по отношению к сорбенту и исследуемому веществу, хорошо растворять смесь. Неподвижной фазой служит либо жидкость, либо вещество.

Одним из направлений газовой является парофазный анализ, отличие которого заключается в том, что изучается не жидкий или твердый объект, а газовая фаза (пар).

Флюидная. Подвижная находится в сверхкритических условиях — высокое давление, критическая температура.

Полифазная. Неподвижная фаза — смесь твердых и жидких компонентов.

Данные методы используются для исследования смесей органических соединений.

Качественный анализ в хроматографии

Качественный анализ пробы проводится на хроматографе, который измеряет и записывает характеристики, составляет схему. Полученную по результатам исследования хроматограмму изучают, высчитывают, используя формулы, закон Генри, уравнение Ван-Деемтера, сравнивают с эталонными градуировками и делают расшифровку.

Жидкостная хроматография

Исходные графические данные, на основе которых проводят качественный анализ, называют элюционными характеристиками (параметрами). К ним относятся:

  • время удерживания (activity, активности);
  • ширина и высота элюционной кривой;
  • ширина зоны на слое;
  • удерживаемый объем;
  • индекс удерживания;
  • эффективность (число тарелок);
  • селективность.

Методики постоянно улучшаются и дорабатываются — составляются специальные таблицы по результатам испытаний, что позволяет получать более точные данные для качественного проведения исследований.

Где применяется хроматография

Первоначально этот метод был применен в биологии первооткрывателем М. С. Цветом. В настоящее время он используется практически во всех сферах — промышленности, медицине, экологии, криминалистике, фармацевтике.

Хроматография в биологии

Хроматография в биологии в настоящее время применяется на постоянной основе. Основным методом хроматографии в биологии является газовый. Это проведение тестов на уровень содержания пестицидов в почве, вредных веществ в воде и воздухе. Метод ЖХ/МС/МС, объединяющий жидкостное хроматографирование и тандемную масс-спектрометрию, вместе с центрифугированием используется при расщеплении липидов, белков, углеводов до простых компонентов для дальнейшего их исследования, которым занимается наука протеомика.

Хроматография в химии

Хроматография — это в химии один из основных методов исследования, позволяющий получить точные и проверенные данные. Представители IUPAC (Международного союза теоретической и прикладной химии) участвовали в разработке стандартов обозначения хроматографических процессов.

Различные виды метода применяются для исследования свойств анаэробных и аэробных веществ, извлечения из смеси веществ необходимого препарата. Каждое предприятие химической промышленности использует хроматографические методы на этапе контроля качества сырья и других технологических процессов.

Хроматография в медицине

В клинической медицине эти методы применяются в тесной взаимосвязи с биологией. Изучение беременности, хромосом, медицинское лечение различных микробных инфекций, патологий, отравлений происходит без использования антибиотиков и сывороток, основываясь на принципах жидкостно-адсорбционной хроматографии, где неподвижная фаза — адсорбент, жидкая — кровь, плазма, лимфа, а разделяемая смесь — внутренние жидкости с метаболитами токсинов.

Хроматография в криминалистике

Криминалистические хроматографические методы предполагают решение государственных задач через проведение исследований в следующих областях:

  • поиск и идентификация отпечатков пальцев тела;
  • медико-биологический анализ ДНК для идентификации личности человека;
  • аппаратурное определение состава ядов, наркотиков, взрывчатых веществ;
  • анализ состава чернил, бумаги, алкоголя.

В криминалистике широкое применение получили две разновидности жидкостного метода: хроматографирование в тонких слоях сорбента и 2-й — хроматография на бумаге.

Хроматография в цитологии

Хроматография нефти

На НПЗ хроматографический метод применяется для определения физических свойств нефти (теплопроводности, плотности), уровня содержания серосодержащих примесей. Так как от этого напрямую зависит качество продуктов — бензина, моторного топлива, трансформаторного масла.

Хроматография в фармации

В фармацевтической отрасли хроматографические методы применяются в нескольких науках: фармакопея (лат. pharmacopoeia), фармация и фармакогнозия. В фармакопейном анализе широкое применение получил ионообменный вид и метод спектрометрии, с помощью которых удается выделить из смеси микроскопически малые части за небольшой промежуток. В косметологии в состав средств для ухода за волосами входит метилпропансульфокислота, получаемая препаративным методом.

Где используется хроматография в быту

В домашних условиях возможно бесплатно провести самые простые эксперименты, демонстрирующие сущность разных видов хроматографии.

Опыт с бумагой (можно взять обыкновенную промокашку) и спиртовым экстрактом календулы прекрасно демонстрирует принцип действия бумажной.

Если капнуть на бумагу сначала эфирный раствор календулы, а затем этиленгликоль, в итоге через небольшой промежуток времени на бумаге образуется несколько разноцветных колец. Прослеживается прямопорциональная зависимость количества веществ в смеси и количества колец.

Селективность в хроматографии

Селективность — это свойство одного объекта подбирать свойства другого объекта, работающего в тандемной связке, под свои потребности для решения задачи.

В хроматографии используют термин селективность колонки, и чем она выше, тем лучших результатов можно достичь. Возможность выбирать сорбент, состав растворителя, химическую структуру и свойства компонентов смеси, температуру колонки — это факторы, изменение которых выводит селективность на высокий уровень.

Индекс удерживания в хроматографии

Индекс удерживания вещества — это величина, измеряющая время нахождения молекулы изучаемого вещества в подвижной фазе.

Неподвижная фаза в хроматографии

Неподвижная фаза — это вещество, которое выступает в роли сорбента для анализируемых веществ. Неподвижной фазой выступает твердое вещество с пористой поверхностью, в некоторых случаях жидкости.

Электрофорез и хроматография

Электрофорез, используя ток, и хроматография решают одни и те же задачи — разделение смеси веществ, выделение их составляющих. Но при этом есть существенное отличие. Процесс электрофореза — электрохимический, он состоит из неподвижной и мокрой подвижной фазы, а 2-ой использует стационарную и подвижную фазы.

Применяют в медицине в биохимии жидкостей (крови, плазмы).

Что общего между экстракцией и хроматографией

Экстракция — это разделение смеси жидких или твердых веществ. Активируют селективные растворители (экстрагенты). Общее с хроматографическими методами — деление исследуемого вещества на части и его выделение из общей массы.

ТСХ хроматография и ГСО

ТСХ (расшифровка — тонкослойная хроматография) протекает при перемещении подвижной фазы на тонком слое (до 0,20 см) неподвижного сорбента, нанесенного на твердую поверхность — пластинку (стекло, металл, малеинизированный полимер, акриламидо).

Испытание лекарственных средств на абсолютную подлинность и посторонние примеси — основная задача этой методики.

Тонкослойная хроматография

В исследованиях, для обеспечения чистоты полученных результатов, в качестве сорбента и растворителя используют вещества высшего класса по государственным стандартным образцам (ГСО).

Виды детекторов в хроматографии

Пробы исследуются в хроматографе, который фиксирует и анализирует все изменения пиков, используя градуировочные детекторы. Основные из них:

  • пламенно-ионизационный;
  • фотоионизационный;
  • электронного захвата;
  • термоионизационный;
  • инфракрасный;
  • рефрактометрический;
  • электронозахватный;
  • масс-спектрометрический;
  • хемосорбционный;
  • радиоактивный.

Это насадочные приборы, применяемые в хроматографии. Каждый год, и в 2017, и 2020 годах, изобретаются новые модификации и формы детекторов.

Достоинства хроматографии

К преимуществам относят:

  • одновременное разделение вещества на фракции и его изучение;
  • эффективность разделения из-за многократного повторения цикла сорбция — десорбция;
  • определение и выделение из смеси заданного типа препарата одновременно;
  • относительная быстрота достижения цели;
  • высокая чувствительность (100х6);
  • отсутствие химических превращений анализируемого вещества.

Это отличает хроматографические методы от других.

Недостатки хроматографии

Есть отдельные недостатки у каждого вида.

  • необходимо сложное оборудование и проведение долгого обучения;
  • невысокая скорость протекания реакций;
  • большая цена.
  • плохая нелабораторная воспроизводимость результата;
  • невозможность разделения веществ с близкими свойствами.

Диапазон применения хроматографических методов очень широк: от исследования составляющей клетки до объектов Солнечной системы. Эти методы незаменимы в нефтехимической, пищевой, газовой, экологической промышленностях на этапе контроля и поддержания оптимального графика производства.

Читайте также: