История развития вакцинации реферат

Обновлено: 04.07.2024

24 марта 1882 года, когда Роберт Кох объявил о том, что сумел выделить бактерию, вызывающую туберкулёз, ученый достиг величайшего за всю свою жизнь триумфа.

Почему все же именно открытие возбудителя туберкулеза называют научным подвигом?

Дело в том, что возбудители болезни туберкулеза – чрезвычайно трудный объект для исследования. В первых препаратах для микроскопии, сделанных Кохом из легочной ткани молодого рабочего, умершего от скоротечной чахотки, ни одного микроба обнаружить не удалось. Не теряя надежды, ученый провел окраску препаратов по собственной методике и впервые под микроскопом увидел неуловимого возбудителя туберкулеза.

На следующем этапе необходимо было получить пресловутые микробактерии в чистой культуре. Еще несколько лет назад Кох нашел способ культивирования микробов не только на подопытных животных, но и в искусственной среде, например, на разрезе сваренного картофеля или в мясном бульоне. Он попытался таким же способом культивировать и бактерии туберкулеза, но они не развивались. Однако когда Кох впрыснул содержимое раздавленного узелка под кожу морской свинки, та погибла в течение нескольких недель, а в ее органах ученый нашел огромное количество палочек. Кох пришел к выводу, что бактерии туберкулеза могут развиваться только в живом организме.

Желая создать питательную среду, подобную живым тканям, Кох решил применить сыворотку животной крови, которую ему удалось раздобыть на бойне. И действительно, в этой среде бактерии быстро размножались. Полученными таким образом чистыми культурами бактерий Кох заразил несколько сотен подопытных животных разных видов, и все они заболели туберкулезом. Ученому было ясно, что возбудитель заболевания найден. В это время мир был возбужден открытым Пастером методом предупреждения заразных болезней с помощью прививок ослабленных культур бактерий, вызывающих данную болезнь. Поэтому Кох считал, что ему удастся тем же способом спасти человечество от туберкулеза.



26 декабря 1891 года Эмиль фон Беринг спас жизнь больному ребенку, сделав ему первую прививку от дифтерии.

До начала XX века дифтерия ежегодно уносила тысячи детских жизней, а медицина была бессильна облегчить их страдания и спасти от тяжелой агонии.

Немецкий бактериолог Фридрих Лёффлер в 1884 году сумел открыть бактерии, вызывающие дифтерию — палочки Corynebacterium diphtheriae. А ученик Пастера Пьер Эмиль Ру показал, как действуют палочки дифтерии и доказал, что все общие явления дифтерии — упадок сердечной деятельности, параличи и прочие смертельные последствия – вызваны не самой бактерией, а вырабатываемым ею ядовитым веществом (токсином), и что вещество это, введенное в организм, вызывает эти явления само по себе, при полном отсутствии в организме дифтерийных микробов.

Но Ру не умел обезвредить яд и не мог найти способ спасения больных детей. В этом ему помог ассистент Коха Беринг. В поисках средства, которое убивало бы бактерии дифтерии, Беринг делал прививки зараженным животным из разных веществ, но животные погибали. Однажды для прививки он использовал трихлорид йода. Правда, и на этот раз морские свинки тяжело заболели, но ни одна из них не погибла.

Воодушевленный первой удачей, Беринг, дождавшись выздоровления подопытных свинок, сделал им прививку, содержавшую дифтерийный токсин. Животные превосходно выдержали прививку, несмотря на то, что получили огромную дозу токсина. Затем ученый выяснил, что если сыворотку крови перенесших дифтерию и выздоровевших морских свинок ввести заболевшим животным, те выздоравливают. Значит, в крови переболевших появляется какой-то антитоксин, который нейтрализует токсин дифтерийной палочки.

Уже позже, в 1913 году, Беринг предложил введение смеси токсина и антитоксина для выработки у детей активного иммунитета. И это оказалось наиболее действенным средством защиты (пассивный иммунитет, возникающий после введения одного только антитоксина, недолговечен). Профилактическая сыворотка, которая употребляется теперь против дифтерии, была найдена доктором Гастоном Рамоном, работником Пастеровского института в Париже, много лет спустя после открытия Лефлера, Ру и Беринга.

В конце XIX в. немецкий ученый Пауль Эрлих (1854-1915) положил начало учению об антителах как факторах гуморального иммунитета. Бурная полемика и многочисленные исследования, предпринятые после этого открытия, привели к весьма плодотворным результатам: было установлено, что иммунитет определяется как клеточными, так и гуморальными факторами. Таким образом, было создано учение об иммунитете. П. Эрлих в 1908 г. был удостоен Нобелевской премии по физиологии за создание клеточной теории иммунитета, которую он разделил с Ильей Ильичом Мечниковым. .

1892 год считается годом открытия новых организмов — вирусов .

Впервые существование вируса (как нового типа возбудителя болезней) доказал русский учёный Дмитрий Иосифович Ивановский . Дмитрий Иосифович обнаружил вирусы в результате изучения заболевания табачных растений.

Пытаясь найти возбудителя опасной болезни – табачной мозаики (проявляется на многих, особенно тепличных растениях в виде скручивающихся трубочкой, желтеющих и опадающих листьев, в некрозе плодов, нарастающих боковых почек), Ивановский несколько лет занимался исследованиями в Никитском ботаническом саду под Ялтой и в ботанической лаборатории АН.

Зная из работ голландского ботаника А.Д. Майера о том, что мозаичную болезнь табака можно вызвать переносом сока больных растений здоровым, ученый растирал листья больных растений, процеживал сок через полотняный фильтр и впрыскивал его в жилки здоровых листьев табака. Как правило, инфицированные растения перенимали болезнь.

Ботаник тщательно изучал под микроскопом больные листья, но не обнаружил ни бактерий, ни еще каких-либо микроорганизмов, что неудивительно, так как вирусы размером от 20 до 300 нм (1 нм = 109 м) на два порядка меньше бактерий, и их в оптический микроскоп увидеть нельзя. Считая, что в инфицировании виноваты все-таки бактерии, ботаник стал пропускать сок через специальный фарфоровый фильтр Э. Шамберлана, но, вопреки ожиданиям, инфекционные свойства отфильтрованного сока сохранялись, то есть, фильтр не улавливал бактерии.

1921 год ознаменовался изобретением живой бактериальной вакцины против туберкулеза (БЦЖ).

В 1908 году они работали в Институте Пастера в Лилле. Их деятельность охватывала получение культур туберкулёзной палочки и исследования различных питательных сред. При этом ученые выяснили, что на питательной среде на основе глицерина, жёлчи и картофеля вырастают туберкулёзные палочки наименьшей вирулентности (от лат. virulentus— ядовитый, сумма свойств микроба, определяющая его болезнетворное действие).

С этого момента они изменили ход исследования, чтобы выяснить, нельзя ли посредством повторяющегося культивирования вырастить ослабленный штамм для производства вакцины. Исследования продлились до 1919 года, когда вакцина с невирулентными (ослабленными) бактериями не вызвала туберкулёз у подопытных животных. В 1921 году ученые создали вакцину БЦЖ ( BCG - Bacille bilie' Calmette-Gue'rin) для применения на людях.

Общественное признание вакцины проходило с трудом, в частности, из-за случавшихся трагедий. В Любеке 240 новорождённых были привиты в 10-дневном возрасте. Все они заболели туберкулёзом, 77 из них умерли. Расследование показало, что вакцина была заражена вирулентным (неослабленным) штаммом, который хранился в том же инкубаторе. Вина была возложена на директора больницы, которого приговорили к 2 годам лишения свободы за халатность, повлёкшую смерть.

Многие страны, получившие от Кальметта и Герена штамм БЦЖ (1924-1925 гг.), подтвердили его эффективность и вскоре перешли к ограниченной, а затем и к массовой вакцинации против туберкулеза. В СССР штамм БЦЖ был привезен Л .А. Тарасевичем в 1925 году и обозначен BCG-I.

Вакцина БЦЖ выдержала испытание временем, ее эффективность проверена и доказана практикой. В наши дни вакцина БЦЖ является основным препаратом для специфической профилактики туберкулеза, признанным и используемым во всем мире. Попытки приготовления противотуберкулезной вакцины из других ослабленных штаммов или отдельных фракций микробных клеток пока не дали значимых практических результатов.

В 1923 году французский иммунолог Г. Рамон получил столбнячный анатоксин, который стал применяться для профилактики заболевания. Научное изучение столбняка началось во второй половине XIX века. Возбудитель столбняка был открыт почти одновременно русским хирургом Н. Д. Монастырским (в 1883 году) и немецким ученым А. Николайером (в 1884 году). Чистую культуру микроорганизма выделил в 1887 г. японский микробиолог С. Китазато, он же в 1890 г. получил столбнячный токсин и (совместно с немецким бактериологом Э. Берингом) создал противостолбнячную сыворотку.


По современным подсчётам, вакцина стоила бы $7 млрд, если бы была запатентована на момент выпуска.

12 апреля 1955 г . в США успешно завершилось крупномасштабное исследование, подтвердившее эффективность вакцины Джонаса Солка – первой вакцины против полиомиелита . Эксперименты по созданию противополиомиелитной вакцины Солк начал в 1947 году. Вакцина из предварительно умерщвленных формалином полиовирусов была испытана Американским национальным фондом по борьбе с полиомиелитом. Впервые вакцина, созданная из предварительно умерщвленных формалином полиовирусов, прошла испытание в 1953-54 гг. (тогда ее тестировали добровольцы), а с 1955 года она получила уже широкое применение.

В исследовании приняло участие около 1 млн детей в возрасте 6-9 лет, из которых 440 тыс. получили вакцину Солка. По свидетельству очевидцев, родители с воодушевлением делали пожертвования на исследование и охотно записывали своих детей в ряды его участников. Сейчас это трудно представить, но в то время полиомиелит был самой грозной детской инфекцией, и родители со страхом ожидали прихода лета, когда регистрировался сезонный пик инфекции.

Результаты пятилетнего, с 1956 по 1961 год, массового применения вакцины превзошли все ожидания: среди детей в возрастных группах, особенно подверженных инфекции, заболеваемость снизилась на 96%.

В 1991 году Всемирная организация здравоохранения объявила, что в Западном полушарии полиомиелит побежден. В странах Азии и Африки, благодаря массовым вакцинациям, заболеваемость также резко снизилась. Позже вакцина Солка была заменена на более совершенную, разработанную Альбертом Сэйбином. Однако вклад Джонаса Солка в борьбу с полиомиелитом это ничуть не приуменьшило: в этой области он по сей день считается первопроходцем.


По современным подсчётам, вакцина стоила бы $7 млрд, если бы была запатентована на момент выпуска.

В 1981-82 гг. стала доступной первая вакцина против гепатита В. Тогда в Китае приступили к использованию вакцины, приготовленной из плазмы крови, полученной от доноров из числа больных, которые имели продолжительную инфекцию вирусного гепатита В. В том же году она стала доступна и в США. Пик её применения пришёлся на 1982-88 гг. Вакцинацию проводили в виде курса из трёх прививок с временным интервалом. При постмаркетинговом наблюдении после введения такой вакцины отметили возникновение нескольких случаев побочных заболеваний центральной и периферической нервной системы. В исследовании привитых вакциной лиц, проведённом через 15 лет, подтверждена высокая иммуногенность вакцины, приготовленной из плазмы крови.

С 1987 г. на смену плазменной вакцине пришло следующее поколение вакцины против вируса гепатита В, в которой использована технология генной модификации рекомбинантной ДНК в клетках дрожжевого микроорганизма. Её иногда называют генно-инженерной вакциной. Синтезированный таким способом HBsAg выделяли из разрушаемых дрожжевых клеток. Ни один способ очистки не позволял избавляться от следов дрожжевых белков. Новая технология отличалась высокой производительностью, позволила удешевить производство и уменьшить риск, происходящий из плазменной вакцины.

В 1983 году Харальд цур Хаузен ему обнаружил ДНК папилломавируса в биопсии рака шейки матки, и это событие можно считать открытием онкогенного вируса ВПЧ-16.

Еще в 1976 году была выдвинута гипотеза о взаимосвязи вирусов папилломы человека (ВПЧ) с раком шейки матки. Некоторые разновидности ВПЧ безвредны, некоторые вызывают образование бородавок на коже, некоторые поражают половые органы (передаваясь половым путем). В середине семидесятых Харальд цур Хаузен обнаружил, что женщины, страдающие раком шейки матки, неизменно заражены ВПЧ.

В то время многие специалисты полагали, что рак шейки матки вызывается вирусом простого герпеса, но цур Хаузен нашел в раковых клетках не вирусы герпеса, а вирусы папилломы и предположил, что развитие рака происходит в результате заражения именно вирусом папилломы. Впоследствии ему и его коллегам удалось подтвердить эту гипотезу и установить, что большинство случаев рака шейки матки вызваны одним из двух типов этих вирусов: ВПЧ-16 и ВПЧ-18. Эти типы вируса обнаруживаются примерно в 70% случаях рака шейки матки. Зараженные такими вирусами клетки с довольно большой вероятностью рано или поздно становятся раковыми, и из них развивается злокачественная опухоль.

Исследования Харальда цур Хаузена в области ВПЧ-инфекции легли в основу понимания механизмов канцерогенеза, индуцированного вирусом папилломы. Впоследствии были разработаны вакцины, которые позволяют предотвратить инфекцию вирусами ВПЧ-16 и ВПЧ-18. Это лечение позволяет сократить объем хирургического вмешательства и в целом снизить угрозу, представляемую раком шейки матки.

В 2008 году Нобелевский комитет присудил Нобелевскую премию в области физиологии и медицины Харальду цур Хаузену за открытие того, что вирус папилломы может вызывать рак шейки матки.

Опасные для жизни заразные заболевания преследовали человечество на протяжении всей его истории, не раз ставя под вопрос его существование, как вида. Эпидемии уносили огромное количество человеческих жизней, вершили судьбы людей, независимо от их положения в обществе и материального достатка. Они решали исходы мировых войн и самых значимых исторических событий. В поисках защиты от смертельных инфекций врачи Старого Мира испробовали много методов: от использования примитивных дезинфицирующих средств до заклинаний и заговоров. Но новая эпоха борьбы с инфекционными болезнями началась только после изобретения первых вакцин.

Вакцинация: первые опыты


Переломным в истории вакцинации стал далекий 1796 год, когда английский врач и талантливый ученый Э. Дженнер сделал важное заявление, положившее начало массовых прививок и эффективной борьбе по отношению к натуральной оспе. Он подметил, что фермеры, работающие с больными на коровью оспу животными, не болеют на человеческий аналог заболевания. Поэтому Дженнер провел революционный по тем временам эксперимент. Врач привил коровью оспу ребенку и довел, что после этого он стал неуязвимым к натуральной оспе. Благодаря действиям доктора Дженнера удалось открыть новую страницу в истории мировой вакцинации, хотя реальное научное объяснение прививок появилось лишь спустя сто лет.

Луи Пастер – отец современной вакцинации


Автором верного научного подхода к вакцинации считается известный ученый Л. Пастер, который изобрел способ предупреждения заразных вирусов путем введения в организм ослабленных возбудителей. Этот метод послужил прорывом в медицине и породил новую эру иммунизации, позволившую остановить смертоносные эпидемии по всему земному шару.

В своих исследованиях доктор использовал возбудителей куриной холеры. Он работал с разными концентрациями бактериального препарата, которые вызывали ту или иную степень тяжести болезни у кур. Однажды он ввел домашним птицам раствор недельной давности и наблюдал, что после введения куры переболели заболеванием в легкой степени с последующим выздоровлением всех особей. Естественно, Пастер предположил, что вакцина испортилась, а поэтому приготовил новую порцию препарата и применил его по отношению к птицам. К его удивлению, все куры не только не погибли, но и не заболели. Стало ясно, что использование ослабленных патогенных микроорганизмов способствует выработке специфического иммунитета и предупреждает инфицирование организма высоковирулентными штаммами.

1881 год был триумфальным для Пастера, как великого научного работника и основоположника вакцинации. Чтобы доказать правильность своего открытия, Пастер пошел на очередной опыт, на этот раз прибегнув к массовому введению микробов сибирской язвы десяткам коз, овец и коров. За экспериментом следило много людей. В результате опыта уже на второй день после прививки все непривитые особи погибли, тогда как вакцинированные остались здоровыми и живыми.

Уже спустя четыре года английским доктором была разработана вакцина от бешенства. На тот момент от этого заболевания погибало 100% инфицированных людей. Простые граждане боялись и болезни, и прививки, а поэтому частенько устраивали демонстрации протеста под окнами пастеровской лаборатории. Но все расставил на свои места случай, когда доктору привезли мальчика, искусанного бешеными животными. Укол экспериментальной сыворотки был единственным шансом ребенка на спасение, поэтому его родители легко согласились на вакцинацию.

Дело с прививкой получило огласку. При введении иммунной жидкости присутствовали не только ученые, но и пресса. Ребенка удалось спасти, и он полностью выздоровел, а Пастер обрел всемирное признание. Вскоре пациентами доктора стали другие больные бешенством люди, включая детей. После вакцины против инфекции им становилось намного лучше, и болезнь отступала. Изобретение позволило спасти миллионы жизней и послужила фундаментом для дальнейшего развития вакцинации, как научного направления по созданию протекции к инфекционным заболеваниям.

Вакцинация послепастеровских времен


На переломе 19-го века на территории современной Европы и России разгуливала холера, которая только за один год забрала жизни 300 тысяч россиян. Вакцину от холеры удалось разработать именно нашему соотечественнику и великому последователю Пастера Владимиру Хавкину. Иммунолог исследовал препарат на себе лично и на добровольцах. С помощью изобретенной прививки человечеству удалось остановить эпидемию и снизить заболеваемость холерой в тысячи раз.

В 1919 году благодаря стараниям французских ученых свет увидела вакцина от туберкулезной инфекции. Но массовая иммунопрофилактика туберкулеза началась во Франции только через пять лет. В СССР иммунопрофилактику болезни проводили с 1926 года. Вакцинация помогла снизить случаи заболеваемости туберкулезом и предупредить инфицирование населения, начиная с первых дней жизни.

Параллельно исследователи работали над прививкой от дифтерии, коклюша и столбняка. Эта суспензия успешно прошла все испытания в течение 1923-1928 годов.

Среди наиболее распространенных вирусов прошлого века следует отметить корь, которая ежегодно становилась причиной смерти миллиона людей. До изобретения вакцины против кори практически каждый житель планеты болел этим заболеванием. Впервые препарат от кори появился в Соединенных Штатах Америки в 1963 году, а с 1968 года начал использоваться для вакцинации населения в СССР. Это помогло приостановить эпидемию и спасти жизнь сотням тысяч потенциальных больных.

Современная медицина располагает сотней разновидностей вакцин для профилактики сорока с лишним инфекций. Сегодня вакцинация дала возможность избавить человечество от таких страшных болезней, как оспа и чума. Введение вакцинных растворов от дифтерии и столбняка в настоящее время признано наилучшим способом устранения симптомов патологий. Массовая вакцинопрофилактика стала неотъемлемой частью цивилизованного общества, которая снизила уровень смертности.

Статистические данные о вакцинации и основные даты из истории ее развития

Согласно официальной статистике, можно сделать следующие выводы об эффективности вакцинации:

  • после трех лет игнорирования иммунизации против полиомиелита в Чечне вспыхнула эпидемия, которую удалось подавить массовыми профилактическими мероприятиями (прививки) всего за несколько месяцев;
  • в странах третьего мира, где нет средств для проведения плановой вакцинопрофилактики от столбняка, смертность составляет до 200 тыс. человек ежегодно, среди которых большая половина – дети и роженицы;
  • корь имеет 100% заразность, поэтому очень быстро распространяется среди непривитого населения;
  • цивилизованным странам удалось полностью избавиться от проблемы холеры, сибирской язвы, дифтерии и полиомиелита.

Главными датами в исторической справке вакцинации являются:

  • 1769 год – первая иммунизация Дженнера против оспы;
  • 1885 год – прививка от бешенства, впервые проведенная Пастером;
  • 1891 год – успешное серолечение дифтерии в исполнении Беринга;
  • 1913 год – Беринг представляет первую очищенную вакцину от дифтерии;
  • 1921 год – начало вакцинопрофилактики туберкулеза;
  • 1936 год – иммунизация от столбняка и гриппа;
  • 1939 год – изобретение эффективной вакцины против клещевого энцефалита;
  • 1953 год – старт испытания противополиомиелитной вакцины (инактивированная форма);
  • 1956 год – выход на рынок полиомиелитной живой вакцины для перорального введения;
  • 1980 год – ВОЗ объявила о полной ликвидации оспы в мире;
  • 1984 год – становится общедоступным препарат от ветряной оспы;
  • 1986 год – в общем доступе появился иммунной раствор от гепатита В;
  • 1992 год – вакцинация от гепатита А;
  • 1994 год – ввод в графики вакцинации первой ацеллюлярной вакцины АКДС;
  • 1999 год – разработка вакцины против менингококковой инфекции;
  • 2000 год – появление препарата от возбудителя пневмонии.

Несмотря на все положительные стороны иммунизации, этот процесс имеет много противников, которые называют себя антипрививочниками. Случаи отказов родителей вакцинировать своих детей со временем учащаются, что несложно объяснить спекуляцией вокруг прививок и дезинформацией населения об их побочных эффектах. Непривитые дети являются беззащитными перед вирусами и легко расстраивают коллективный иммунитет, запуская механизм возникновения эпидемий.

История вакцинации

Вакцинация — это одно из величайших достижений медицины, позволяющее ежегодно сохранять от 2 до 3 миллионов жизней. Во многом благодаря ей снизилась младенческая и детская смертность, а также пожизненная инвалидность, которая раньше развивалась после ряда инфекций. А натуральная оспа, истязавшая население планеты тысячелетиями, оказалась полностью побеждена!

Основные принципы вакцинопрофилактики

Для эффективной борьбы с эпидемиями важно, чтобы сформировался коллективный иммунитет — прослойка людей, обладающая антителами к данной инфекции и необходимая для прерывания ее распространения. Для каждой нозологии этот порог индивидуален, но в целом чем более заразно заболевание, тем выше должен быть процент иммунизируемых людей. Для полиомиелита показатель составляет 80 %, а для кори, ввиду ее высокой заразности, — все 95 %.

Каждая страна сама определяет политику вакцинации. Одни дают свободу выбора своим гражданам и делают упор на просвещение. В других вакцинация является обязательной, и отказ от нее ведет к санкциям, например невозможности трудоустройства на определенные работы, или наложению штрафа.

Однако во многих странах растет группа людей, отказывающихся прививаться и прививать своих детей из-за недоверия к вакцинам, действиям правительства. И сейчас, в эпоху непрекращающихся волн коронавируса, это может стать еще более серьезной проблемой, чем это представлялось в том же 2019 году, когда антипрививочное движение было внесено в список 10 проблем здравоохранения.

Как все начиналось

Еще в древности люди стали отмечать, что некоторыми заболеваниями человек болеет только один раз в жизни. Сейчас бы мы сказали такое о краснухе или ветрянке. Но в более ранние времена именно к таким болезням относилась оспа. О ней было известно еще в античности. У таких больных отмечалось характерное поражение кожи, на которой образовывались пузырьки с гнойным содержимым. Заболевание сопровождалось высокой смертностью, по некоторым данным от него погибало около 40 % больных. А у выживших навсегда оставались рубцы на коже, покрывающие все части тела, в том числе лицо. И люди с такими рубцами больше никогда не заболевали оспой, в том числе при возникновении очередных эпидемий. Поэтому они использовались в лазаретах для ухода за больными без риска для собственного здоровья. Люди с оспинами встречались во всех сословиях — от крестьян до королевских особ.

Попытки профилактики развития оспы начались на Востоке, то ли в Индии, то ли в Китае, чуть ли не в первом тысячелетии. Тогда люди вдыхали толченые струпья оспенных больных или использовали содержимое оспенных пузырьков, закладывая его в уши или протягивая нитки, смоченные гноем, сквозь кожу.

Со временем технология была доработана и даже получила отдельное название — вариоляция. Это когда здорового человека намеренно заражали оспой путем прокола кожи ножом с оспенным гноем. В Европу технология пришла благодаря леди Монтак, которая узнала о ней в Турции и вариоляцировала своего ребенка. Кроме того, ей добровольно подверглась Екатерина Великая, ее семья и двор. В Америке ее использовал Джордж Вашингтон для иммунизации армии во время войны за независимость. Процедура не отличалась безопасностью. Около 2 % людей заболевали в тяжелой форме и погибали. Поэтому требовалась более совершенная замена.

Разработка вакцины первого поколения

А дальше было использовано наблюдение о том, что люди, работающие с крупным скотом, реже болеют оспой. В 1774 году британский фермер Джести произвел вариоляцию коровьей оспы своей жене и детям. А в 1796 году Эдвард Дженнер после нескольких лет изучения этого вопроса провел первый официальный эксперимент на двух людях — доярке Саре Нелмс и мальчике Джеймсе Фиппсе. Доярка незадолго до эксперимента заболела коровьей оспой, и у нее на руках были характерные волдыри. Дженнер вскрыл один из волдырей ножом и им же сделал проколы кожи на руке мальчика в нескольких местах. Через несколько дней у ребенка поднялась температура, а в месте прокола появились волдыри. А еще через несколько дней симптомы полностью исчезли.

Спустя 2 месяца мальчику опять ввели содержимое оспенных пузырей, но уже от другой доярки, и никакой реакции на этот раз не произошло. Поэтому Дженнер решил, что маленький Фиппс получил защиту от оспы. Доктор сообщил о своих результатах в Британское королевское общество, но его статью не напечатали. Позже он провел еще несколько таких же экспериментов, за свои деньги издал брошюру, в которой описывал результаты, но ее, можно сказать, не заметили. И только в 1799 году он смог убедить нескольких врачей в эффективности вакцинации (так он назвал свою процедуру), и они стали применять ее на своих пациентах с аналогичными успешными результатами. Таким образом, в Европе началась активная вакцинация коровьей оспой. В 1800 году президентом Т. Джефферсоном была начата национальная программа вакцинации в США.

В 1803 году была организована так называемая филантропическая экспедиция для доставки вакцины из Европы в южноамериканские колонии. Холодильников в ту эпоху не было, а содержимое пузырей сохраняло свои свойства несколько дней. Поэтому была придумана схема перевозки вакцины на живых людях, для которой использовались 22 мальчика-сироты.

Еще на берегу Испании двух мальчиков привили коровьей оспой. Далее по мере плавания была организована живая цепь — раз в несколько дней содержимое пузырьков от одних мальчиков пересаживалось двум другим мальчикам. Второй человек был нужен для страховки, если у одного из них по каким-либо причинам не образуются волдыри. Экспедиция успешно достигла берегов Южной Америки.

Однако технология вакцинации постоянно встречала сопротивление, в том числе среди духовенства и малообразованных слоев населения. Поэтому первая массовая вакцинация началась только после эпидемии оспы 1840–1843 годов. Постепенно вакцинация распространялась по всему земному шару, предотвращая пандемии. А в 1980 году было объявлено об искоренении этой болезни. Сейчас штаммы натуральной оспы сохранились только в двух лабораториях мира — в России и США.

Второй этап развития технологии

Разработку вакцин второго поколения связывают с именами Луи Пастера и Роберта Коха.

Пастер создал твердую питательную среду, на которой стало возможно получать чистые штаммы — сообщества микроорганизмов, происходящих из одной клетки. А Кох выделил туберкулезную палочку и уточнил микробиологическую теорию инфекций. Согласно ей, причиной развития болезни является микроорганизм, если выполняются следующие условия:

· Микроорганизм присутствует у больных людей и отсутствует у здоровых.

· Микроорганизм можно выделить и получить его чистую культуру.

· Если ввести культуру этого микроорганизма здоровому человеку, он заболеет.

· У больного, который заболел после введения чистой культуры микроорганизма, выделяется этот же микроорганизм.

Для вакцинации против туберкулеза используется штамм бычьего туберкулеза M. Bovis. Но, в отличие от коровьей оспы, которая не вызывает серьезных заболеваний у людей, бычий туберкулез является потенциально опасной инфекцией для человека. Но было придумано остроумное решение. M. Bovis был высеен на питательную среду, где он культивировался в течение 13 лет, пока не утратил свои патогенные свойства. Занимались этим доктор Кальметт и ветеринарный врач Герен. Микроорганизм получил название бацилла Кальметта — Герена, сокращенно BCG, а в русской интерпретации — БЦЖ.

Вакцины от вирусов

Технология культивирования позволила наладить производства вакцин против некоторых бактериальных инфекций. Но что делать с вирусами? Их нельзя выращивать на питательных средах. Здесь нужен другой подход. И первые шаги в этом направлении стали возможны после разработки технологии культивирования вирусов на культурах тканей.

Одной из важнейших противовирусных вакцин является вакцина от полиомиелита. Полиомиелит — это тяжелое заболевание, при котором происходит поражение нервных стволов, что приводит к параличам. Если поражены участки мозга, отвечающие за дыхание, может наступить смерть от удушья. У выживших пациентов может развиваться пожизненная инвалидность.

Разработкой вакцины от полиомиелита занимались несколько групп исследователей. Первые результаты были доложены в 1935 году на Ежегодной конференции Американской ассоциации общественного здоровья. Выступали докладчики из двух исследовательских групп, которые в числе прочего сообщили о смертях 5 детей, участвовавших в исследовании и погибших от полиомиелита после вакцинации. Публика не смогла адекватно оценить доклады, обвинив докладчиков в убийстве. Один из них впоследствии лишился работы и даже предположительно совершил суицид. Исследования вакцины откатились лет на 20 назад.

И только в 1950-х годах произошел прорыв в этой технологии, связан он с именами Солка и Сейбина. Эти ученые двигались в разных направлениях. Солк занимался убитой формальдегидом вакциной. Его проект получил коммерческий успех и долгое время использовался для полной иммунизации детей. Но иммунитет после вакцинации в течение нескольких лет падал, что требовало повторных введений препарата.

Сейбин занимался живой ослабленной вакциной. Его разработка вышла на рынок позже, но имела ряд преимуществ:

· Пероральное применение — ее закапывают через рот.

· Меньший риск осложнений.

· Длительный иммунитет, не требующий ревакцинации.

· Инфективность — возможность передачи возбудителя от вакцинированного человека к невакцинированному без участия медработника. С одной стороны, это расширяет охват иммунизации, а с другой — является угрозой для людей с тяжелыми иммунодефицитами.

Поэтому сейчас детей сначала прививают инактивированной вакциной, а после первичной иммунизации вводят живую. Это дает возможность объединить преимущества двух методов.

Разработка вакцин позволила ВОЗ начать программу искоренения полиомиелита по аналогии с натуральной оспой. И эта программа привела к снижению заболеваемости на 99 %. Дикий вирус полиомиелита был ликвидирован во всех странах, кроме Пакистана и Афганистана. Но снижение охвата прививок и возобновление путей передачи инфекции приводят к новым вспышкам, в том числе на территории России.

Что будет, если отказываться от вакцинации?

Аналогичная ситуация и с корью. До разработки вакцин эта болезнь ежегодно уносила жизни около 2,6 млн людей. Но искоренить инфекцию не представляется возможным, так как требуется охватить прививками более 95 % населения. А это могут позволить себе далеко не все страны. Например, последняя вспышка кори в 2020 году в Конго унесла жизни более чем 7 тыс. человек. Это в 2 раза больше, чем смертность от вспышки такой особо опасной инфекции, как лихорадка Эбола, в этой же стране!

В благополучных странах заболеваемость также увеличивается из-за отказа от прививок. В 1998 году вышла статья Эндрю Уэйкфилда, в которой утверждалось, что комбинированная вакцина от кори, паротита и краснухи вызывает аутизм. Статью эту давно опровергли, автора лишили медицинской лицензии, но слухи не прекратились. Многие люди до сих пор отказываются от вакцинации ввиду сомнений в ее безопасности.

И сейчас человечество столкнулось с новым вызовом — COVID-19. Это высокозаразная, быстро мутирующая инфекция. Естественный иммунитет у переболевших нестабилен, и повторные случаи заболевания имеют тенденцию к более тяжелому лечению. Эксперты ВОЗ сходятся во мнении, что контролировать эпидемию можно только с помощью массовой вакцинации. И страны с высокими показателями охвата демонстрируют это на своем примере.


В Вакцинация, иммунизация, или как в простонародии ее называют прививка, представляет собой введение живому организму вакцины. Прививка предназначена для стимуляции иммунитета организма к противодействию всякого рода заболеваниям и инфекциям.

История развития Вакцинации

История развития Вакцинации берет начало еще в X веке в Китае. Есть и более ранние упоминания, которые могут отдаленно напоминать инокуляцию. Эти текста были написаны в древней Индии, но из-за того, что описания самой процедуры прививки там нет, то и считать, что она берет начало в древней Индии оснований тоже нет. В тоже время в китайских текстах X века уже четко описан процесс вариоляции. То есть процесс взятия жидкости из пузырьков больных легкой формой оспы и введения их здоровым людям. Оспа в давние времена была очень распространенным заболеванием, которое уносило жизни 20 — 30% заболевших людей.

До XIX века ученые Европы не знали как бороться с появлявшимися эпидемиями различчных болезней. Спустя некоторое время люди начали замечать, что те кто переболел легкой формой оспы повторно не заражаются. Это и толкнуло ученых на идею давать людям переболеть легкой формой натуральной оспы, дабы потом не заразиться тяжелой. Такой способ борьбы с натуральной оспой был довольно рискованным. На то время не всегда представлялось возможным определить степень тяжести заболевания, и иногда здоровым людям по роковой ошибке прививали тяжелую форму и они погибали.

Прививка Дженнера

Эдвард Дженнер

Изображение Википедия

Только в 1796 году английский врач Эдвард Энтони Дженнер обнаружил эффективную и относительно безопасную прививку против натуральной оспы. Его прививка основывалась на легкой форме корвьей оспы. Легкая форма коровьей оспы безвредна для человека. Он привил коровью оспу сыну своего садовника и пытался заразить его оспой. Около 20 раз Эдвард пытался заразить его оспой, но все оказались безуспешные. Он соскреб гной с волдыря доярки, которая заразилась коровьей оспой от коровы по имени Блоссом. Затем он втер этот гной в две царапины мальчика. В истории такая форма вакцинации получила название как прививка Дженнера. Она впринципе и являлась началом такого понятия как современная прививка.

Разновидности иммунизации и вакцин

Прежде чем говорить о разновидностях иммунизации, стоить разобраться что же это такое. Само понятие Иммунизация понимается как вызов ответной реакции иммунной системы организма на инфекцию или болезнь. Теперь исходя из всего этого разделяют активную и пассивную иммунизацию. При пассивной в организм вводятся вещества или антитела, которые помогают иммунной системе бороться с инфекцией. При активной же иммунизации в организм вводят легкую инфекцию, которую иммунная система самостоятельно одолеет.

Суть процедуры прививки

Прививка человека

Суть всей процедуры прививки состоит в том, чтобы дать больному или здоровому организму вакцину для того, чтобы добиться иммунизации. По своей структуре прививки бывают разные. Большинство прививок делается здоровому организму, чтобы в будующем он не заразился. Но существуют такие болезни, в которых вакцинация применяется когда организм уже заражен. Например, бешенство у человека. Прививка от бешенства вводится человеку уже после того как организм заражен. Луи Пастер сделал первую прививку ребенку которого укусила бешеная собака. Он отметил, что после укуса при вводе антител с постоянной периодичностью в течение 14 дней и должном уходе за ранами, человек полностью выздоравливает.

Способы прививки

Прививка в организм может вводиться самыми разными способами. Конечно, большая часть прививок вводится через инъекцию, но бывают и другие способы. Через инъекцию вводят такие вакцины, которые кишечник может не усвоить. Некоторые вакцины могут поступать в организм через слизистую оболочку. В тоже время существуют вакцины, которые вводят перорально, т.е. глотанием. Например, вакцина от полиомиелита и холеры вводится перорально, потому что установлено и доказано, что кишечник ее хорошо усваивает.

Разновидности вакцин

Прививка против бешенства для животных

Что касается самой вакцины, то она может быть четырех разновидностей в зависимости от типа антигенного материала:

  1. Вакцина, которая содержит ослабленные инфекции, заболевания или вирусы(туберкулез, полиомиелит);
  2. Прививка с мертвыми инфекциями или вирусами(бешенство, клещевой энцефалит);
  3. Слабые или измененные токсины организмов(дифтерия или столбняк);
  4. Синтетические или генно-инженерные вакцины(коклюш и менингит).

Прививка, Вакцинация и Иммунизация одинаковы по своему значению и окончательной цели и по своей сущности являются синонимами, но различны по своему воздействию на организм.

Как разрабатывается прививка?

Как разрабатывается прививка вопрос очень интересный. С возникновением способа борьбы против болезней начали появляться лаборатории и даже целые корпорации по разработке вакцин. Нужно понимать, что на 100% защиту от болезни или инфекции расчитывать не приходится. Все это связано с тем, что каждый организм реагирует на вакцину по своему и предугадать его поведение почти невозможно.

Безопасность вакцин

Безопасность вакцинации

Следовательно побочные эффекты неизбежны.Вопрос состоит в роде побочного эффекта. Такие побочные эффекты как повышение общей температуры тела и болезненность появляется довольно часто. На это мало обращают внимание и считается в принципе нормальной реакцией организма. Совсем иначе обстоят дела с серьезными побочными эффектами, которые могут привести к значительным осложнениям и даже смерти. За изготовлением вакцин следит множество организаций и те из них которые представляют реальную опасность не получают лицензию. Но серьезные побочные эффекты все равно случаются. Если смотреть статистику серьезных побочных эффектов вакцин, то случаются они крайне редко. Где-то 1 случай на 100 тысяч привитых. Основной причиной являются внезапно развившееся аллергические реакции.

Итак перейдем к процессу разработки и утверждения прививок. Разработка и утверждение прививки является очень долгим и затратным процессом. С момента разработки вакцины и до серийного применения его на людях может пройти не один десяток лет. Изначально прививку испытывают на животных: кроликах, мышах и обезьянах. Затем выжидается определенное время, чтобы посмотреть побочные эффекты которые проявились под воздействием вакцины. Если на животных проходит все успешно, тогда получают разрешение на проведение экспериментов на людях.

Испытания на людях

Перед проведением экспериментов на людях, производят компьютерное моделирование поведения человеческого организма на новую прививку. Когда компьютерное моделирование показывает, что поведение вакцины устойчивое, только тогда начинается трехуровневое испытание на людях. Причем к новому уровню приступают только тогда, когда предыдущее испытание закончилось успешно. В таких испытаниях люди принимают добровольное участие, только с письменного согласия о возможных рисках и последствиях. Первый уровень начинается на испытании вакцины на 20 людях, с целью определения безопасности прививки. Второй уровень расширяет аудиторию от 20 до 50 человек. На этом уровне так же оценивается процент безопасности и подбирается наиболее эффективная доза препарата. Прививки определенные как безопасные и эффективные переходят к третьему уровню испытаний. На том этапе уже расширяется аудитория от сотен до тысяч человек. Причем третий уровень испытаний может продолжаться на протяжении нескольких лет. Если вакцина проходит все этапы, то производитель подает заявку на получение лицензии во Всемирную Организацию Здравоохранения.

Прежде чем ВОЗ одобрит выдачу лицензии, ее специалисты тщательно перепроверяют все клинические испытания. Уже после поступления в серию, прививка с постоянной периодичностью проверяется специалистами контролирующих органов весь период ее использования.

Почему нужно делать прививки?

Перспективы развития Вакцинации

В общем Вакцинация приносит огромную пользу обществу с самых разных сторон. По оценкам ВОЗ на сегодняшний день от болезней в год умирает 2 — 3 миллиона людей, причем из них 1.5 миллиона детей. По их оценкам 29% смертей детей от 1 до 5 лет можно было избежать будь они привиты. Вакцинация привела к значительному снижению распространенности большого количества инфекционных заболеваний. Разработка вакцин является крайне дорогостоящим удовольствием. Разработка вакцины для одного тяжелого заболевания обходится порядка от 2.8 до 3.7 миллиардов долларов. Как бы все это прискорбно не звучало, множество болезней и инфекций остаются до сих пор неуязвимыми для медицины. На сегодняшний день ведутся разработки вакцин для таких болезней как ВИЧ, Эбола и многие другие.

Всемирная организация здравоохранения периодически докладывает, что медицина полностью победила то, или иное заболевание. Например, случаев заболевания оспой не было очень долгое время, так же заболеваний полиомиелитом не было уже с 2013 года. Если посмотреть правде в глаза, то можно заметить, что повторные заболевания людей серьезными болезнями периодически возобновляются и с этим ничего не поделать. Единственным действенным способом искоренить заболевания и предотвратить эпидемии является прививка, которые нужно производить в обязательном порядке. Берегите свое здоровье.

Читайте также: