История развития теории вероятности и математической статистики реферат

Обновлено: 30.06.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель работы: донести до слушателя основные сведения об этой теории, показать, как правильно производить расчёты, как нужно рассуждать при решении задачи.

Задачи работы: рассказать о принципах теории, формулах вычисления вероятностей, интересных фактах и практическом применении.

Проблемные вопросы:

Чем занимается теория вероятностей?

Каковы её основные принципы?

С какими другими разделами математики граничит?

Где она применяется?

Актуальность исследования состоит в том, что теория вероятностей имеет практическое применение, в некоторых случаях может встретиться в обыденных ситуациях, таких как участие в лотерее, розыгрыш призов и пр.

Объект исследования: теория вероятностей как раздел математики.

Методы исследования: просмотр сайтов в Интернете, чтение книги, применение собственных знаний, полученных ранее.

Определение

Теория вероятностей – один из разделов математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр, таких как кости, рулетка и др.

Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Также важный вклад в развитие теории вероятностей внесли Якоб Бернулли, Пьер-Симон Лаплас, Симеон Пуассон и некоторые другие. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

hello_html_m2015dce5.jpg

Якоб Бернулли Пьер-Симон Лаплас Симеон Пуассон

27 декабря 1654 - 16 августа 1705 23 марта 1749 — 5 марта 1827 21 июня 1781, — 25 апреля 1840

Суть этого раздела математики

Теория вероятностей в общем виде показывает, каковы шансы определенного случая (на математическом языке такие случаи называются благоприятными исходами ). Например, у нас есть монета с орлом и решкой. Какова вероятность того, что, подкинув монету, выпадет орёл? Очевидно, что ½. А какова вероятность того, что выпадет решка? Опять же, ½. Как видим, шансы выпадения орла и решки равны. В таком случае говорят, что события равновероятны. В общем виде равновероятными событиями называются такие события, которые могут случиться с одинаковой вероятностью. Вот еще пример: игральная кость. Если она является правильной фигурой, и её грани отличаются лишь количеством очков, то вероятность выпадения любого числа равна 1/6.

hello_html_77baf36e.jpg

Результаты представлены в таблице:

Как мы знаем, ½ = 50%. Из таблицы видно, что с бОльшим числом бросков отношение выпавших решек и орлов к общему количеству бросков стремится к 50%, то есть к ½.

Комбинаторика и формулы

Определение комбинаторики как раздела математики довольно трудное для понимания, поэтому приведу несколько примеров, чтобы стало понятно, чем же она занимается. Также разберём некоторые формулы, которые помогут нам в дальнейшем.

Пример 1. У нас есть 2 книги, назовём их А и В. Сколько существует способов их размещения по порядку вертикально на пустой полке? Очевидно, можно поставить сначала А, потом В. Или же сначала В, потом А. А еще как-то можно? Нет, больше никак. Значит, существует 2 способа их размещения. Идём дальше.

Пример 3. В забеге участвуют 5 спортсменов. Сколько существует вариантов первых пришедших к финишу троек? Будем считать, что никакие 2 и более участников не пришли одновременно, и все дошли до финиша.

Где А – искомое число благоприятных исходов; n 1, n 2, n k – количество возможных отдельных событий (под каждым множителем стоит отдельное событие).

По формуле получаем: А (троек первых мест) = 5*4*3 = 60

В приведённых выше примерах порядок участников на пьедестале имел значение. Нам было важно, кто будет первым, вторым и третьим. Однако существуют ситуации, когда порядок выбора не важен, и на эти ситуации тоже есть своя формула. Снова для начала рассмотрим пример, затем – формулу.

hello_html_m49f0634a.jpg

Сократим числитель и знаменатель, получим 14*13*12*11 / 4*3*2*1

Продолжим преобразование: 7*13*11 = 1001

Как видим, число получилось намного меньше того, которое мы рассчитали вначале. Поэтому, следует различать случаи в комбинаторике, которые называются РАЗМЕЩЕНИЯМИ и СОЧЕТАНИЯМИ. Размещение требует учёта порядка каких-либо предметов (под этим словом будем понимать элементы множества , множество же – совокупность каких-либо предметов, объединённых общим свойством ); сочетание не требует порядка. Как видно из прошлого примера, это очень важно понимать. А чтобы выяснить, какой из этих случаев содержится в задаче, нужно просто немного подумать, логически поразмышлять: нужно ли учитывать порядок или нет ?

А теперь перейдём к формуле. Приводить ещё один пример не стану, остановимся на этом.

В общем виде выражение выглядит так: 14*13*12*…*5 / 10*9*8*…*1

В некоторых случаях удобно использовать факториал – произведение всех натуральных чисел от 1 до n включительно. Записывается факториал с помощью значка восклицательного знака (!). Например, факториал числа 4 пишется так: 4!. Применим это и к нашему выражению: 14*…*5/10!

Итак, чем же занимается комбинаторика? Комбинаторика занимается вычислением (нахождением) возможных исходов события. Это может помочь находить вероятности каких-либо исходов.

Как подсчитать вероятность?

Для того чтобы найти вероятность какого-либо случая, нужно тоже применять некоторые формулы. Но для начала разберём свойства в теории вероятностей, принимаемые как аксиомы.

1) Любая вероятность, принадлежащая данному множеству, больше либо равна 0.

2) Вероятность достоверного события равна 1.

3) Для совокупности несовместных событий из множества исходов случайного эксперимента справедливо следующее равенство:

где P ( S k ) – вероятность какого-либо события, S 1 , S 2 , S n – события какого-либо эксперимента.

Разберём эти аксиомы.

Первая гласит о том, что любая вероятность события либо равна 0, то есть событие невозможно, либо больше 0, т.е. событие может случиться.

Вторая говорит о том, что событие, которое произойдёт в абсолютно всех экспериментах, имеет вероятность, равную 1.

Третья аксиома о том, что вероятность некоторых несовместных событий (т.е. тех, которые не могут случиться в одних и тех же экспериментах одновременно) можно определить как сумму отдельных вероятностей этих событий. Например, вероятность того, что, подбросив игральный кубик, выпадет либо 1 очко, либо 2 очка, равна сумме отдельных вероятностей этих исходов:

P (1 или 2 очка) = P (1 очко) + P (2 очка) = 1/6 + 1/6 = 1/3

Исходя из этих аксиом, можно найти и другие важные свойства:

1) Вероятность какого-либо события равна 1 минус вероятность противоположного ему события:

где S a и S b – противоположные события.

2) Вероятность любого события меньше либо равна 1, так как достоверное событие обладает наибольшей вероятностью по определению, а оно равно 1.

3) Вероятность невозможного события равна 0:

P ( ) = 0,

где - невозможное событие.

4) Для двух произвольных событий определённого множества исходов какого-либо эксперимента справедливо следующее равенство:

где S 1 и S 2 – произвольные события, P ( S 1 ∪ S 2 ) – вероятность того, что произойдёт либо S 1 , либо S 2, P ( S 1 ⋂ S 2 ) – вероятность того, что эти два события произойдут одновременно.

Теперь, зная аксиомы и свойства событий и вероятностей, перейдём к рассмотрению примеров и формул, с помощью которых мы будем находить искомые вероятности.

hello_html_m377de328.jpg

Пример 1. Снова возьмём игральный кубик. Вероятность того, что выпадет 1 очко (равно как и 2 или 3 или 4 и т.д.), равна 1/6. Как мы нашли это число? Разделили число благоприятных исходов (а именно 1) на число всех возможных исходов (их 6). Чтобы понять, почему производились такие расчёты, давайте снова нарисуем чертёж. Мы знаем, что все исходы броска кубика равновероятны. Помним, что вероятность достоверного события равна 1. Получается, нахождение вероятности сводится к решению уравнения: 6х=1, где х – искомая вероятность. Отсюда х = 1/6.

Чтобы не прибегать к составлению уравнения и решению его, выведем формулу для подсчёта вероятности:

где n – число благоприятных исходов

m – число всех возможных исходов.

ак видим, нам нужно найти вероятность выпадения ОДНОЙ из ВСЕХ сторон, т.е. число благоприятных исходов равно 1, всех возможных – 6 (так как сторон в кубике 6). Отсюда получаем ту же самую вероятность, 1/6.

Если мы захотим рассчитать вероятность для выпадения либо 1, либо 2, либо 3 очков, можем сделать это с помощью тех же формул:

2) 1/6 + 1/6 + 1/6 = 1/2

Напомню, формулы из 3-ей аксиомы действует в том случае, если события НЕ могут произойти одновременно.

Итак, мы разобрали основные формулы нахождения общего числа исходов и вероятностей. С их помощью можно решать различные задачи, не забывая при этом, в каком случае мы применяем тут или иную формулу.

Практическое применение

Страхование

hello_html_34846a52.jpg

Как мы знаем, страховые компании выплачивают деньги застрахованному лицу, если произошёл какой-либо несчастный случай. Сумма, которую должен заплатить человек страховой компании и застраховать тем самым что-либо или кого-либо, рассчитывается определённым образом. Основой, на которую опираются страховые компании, является статистика - отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических данных. Эти данные несут информацию о том, сколько за прошедшее время произошло несчастных случаев одного вида (например, аварий, ДТП и пр.), вероятность того, что они произойдут и некоторые другие сведения. Таким образом, для подсчёта стоимости страхового полиса и компенсации, выплачиваемой страховой компанией, требуются накопленные ранее знания о случившихся несчастных случаях, о теории вероятностей и т.д.

Также применение теории вероятностей, статистики, различных таблиц используется, как я уже сказал, в медицине, в механике и инженерном деле. Например, таблицы смертности в медицине, срок полезного функционирования детали или механизма в механике, инженерии. Как видим, математика может пригодиться в вышеприведённых сферах государства, промышленности и т.д.

Интересные факты

Парадокс Монти Холла

hello_html_m3f2cdca1.jpg

Вы попали в финал телевизионного конкурса, и перед вами – три закрытые двери. За одной из них – главный приз, автомобиль, за двумя другими – козы. Нужно выбрать одну из трёх дверей. Когда вы указали на одну из дверей, ведущий должен открыть одну из оставшихся дверей, за которой находится коза. Он даёт вам шанс изменить выбор. Вы можете воспользоваться этим, а можете оставить своё решение без изменения. Как нам поступить, чтобы увеличить шансы на выигрыш? Или же они не изменятся, и от нашего решения вероятность не зависит?

Сперва покажется, что вероятность одинакова и равна ½. Рассуждения таковы: так как перед нами 2 закрытых дверей, и за одной из них находится приз, значит, мы можем с одинаковой вероятностью как выиграть, так и проиграть (не будем принимать козу за выигрыш). Но такой ход мыслей неверен. Рассуждения с математической точки зрения следующие: перед нами 3 двери, на каждую приходится вероятность выигрыша по 1/3. Когда мы выбираем дверь, ведущий показывает, за какой дверью приза нет. Значит, если он открыл именно эту дверь, то, скорее всего, приз находится за той, которую он не открыл. На эту невыбранную закрытую дверь приходится вероятность 2/3. Чтобы лучше понять эту ситуацию интуитивно, изменим количество дверей. Пусть их будет не 3, а 1000. Мы выбрали одну из них, вероятность победы – 1/1000. Ведущий убрал 998 дверей. Скорее всего, приз окажется за той дверью, которую он не открыл. Сначала была вероятность выигрыша 1/1000, теперь, изменив выбор, можно увеличить её на 998/1000. Я думаю, это число показывает, что выгоднее изменить выбор, нежели оставить. Напомню, он открывает только ту дверь или те двери, которые выбраны не были, и за которыми находятся коза или несколько коз. Для подтверждения этих рассуждений можно провести подобный опыт со своим напарником: взять, к примеру, 3 коробка от спичек, 2 монеты по 50 копеек и 1 монету в 1 рубль (можно взять и другие, лишь бы 2 были одинаковы, а 1 – либо больше, либо меньше). Один человек играет роль ведущего, другой – участника. Далее правила ясны: ведущий наугад располагает монеты под коробками, участник не знает, где какая монета. Игрок выбирает любой из них. Ведущий убирает тот коробок, под которым меньшая по достоинству монета, и который не был выбран игроком. Далее участник меняет свой выбор. Если он выиграл, на листок записать букву В, если проиграл – букву П. Желательно проводить этот опыт большое число раз (вспомните закон больших чисел: чем больше количество проводимых экспериментов, тем ближе практическая вероятность будет к теоретической). Лично я со своим папой однажды провёл его 50 раз. Получилось так, что выиграл 31 раз, а проиграл – 19. Не стоит забывать, что монеты желательно располагать в случайном порядке под коробками после проведения очередного опыта.

Парадокс о днях рождения

hello_html_5b2752d.jpg

В классе учатся 23 человека. Какова вероятность того, что хотя бы 2 ученика этого класса родились в один и тот же день?

В очередной раз интуиция подсказывает, что вероятность крайне мала. Но на самом деле это не так. Давайте разберёмся.

Примем, что число дней в году равно 365. Рассмотрим общую ситуацию для N человек, N не больше 365.

Возьмём первого человека, он мог родиться в любой из 365 дней, равно как и второй, третий и т.д. до N . Следовательно, число всех возможных вариантов дней рождений равно 365^ N . Из этих случаев найдём такие, в которых нет совпадающих дат рождения. В таких случаях первый человек мог родиться в любой из 365 дней, второй – в любой из 364, третий – в любой из 363 и т.д. до N человека, отмечающего день рождения в любой из 365 – N + 1 дней. Получается, что число случаев с несовпадающими датами рождения равно 365 * 364 * 363 * … * (365 – N + 1) = 365! / (365 – N )!

Напомню, что для нахождения вероятности нужно число благоприятных исходов разделить на число всех возможных исходов. Поэтому, вероятность того, что все ученики будут отмечать дни рождения в разные дни, равна

. Но нас интересует вероятность рождения как минимум 2 учеников в одинаковые дни. Так как найденная нами вероятность противоположна той, которую мы собираемся найти, то нам нужно из 1 вычесть это выражение, подставить вместо N число 23 и произвести расчёты.

При N = 23 вероятность равна 0,507, т.е. 50,7 %. Именно при этом значении вероятность больше 1/2. При N = 30 она становится больше 70 %, а при N = 45 она примерно равна 94 %. Не так уж всё и очевидно на первый взгляд!

Теория вероятностей – довольно интересный, хотя в некоторых случаях и непростой для понимания, раздел математики. Он связан со многими важными для общества отраслями: медициной, страхованием, статистикой и др. Для понимания теории вероятностей нужно владеть азами некоторых других разделов математики, таких как комбинаторика, теория множеств.

Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 13.03.2017
Размер файла 26,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Предмет теории вероятностей - исследование математическими методами случайных явлений. Основные объекты теории вероятностей - случайные события, случайные величины, случайные процессы, то есть фактически весь окружающий нас мир. Теорию вероятностей используют для изучения поведения сложных систем, то есть систем, которые не допускают полного описания. Все экономические и социальные системы являются в этом смысле сложными. Важно понимать, что процессы формирования цен, подъемов и спадов в экономике являются случайными процессами, так же как уровни безработицы, доходов, курсы валют являются случайным событием. Это не значит, что в случайном нет закономерностей - наоборот, закономерности присутствуют, но они скрыты, и именно теория вероятностей позволяет выявить такие закономерности в экономике, которые никакими другими методами выявлены быть не могут.

Теория вероятностей имеет богатую и поучительную историю. Она наглядно показывает, как возникали ее основные понятия и развивались методы из задач, с которыми сталкивался общественный прогресс. Знакомство с историей становления и развития теории вероятностей и математической статистики дает возможность понять предмет и источники становления математики, разобраться в том, чем стимулируются математические открытия, какую роль играют техника и естествознание в развитии математики, осознать роль теории вероятностей в эволюции формирования научной картины мира.

Цель работы - изучить историю развития теории вероятностей.

- определить этапы развития теории вероятностей;

- обозначить вклад различных ученых в развитии теории вероятностей.

теория вероятность математический ученый

ИСТОРИЯ РАЗВИТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Теория вероятностей - это математическая наука, изучающая закономерности в массовых случайных явлениях.

До появления теории вероятностей как общепризнанной теории в науке господствовал детерминизм, согласно которому осуществление определенного комплекса условий однозначно определяет результат. Классическим примером является механика. Например, на основании законов небесной механики по известному в некоторый момент положению планет Солнечной системы могут быть очень точно предсказаны солнечные и лунные затмения. Подобные законы называются детерминированными законами.

Однако практика показала, что этот подход далеко не всегда применим. Не все явления макромира поддаются точному предсказанию, несмотря на то, что наши знания о нем непрерывно уточняются и углубляются. Еще менее детерминированы законы и закономерности микромира.

Математические законы теории вероятностей отражают реальные статистические законы, объективно существующие в массовых случайных явлениях.

Теория вероятностей развивалась вначале как прикладная дисциплина. В связи с этим ее понятия и выводы имели окраску тех областей знаний, в которых они были получены.

В работах Б.В. Гнеденко, Л.Е. Майстрова, А.Н. Колмогорова представлены основные этапы развития теории вероятностей. Для краткости приведем их в виде таблицы.

Этапы развития теории вероятностей

Источники становления и развития

Предыстория теории вероятностей, до конца XVI века

Решение элементарных задач, философия, азартные игры

Возникновение теории вероятностей как науки, с XVII века до начала XVIII века.

Количественная оценка возможности наступления случайного события, представления о частоте события, математическом ожидании и о теоремах сложения и умножения, формулы комбинаторики

Демография, страховое дело, оценка ошибок наблюдения.

Период формирования основ теории вероятностей, с 1713 г. до середины XIX века

Классическое и статистическое определения вероятности, геометрические вероятности, теоремы сложения и умножения вероятностей, закон больших чисел, математическое ожидание, формула Бернулли, теорема Бейеса, случайная величина

Демография, страховое дело, оценка ошибок наблюдения, естествознание

Русская - Петербургская школа, со второй половины XIX века до XX века

Предельные теоремы, теория случайных процессов, обобщение закона больших чисел, метод моментов

Контроль качества продукции, естествознание т.д.

Современный этап развития теории вероятностей, XX - XXI века

Аксиоматическое построение теории вероятностей, частотная интерпретация вероятности, стационарные случайные процессы, и т.д.

Внутренние потребности самой математики, статистическая физика, теория информации, теория случайных процессов, астрономия, биология, генетика, и т.д.

Представленные в таблице источники становления отражают потребности практики, которые стали толчком к развитию теории вероятностей.

Философия к 17 веку накопила довольно богатый материал, который оказал влияние на зарождение и первый период развития теории вероятностей. Главным же источником зарождения теории вероятностей является практика. Необходимость создания математического аппарата для анализа случайных явлений, вытекала из потребностей обработки и обобщения статистического материала. Однако теория вероятностей сформировалась, не только на материале практических задач: эти задачи слишком сложны. Более простым и удобным материалом для изучения закономерностей случайных явлений оказались азартные игры. На базе азартных игр наряду с основными понятиями развивались и методы теории вероятностей.

Зарождение теории вероятностей началось с того, что придворный французского короля, шевалье (кавалер) де Мере (1607-1648), сам азартный игрок, обратился к французскому физику, математику и философу Блезу Паскалю (1623-1662) с вопросами к задаче об очках. До нас дошли два знаменитых вопроса де Мере к Паскалю: 1) сколько раз надо бросить две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний; 2) как справедливо разделить поставленные на кон деньги, если игроки прекратили игру преждевременно? Паскаль обратился к математику Пьеру Ферма (1601-1665) и переписывался с ним по поводу этих задач. Они вдвоем установили некоторые исходные положения теории вероятностей, в частности пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей.

Непосредственное практическое применение вероятностные методы нашли, прежде всего, в задачах страхования. С тех пор теория вероятностей находит все более широкое применение в различных областях.

Первооткрывателями теории вероятностей считаются французские ученые Б.Паскаль и П.Ферма и голландский ученый Х.Гюйгенс (1629-1695). Стала зарождаться новая наука, вырисовываться ее специфика и методология: определения, теоремы, методы.

Другой важный этап в развитии теории вероятностей связан с именем Моавра (1667?1754). Этот ученый впервые ввел в рассмотрение и для простейшего случая обосновал закон, очень часто наблюдаемый в случайных явлениях: так называемый нормальный закон (закон Гаусса).

Стройное и систематическое изложение основ теории вероятностей впервые дал знаменитый математик Лаплас (1749?1827). Он доказал одну из форм центральной предельной теоремы (теоремы Моавра ? Лапласа) и развил ряд замечательных приложений теории вероятностей к вопросам практики, в частности, к анализу ошибок наблюдений и измерений.

Следует отметить работы Пуассона (1781?1840), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Естественно, что все подобные попытки были обречены на неудачу и не могли сыграть положительной роли в развитии науки. Напротив, их косвенным результатом оказалось то, что примерно в двадцатых ? тридцатых годах XIX века в Западной Европе повсеместное увлечение теорией вероятностей сменилось разочарованием и скептицизмом. На теорию вероятностей стали смотреть как на науку сомнительную, второсортную, род математического развлечения, вряд ли достойный серьезного изучения.

Замечательно, что именно в это время в России создается та знаменитая Петербургская математическая школа, трудами которой теория вероятностей была поставлена на прочную логическую и математическую основу и сделана надежным, точным и эффективным методом познания. Со времени появления этой школы развитие теории вероятностей уже тесным образом связано работами русских, а в дальнейшем ? советских ученых.

Среди ученых Петербургской математической школы следует назвать В. Я. Буняковского (1804?1889) ? автора первого курса теории вероятностей на русском языке, создателя современной русской терминологии в теории вероятностей, автора оригинальных исследований в области статистики и демографии.

Учеником В. Я. Буняковского был великий русский математик П. Л. Чебышев (1821?1894), которому принадлежит дальнейшее расширение и обобщение закона больших чисел. Кроме того, П. Л. Чебышев ввел в теорию вероятностей весьма мощный и плодотворный метод моментов.

Учеником П. Л. Чебышева был и А. М. Ляпунов (1857?1918), с именем которого связано первое доказательство центральной предельной теоремы при чрезвычайно общих условиях. Для доказательства своей теоремы А. М. Ляпунов разработал специальный метод характеристических функций, широко применяемый в современной теории вероятностей.

Характерной особенностью работ Петербургской математической школы была исключительная четкость постановки задач, полная математическая строгость применяемых методов и наряду с этим тесная связь теории с непосредственными требованиями практики. Трудами ученых Петербургской математической школы теория вероятностей была выведена с задворков науки и поставлена как полноправный член в ряд точных математических наук. Условия применения ее методов были строго определены, а самые методы доведены до высокой степени совершенства.

Советская школа теории вероятностей, унаследовав традиции Петербургской математической школы, занимает в мировой науке ведущее место. Назовем только некоторых крупнейших советских ученых, труды которых сыграли решающую роль в развитии современной теории вероятностей и ее практических приложений.

С. Н. Бернштейн разработал первую законченную аксиоматику теории вероятностей, а также существенно расширил область применения предельных теорем.

А. Я. Хинчин (1894?1959) известен своими исследованиями в области дальнейшего обобщения и усиления закона больших чисел, но главным образом своими исследованиями в области стационарных случайных процессов.

Ряд важнейших основополагающих работ в различных областях теории вероятностей и математической статистики принадлежит А. Н. Колмогорову. Он дал наиболее совершенное аксиоматическое построение теории вероятностей, связав ее с одним из важнейших разделов современной математики ? метрической теорией функций. Особое значение работы А. Н. Колмогорова имеют в области теории случайных функций (стохастических процессов), которые в настоящее время являются основой всех исследований в данной области. Работы А. Н. Колмогорова, относящиеся к оценке эффективности легли в основу целого нового научного направления в теории стрельбы, переросшего затем в более широкую науку об эффективности боевых действий.

В. И. Романовский и Н. В. Смирнов известны своими работами в области математической статистики, Е. Е. Слуцкий ? в теории случайных процессов, Б. В. Гнеденко ? в области теории массового обслуживания, Е. Б. Дынкин ? в области марковских случайных процессов, В. С. Пугачев ? в области случайных процессов в применении к задачам автоматического управления.

Развитие зарубежной теории вероятностей в настоящее время также идет усиленными темпами в связи с настоятельными требованиями практики. Преимущественным вниманием пользуются, как и у нас, вопросы, относящиеся к случайным процессам. Значительные работы в этой области принадлежат Н. Винеру, В. Феллеру, Д. Дубу. Важные работы по теории вероятностей и математической статистике принадлежат Р. Фишеру, Д. Нейману и Г. Крамеру.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики, и абстрактно она отражает закономерности в массовых случайных событиях. Эти закономерности играют очень важную роль в различных областях естествознания, медицине, технике, экономике, военном деле. Многие разделы теории вероятностей были развиты благодаря запросам практики.

Заключение

Подавляющее большинство природных и рукотворных явлений, а также явлений повседневной жизни содержат в себе элементы случайности. Окружающий нас мир насыщен случайными событиями: номера выигравших билетов в лотереях, результаты спортивных состязаний, состояние погоды, количество солнечных дней в течение года, тысячи случайностей определяют течение жизни.

Знание закономерностей, которым подчиняются случайные явления, позволяет предвидеть, как эти явления будут протекать. Теория вероятностей не ставит перед собой задачу предсказать, произойдет или не произойдет некоторое событие. Однако если данное событие многократно наблюдается или повторяется, то оно подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

В теории вероятностей изучаются реально существующие независимо от нашего сознания законы случайных явлений. Теория вероятностей предлагает математический аппарат для описания этих законов. Этот математический аппарат является таким же логически строгим и точным, как и математический аппарат в других разделах математики.

На основе теории вероятностей построены научные теории статистической физики, квантовой механики, теории эволюции, генетики, теории информации, исследования операций и др.

Вероятностно-статистические методы играют важную роль в практической деятельности. Это контроль качества продукции, техническая диагностика оборудования, технология производства, обеспечение надежности оборудования, организация массового обслуживания, военное дело (стрельбы, бомбометание, тактика, теория боеприпасов), получение достоверных результатов и измерений, астрономические наблюдения и многое другое.

Список использованной литературы

1. Высшая математика: учеб.-метод. пособие. В 4 ч. Ч. 3. Теория вероятностей и математическая статистика / авт.-сост. Т. В. Веремеенко; под ред. Л. Г. Третьяковой. - 2-е изд., испр. - Минск : ГИУСТ БГУ, 2010. - 130 с.

4. Колмогоров А.Н. Математика в ее историческом развитии // Под ред. В.А. Успенского. - М.: Наука., 1991. - 224 с.

5. Крупкина Т.В. Теория вероятностей и математическая статистика: учебное пособие. Сибирский федеральный университет. - Красноярск, 2007. - 199с.

6. Лаговский А.Ф. Теория вероятностей: Учебное пособие/ Калинингр. ун-т. - Калининград, 1997. - 103 с.

7. Майстров Л.Е. Теория вероятностей. Исторический очерк. - М.: Наука, 1967. - 320 с.

Подобные документы

Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.

презентация [474,2 K], добавлен 17.08.2015

Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.

презентация [1,5 M], добавлен 19.07.2015

История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

контрольная работа [22,6 K], добавлен 20.12.2009

Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.

дипломная работа [88,6 K], добавлен 22.01.2009

Особенности использования теории вероятностей в сфере транспорта. Сравнительный анализ вероятностей катастрофы летательного аппарата: постановка задачи и ее математическая интерпретация. Определение надежности элементов системы энергоснабжения самолета.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку.

Содержание

Введение
Основные понятия теории вероятностей
История возникновения Теории вероятностей.
Примеры
Сложные вероятности. Теоремы сложения .
Этапы развития теории вероятностей:
Роль мошенничества в истории теории вероятностей(Дэвид Бэллхауз)
Вывод

Работа содержит 1 файл

История возникновения теории вероятности.doc

Министерство по образованию Российской Федерации

Дальневосточный Федеральный Университет

Институт международного туризма и гостеприимства

Реферат по математике на тему:

Выполнила: студентка группы 1523А

Проверила: Миколайчук Татьяна Леонидовна

Основные понятия теории вероятностей

История возникновения Теории вероятностей.

Сложные вероятности. Теоремы сложения .

Этапы развития теории вероятностей:

Роль мошенничества в истории теории вероятностей(Дэвид Бэллхауз)

Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей[1]. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год)[2].

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Основные понятия теории вероятностей

1)Вероятность (вероятностная мера) — численная мера степени объективной возможности наступления случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель — число всех равновозможных случаев.

2)Вероятностное пространство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплины.

3)Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причем появление того или иного значения этой величины до её измерения нельзя точно предсказать.

Формальное математическое определение следующее: пусть — вероятностное пространство, тогда случайной величиной называется функция , измеримая относительно и борелевской σ-алгебры на . Вероятностное поведение случайной величины полностью описывается её распределением.

4)Теорема Муавра — Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события Е равна р (0 1/2, поэтому при четырёх бросаниях выгодно делать ставку на то, что выпадет хотя бы одни шестёрка. чем на то, что не выпадет ни одной. Повидимому, многие опытные игроки знали, что первая комбинация появляется чаще, чем вторая, и найти партнёра ни такую игру было трудно. Более сложные комбинации возникали, если бросали сразу две кости. Де Мере пытался определить, сколько раз надо бросить пару костей, чтобы вероятность хотя бы одного появления двух шестёрок была больше 1/2. Он подсчитал, что достаточно 24 бросаний. Однако опыт игрока заставил де Мере сомневаться в правильности своих вычислений. Тогда он обратился с этой задачей к математику Блезу Паскалю, который предложил правильное решение. Учёный определил, что при 24 бросаниях пары костей две шестёрки появляются хотя бы раз с вероятностью, меньшей 1/2, а при 25 бросаниях—с вероятностью, большей 1/2.В самом деле, если бросить один раз пару костей, две шестёрки выпадут с вероятностью 1/36, а не выпадут—с вероятностью 1-1/36=35/36. При n бросаниях пары костей число шансов непоявления пары шестерок равно 35, а общее число исходов составит 35.Поэтому игрок, делающий ставку на событие А выигрывает примерно а 50,5% игр, а игрок, делающий ставку на событие А —примерно в 49,1% игр. Эта задача кавалера де Мере заставила Паскаля заняться изучением случайных событий. А в переписке Блеза Паскаля и Пьера Ферма впервые стали упоминаться понятия теории вероятностей. Подсчёт всех возможных и благоприятствующих данному событию случаев нередко представляет большие трудности. Вот почему для решения таких задач некоторые игроки обращались к крупным учёным. Рассказывают, что Гюйгенсу был задан такой вопрос: “Если бросить одновременно три игральных кости, то какая сумма очков будет выпадать чаще—11 или 12?” Подсчёт всех различных случаев здесь прост: N=6 =216. Подсчёт же М здесь сложен. Сумма 11 может получиться следующими шестью различными способами: 1+4+6, 1+5+5, 2+3+6, 2+4+5, 3+3+5. 3+4+4. Также шестью различными способами образуется сумма 12: 1+5+6, 2+4+6, 2+5+5, 3+3+6, 3+4+5, 4+4+4. Это обстоятельство наводит на мысль, будто обе суммы должны появляться одинаково часто. Однако это неверно. Уже на практике было замечено, что сумма 11 появляется чаще суммы 12. Дело а том, что вышеуказанные по три числа сами по себе неодинаково часто выпадают. Так, если каждую из трех костей окрасить по-разному, скажем в белый, красный и зелёный цвет, то становится ясным, что сочетание, а котором имеются три различных слагаемых, например (1+4+6), может получаться шестью различными способами:

1 бел. + 4 красн. + 6 зел.; 2) 1 бел. + б красн. + 4 зел.:

4 бел. + 1 красн. + 6 зел.; 4) 4 бел. + 6 красн. + 1 зел.;

5) 6 бел. + 1 красн. + 4 зел.; 6) б бел. + 4 красн. + 1 зел. Аналогично сочетание с двумя одинаковыми слагаемыми, например (2+5+5), может получиться тремя различными способами, в то время как сочетания с одинаковыми слагаемыми, вроде (4+4+4), получается единственным способом. И вот для 11 очков мы получим, таким образом, не шесть различных способов, а

1*6 + 1*3 + 1*6 + 1*6 + 1*3 + 1*3 = 27.

Для суммы же 12 число различных способов будет:

1*6 + 1*6 + 1*3 + 1*3 + 1*6+ 1 = 25.

Решение порой довольно сложных задач, с которыми обращались заинтересованные лица к Паскалю, Ферма, Гюйгенсу, способствовало разработке основных понятий и общих принципов теории вероятностей, в том числе и правил действия над ними. Отсюда не следует, конечно, заключать, что основоположники теории вероятностей рассматривали азартные игры как единственный или главный предмет разрабатывавшейся ими новой отрасли науки. На развитие теории вероятностей оказали влияние более серьёзные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах ещё в 16в. В 16-17вв. учреждение страховых обществ и страхование судов от пожара распространились во многих европейских странах. Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности. Об этом заметил ещё Гюйгенс в своей книге “О расчётах в азартной игре” (1657), которая была первой книгой в мире по теории вероятностей. Он писал: “. при - внимательном изучении предмета читатель заметит, что он занимается не только игрой, а что здесь даются основы глубокой и весьма интересной”. Гюйгенс впервые ввёл важное для теории вероятностей понятие математического ожидания, которое получило дальнейшее развитие а трудах Даниила Бернулли, Даламбера и др. Понятие математического ожидания находит немало применений а разных других областях человеческой деятельности.

Таким образом, в 60-е годы 17в. были выработаны первые понятия и некоторые элементы теории вероятностей. В последующие два века учёные столкнулись с множеством новых задач, связанных с исследованием случайных явлений. Играет ли природа в кости?

В середине 19в. преподаватель Высшей реальной школы, в городе Брюнне Грегор Иоганн Мендель производил свои ставшие впоследствии знаменитыми опыты с горохом, в результате которых были открыты законы наследственности. Мендель скрестил два сорта гороха с жёлтыми и зелёными семенами, после чего растения дали только желтые семена (первое поколение гибридов). После самоопыления растений, выраженных из этих семян (второе поколение гибридов), появился горох и с жёлтыми, и с зелёными семенами Мендель подсчитал, что отношение числа растений с жёлтыми семенами к числу растений с зелеными семенами равно 3,01. Учёный скрещивал также сорта гороха, различающиеся либо по форме плода, либо по расположению цветков, либо по размерам растении и т.п. И каждый раз в первом поколении обнаруживался только один из противоположных родительских признаков—его Мендель назвал доминантным (от лат. dominatus—"господство"), лишь во втором поколении проявлялся и другой—регрессивный (от. лат. recessus— “отступление”), В опытах Менделя отношение числа растений с доминантным признаком к числу растений с рецессивным признаком было равно 3,15; 2,95; 2,82;

Борисенкова Ольга Владимировна

Азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс.

ВложениеРазмер
istoriya_vozniknoveniya_teorii_veroyatnostey.docx 28.89 КБ

Предварительный просмотр:

МБОУ СШ №8 г. Ярцево Смоленской области

Проект по математике:

Подготовила: ученица 11 класса

средней школы №8 Либерт Елена

Руководитель: учитель математики

Борисенкова Ольга Владимировна

История возникновения теории вероятностей…………………………………………………………..…. 3

Средневековая Европа и начало Нового времени……………………….4

XVII век: Паскаль, Ферма, Гюйгенс…..………………………………….5

XIX век. Общие тенденции и критика……………………….…………..7

Применение теории вероятности в XIX-XX веках……………….…..…8

  1. Астрономия………………………………………………………….8
  2. Физика………………………….……………………………………9
  3. Биометрия……………. ……………………………………………9
  4. Сельское хозяйство………………………..………………………..9
  5. Промышленность …………………………………………………..10
  6. Медицина…………………………………………………………. 10
  7. Биоинформатика……………. …………………………………….10
  8. Экономика и банковское дело…….……………………………….11

История возникновения теории вероятностей

Французский дворянин, некий господин де Мере, был азартным игроком в кости и страстно хотел разбогатеть. Он затратил много времени, чтобы открыть тайну игры в кости. Он выдумывал различные варианты игры, предполагая, что таким образом приобретет крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал противник.

В те времена еще не существовала отрасль математики, которую сегодня мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он изучил два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие :

Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

Паскаль не только сам заинтересовался этим, но и написал письмо известному математику П. Ферма, чем спровоцировал его заняться общими законами игры в кости и вероятностью выигрыша.

Средневековая Европа и начало Нового времени

Распределение суммы очков после бросания двух костей

Итак, имеется одно общее правило для расчёта: необходимо учесть общее число возможных выпадений и число способов, которыми могут появиться данные выпадения, а затем найти отношение последнего числа к числу оставшихся возможных выпадений.

Другой итальянский алгебраист, Никколо Тарталья, раскритиковал подход Пачоли к решению задачи о разделе ставки: ведь если один из игроков ещё не успел набрать ни одного очка, то алгоритм Пачоли отдаёт всю ставку его сопернику, но это трудно назвать справедливым, поскольку некоторые шансы на выигрыш у отстающего всё же имеются. Кардано и Тарталья предложили свои (различные) способы раздела, но впоследствии и эти способы были признаны неудачными.

XVII век: Паскаль, Ферма, Гюйгенс

В XVII веке начало формироваться отчётливое представление о проблематике теории вероятностей и появились первые математические (комбинаторные) методы решения вероятностных задач. Основателями математической теории вероятностей стали Блез Паскаль и Пьер Ферма.

Гюйгенс проанализировал и задачу о разделе ставки, дав её окончательное решение: ставку надо разделить пропорционально вероятностям выигрыша при продолжении игры. Он также впервые применил вероятностные методы к демографической статистике и показал, как рассчитать среднюю продолжительность жизни.

К этому же периоду относятся публикации английских статистиков Джона Граунта (1662) и Уильяма Петти (1676, 1683). Обработав данные более чем за столетие, они показали, что многие демографические характеристики лондонского населения, несмотря на случайные колебания, имеют достаточно устойчивый характер — например, соотношение числа новорождённых мальчиков и девочек редко отклоняется от пропорции 14 к 13, невелики колебания и процента смертности от конкретных случайных причин. Эти данные подготовили научную общественность к восприятию новых идей.

Граунт также впервые составил таблицы смертности — таблицы вероятности смерти как функции возраста. Вопросами теории вероятностей и её применения к демографической статистике занялись также Иоганн Худде и Ян де Витт в Нидерландах, которые в 1671 году также составили таблицы смертности и использовали их для вычисления размеров пожизненной ренты. Более подробно данный круг вопросов был изложен в 1693 году Эдмундом Галлеем.

Общие тенденции и критика

Математический аппарат теории вероятностей тем временем продолжал совершенствоваться. Основной сферой её применения в тот период была математическая обработка результатов наблюдений, содержащих случайные погрешности, а также расчёты рисков в страховом деле и других статистических параметров. Среди главных прикладных задач теории вероятностей и математической статистики XIX века можно назвать следующие:

найти вероятность того, что сумма независимых случайных величин с одинаковым (известным) законом распределения находится в заданных пределах. Особую важность эта проблема представляла для теории ошибок измерения, в первую очередь для оценки погрешности наблюдений;

установление статистической значимости различия случайных значений или серий таких значений. Пример: сравнение результатов применения нового и старого видов лекарств для принятия решения о том, действительно ли новое лекарство лучше;

исследование влияния заданного фактора на случайную величину (факторный анализ).

Уже к середине XIX века формируется вероятностная теория артиллерийской стрельбы. В большинстве крупных стран Европы были созданы национальные статистические организации. В конце века область применения вероятностных методов начала успешно распространяться на физику, биологию, экономику, социологию.

Применение теории вероятности в XIX-XX веках.

В 19 и 20 столетиях теория вероятностей проникает сначала в науку (астрономию, физику, биологию), потом в практику (сельское хозяйство, промышленность, медицину), и наконец, после изобретения компьютеров, в повседневную жизнь любого человека, пользующегося современными средствами получения и передачи информации. Проследим применение в различных областях.

Именно для использования в астрономии был разработан знаменитый “метод наименьших квадратов” (Лежандр 1805, Гаусс 1815). Главной задачей, для решения которой он был первоначально использован, стал расчет орбит комет, который приходилось производить по малому числу наблюдений. Ясно, что надежное определение типа орбиты (эллипс или гипербола) и точный расчет ее параметров оказывается трудным, так как орбита наблюдается лишь на небольшом участке. Метод оказался эффективным, универсальным, и вызвал бурные споры о приоритете. Его стали использовать в геодезии и картографии. Сейчас, когда искусство ручных расчетов утрачено, трудно представить, что при составлении карт мирового океана в 1880-х годах в Англии методом наименьших квадратов была численно решена система, состоящая из примерно 6000 уравнений с несколькими сотнями неизвестных.

Во второй половине 19 века была в работах Максвелла, Больцмана и Гиббса была развита статистическая механика, которая описывала состояние разряженных систем, содержащих огромное число частиц (порядка числа Авогадро). Если раньше понятие распределения случайной величины было преимущественно связано с распределением ошибок измерения, то теперь распределенными оказались самые разные величины – скорости, энергии, длины свободного пробега.

В 1870-1900 годах бельгиец Кетле и англичане Френсис Гальтон и Карл Пирсон основали новое научное направление – биометрию, в которой впервые стала систематически и количественно изучаться неопределенная изменчивость живых организмов и наследование количественных признаков. В научный оборот были введены новые понятия – регрессии и корреляции.

Итак, вплоть до начала 20 века основные приложения теории вероятности были связаны с научными исследованиями. Внедрение в практику – сельское хозяйство, промышленность, медицину произошло в 20 веке.

В начале 20 века в Англии была поставлена задача количественного сравнения эффективности различных методов ведения сельского хозяйства. Для решения этой задачи была развита теория планирования экспериментов, дисперсионный анализ. Основная заслуга в развитии этого уже чисто практического использования статистики принадлежит сэру Рональду Фишеру, астроному по образованию, а в дальнейшем фермеру, статистику, генетику, президенту английского Королевского общества. Современная математическая статистика, пригодная для широкого применения в практике, была развита в Англии (Карл Пирсон, Стьюдент, Фишер). Стьюдент впервые решил задачу оценки неизвестного параметра распределения без использования байесовского подхода.

Введение методов статистического контроля на производстве (контрольные карты Шухарта). Сокращение необходимого количества испытаний качества продукции. Математические методы оказываются уже настолько важными, что их стали засекречивать. Так книга с описанием новой методики, позволявшей сократить количество испытаний (“Последовательный анализ” Вальда), была издана только после окончания второй мировой войны в 1947 году.

Широкое применение статистических методов в медицине началось сравнительно недавно (вторая половина 20 века). Развитие эффективных методов лечения (антибиотики, инсулин, эффективная анестезия, искусственное кровообращение) потребовало достоверных методов оценки их эффективности. Возникло новое понятие “Доказательная медицина”. Начал развиваться более формальный, количественный подход к терапии многих заболевании – введение протоколов, guidelines.

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей – возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один современный персональный компьютер превосходит по быстродействию и памяти все компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны – thinkingofunthinkable.

Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Экономика и банковское дело.

Широкое применение имеет теория риска. Теория риска есть теория принятия решений в условиях вероятностной неопределенности. С математической точки зрения она является разделом теории вероятностей, а приложения теории риска практически безграничны. Наиболее продвинута финансовая область приложений: банковское дело и страхование, управление рыночными и кредитными рисками, инвестициями, бизнес-рисками, телекоммуникациям. Развиваются и нефинансовые приложения, связанные с угрозами здоровью, окружающей среде, рисками аварий и экологических катастроф, и другими направлениями.

Читайте также: