История открытия меди реферат

Обновлено: 08.07.2024

Медь — (Cu — купрум (греч. Kypros — Кипр)), латинское название, происходит от острова Кипр.

В древности на этом острове добывали много меди. В природе встречается в естественном виде и в сочетании с другими элементами.

История открытия меди.

Медь — один из самых первых известных и используемых металлов. Способность плавить и лить медные предметы встречается у древних народов Малой Азии, Египта и Европы.

В Египте искусство получения меди было известно еще в 7000 г. до н.э. Около 2800 г. до н.э. научились добавлять к меди олово, и производить бронзу.

В 5500 году до нашей эры египтяне смогли получить медную проволоку, а в 1600 году до нашей эры отлили изделия из бронзы в формы из песка. В период 2000-1500 гг. до н.э. красили стекло соединениями меди. Пилоны, устанавливаемые у входа в храмы в Древнем Египте (1500 г. до н.э.), были оснащены лезвиями из меди и, вероятно, действовали как громоотводы.

Открытие и использование месторождений меди на Кипре произошло около 1500 г. до н.э. Древние римляне называли полученную оттуда медь aes cyprium.

В средневековой Европе добыча меди началась относительно рано (например, в 922 году нашей эры в Саксонии). В связи с развитием военной техники в Европе возник большой спрос на цветные металлы, в основном на медь и олово, что увеличило производство этих металлов.

Позже этот спрос еще больше увеличился из-за развития электротехнической промышленности. Наиболее важными медными сплавами являются латунь и бронза, а также константан и никель.

Похожие записи.


Роджер Бэкон - английский философ и ученый (ок. 1214–1292). Вероятно, он происходил из небогатой дворянской семьи, он сам упомянул своего брата, так что, возможно, у него было много братьев и сестер. .


Шерсть - натуральное волокно, полученное из шерсти овец и ягнят. История шерсти. Шерсть (также называемая флисом), полученная путем стрижки живых овец, является отличным текстильным сырьем для производства высококачественных тканей, трикотажных полотен и .


Томас Хэнкок - английский изобретатель (1786-1865). Возможно, он не принес жертву, как Ч.Гудиер, но, как и он, посвятил почти всю свою сознательную жизнь резине и резиновым изделиям. С 1820 года он скупил .

Линза - простое оптическое устройство, в котором хотя бы одна из поверхностей изогнута. История линз. Первым линзам около 3600 лет! Они были найдены при раскопках легендарной Трои, то есть около 2-го тысячелетия .

Гульельмо Маркони - итальянский изобретатель и пионер радио (1874-1937). Первоначально он получал образование под руководством частных учителей. С самого начала его интересовали вопросы электротехники - он взялся за них против воли отца, .

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Медь: ее свойства, значение и применение

Краткая характеристика меди стр. 4

Производство меди стр. 4

Применение меди стр. 4

Биологмческое значение меди стр. 5

Заключение стр. 6

Библиография стр. 7

Медь – один из главных и широко распространенных химических элементов. Это металл, который обладает ценными свойствами и благодаря этому активно используется в разных областях. Именно этот элемент одним из первых обнаружили и начали применять для своих целей первобытные люди, так как он встречается в виде самородков, которые можно добыть с помощью примитивных орудий, либо относительно легко выплавить из руды.

Медь также является важной составляющей многих сплавов – бронза, латунь (медь с цинком), мельхиор (медь с никелем). Первой бронзой был сплав меди с мышьяком, но при переплавке ядовитый мышьяк испарялся, что сказывалось на здоровье кузнецов. Даже бог-кузнец Гефест в мифах изображался хромым. В дальнейшем мышьяк заменили на олово.

В древности медь и ее сплавы использовались при производстве оружия, а также некоторых предметов быта. По мере развития человечества из нее стали отливать более сложные предметы – артиллерийские орудия, колокола, статуи. В наше время спектр применения этого металла еще более широк.

Медь также содержится и в живых организмах и является необходимым веществом для протекания многих жизненно-важных процессов и реакций.

В этом реферате я хотела бы рассмотреть подробно вопросы производства и применения меди в современном мире и ее биологического значения.

Краткая характеристика меди

Медь – это элемент 11-й группы периодической системы Менделеева с атомным номером 29. Обозначают символом Cu (Cuprum). Это пластичный металл золотисто-розового цвета, который на воздухе покрывается оксидной пленкой (патиной). Пленка на просвет имеет зеленовато-голубой цвет. Патина бывает естественной, образующейся под воздействием окружающей среды, и искусственной, создаваемой с помощью кислот или других окислителей, с целью придания предметам старинного вида.

Медь образует кубическую решетку. Модель представляет из себя куб из восьми атомов в углах и шести атомов, расположенных в центре шести граней. Медь обладает высокой тепло- и электропроводностью (второе место по электропроводности среди металлов после серебра). Температура плавления меди – 1084 градуса по Цельсию, а кипит она при температуре 2600 градусов по Цельсию.

Производство меди

В наши дни медь получают из медных руд и минералов путем электролиза, а также при помощи пирометаллургии и гидрометаллургии. Электролиз проходит в ваннах, где анод – это медь огневого рафинирования, а катод – тонкие листы чистой меди. Электролит – раствор серной кислоты с медным купоросом. В ходе электролиза происходит повышение концентрации серной кислоты, под воздействием постоянного тока анод растворяется, медь переходит в раствор и осаждается на катодах.

Пирометаллургичесикй способ представляет собой несколько этапов – обогащение, обжиг, плавку и рафинирование. Гидрометталургический способ – это выщелачивание меди слабым раствором серной кислоты и ее выделение из раствора.

Применение меди

Медь является хорошим проводником, поэтому она используется для изготовления проводов и кабелей. Здесь нужна чистая медь, так как примеси резко снижают электрическую проводимость. Благодаря высокой теплопроводности медь используется в разных теплообменниках и теплоотводных устройствах: радиаторах, компьютерных кулерах и пр. Благодаря прочности и пригодности к механической обработке медь и ее сплавы также применяются в производстве труб.

Наряду с чистой медью, широко используются и ее сплавы. Инструменты и детали из этих материалов не создают искр, поэтому применяются на огнеопасных и взрывоопасных производствах.

Медь широко используется в архитектуре (медные крыши, кровли и фасады служат до 100-150 лет) и при производстве памятников; для производства медных духовых инструментов (трубы, валторны, саксофоны, тромбоны и корнеты); для производства бытовой посуды (медные тазы и сковороды), а также столовых приборов – мельхиор, сплав меди и никеля, иногда называют немецким серебром.

Биологическое значение меди

Медь является необходимым элементом для всех высших растений и животных. В организме взрослого человека содержание меди составляет примерно 100-200 мг, при этом около 50% находится в мышцах, а еще 10% - в печени. 1

Медь входит в состав многих ферментов, участвует в метаболизме железа, повышает усвоение белков и углеводов, участвует в образовании гемоглобина и созревании эритроцитов, то есть необходима для снабжения организма кислородом. Медь также поддерживает эластичность стенок кровеносных сосудов и кожи, обладает противовспалительным действием.

Белок гемоцианин, переносящий кислород у членистоногих и моллюсков, также содержит медь. Кровь у моллюсков голубая и благодаря меди, и из-за строения самого белка.

Недавно ученые установили, что в тех водоемах, где имеется медь, карпы вырастают особенно крупными. Там, где ее нет, развивается вредоносный для этих рыб грибок. 2

1 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

2 Спектор А.А. Увлекательная наука химия, - Москва, АСТ, 2017 - стр. 73

Несмотря на то, что медь была одним из самых первых открытых человеком металлов, масштабы и способы ее потребления только возрастают. Благодаря развитию науки и прогрессу, ученые открывают все новые свойства металла и, соответственно, новые области его применения.

Мне кажется, что применение этого металла в производственных сферах человечеством изучено подробно, тогда как ее роль в физиологических и биологических процессах, происходящих в организмах, еще только предстоит исследовать в полной мере.

Сфера использования меди чрезвычайно обширна. Ее применение в разных областях тяжелой и легкой промышленности и отдельных отраслях современной науки, весьма разнообразно. Более того – количество ситуаций, когда медь незаменима, растёт наперегонки с техническим прогрессом, а вот способы медедобычи остаются неизменными на протяжении множества веков. Возможности меди (и все ее свойства, включая целебное) были открыты нашими предками еще в античный период. С тех пор в нашем мире изменилось практически все, начиная от мировоззрения людей и заканчивая социально-экономическим строем, а медь как приносила людям пользу, так и продолжает ее приносить.


Латинское название этого металла — Cuprum — имеет очень красивую историю, берущую своё начало в древнегреческой мифологии. Согласно верованиям древних греков, люди получили этот металл от Афродиты, богини любви и плодородия. Легенда гласит, что Афродита, родившаяся в пене прибрежных волн, вышла на берег острова Кипр, который она немедленно взяла под свое покровительство, показав его жителям залежи столь необходимого для них металла. Разумеется, в этом красивом сказании есть определенная доля истины — именно Кипр, где в древности был расположен один из самых известных алтарей поклонения Венере, издревле был богат залежами меди. Так что древние киприоты и впрямь обогащались на добыче этого металла, а имя острова дало научное название этому элементу — купрум.


Чуть позже медь начали использовать не только в тогдашней оружейной и сельскохозяйственной промышленности. Из меди начали изготавливать и посуду, и украшения, и прочие столь необходимые в хозяйстве предметы. Любопытный факт: ученым-археологам удалось реконструировать один из способов изготовления медной посуды, бытовавший примерно в V тысячелетии до нашей эры. Для того, чтобы изготовить из слитка меди таз, древним мастерам нужно было стучать огромным молотом по медному диску, размещенному на специально приготовленных для этого деревянных блоках определенной формы.


Раскопки ученых-историков на территории Анатолии (ныне — Анталия, средиземноморское побережье Турции), Египта, Ирана, Месопотамии принесли новые сведения как о применении меди, так и о способах ее обработки, бытовавших в те далекие времена. Как оказалось, нашим далеким предкам пришлось довольно долго экспериментировать для того, чтобы обработанная путем горячей ковки медь не теряла своих качеств и не становилась хрупкой. Способы обработки меди, состоящие из разных сочетаний литья и ковки, варьировались и шлифовались на протяжении веков. Разумеется, за этот период возросло мастерство специалистов, которые начали не только изготовлять из меди оружие, посуду и украшения, но и освоили метод чеканки.

Известно, что медь высоко ценилась жителями Древнего Египта. После расшифровки множества клинописных папирусов стал известен способ обработки меди в эпоху правления Рамзеса II . (1300–1200 гг. до н. э.) Древние египтяне загоняли воздух в плавильные печи с помощью мехов, а древесный уголь добывали из акации и финиковой пальмы. Это создавало внутри печей идеальную температуру для обработки медных слитков и их очищения от посторонних примесей.

Разумеется, в эпоху древнегреческой цивилизации (и красивого мифа о дарах Афродиты) медь использовали как оружейники и ювелиры, так и врачи. В медицинских трактатах эпохи античности много говорится о целебном влиянии медных изделий на человеческий организм. В частности, о том, что воины, облаченные в медные доспехи, куда меньше устают, а их боевые раны заживают быстрее, нежели у их коллег, облаченных в бронзу.

Самородная медь размером около 4 см

Самородная медь размером около 4 см

Медь — минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура меди

Кристаллическая структура меди

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура – кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов , расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками “медной зелени” (малахит), “медной сини” (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА

Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см

Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

ЗАПАСЫ И ДОБЫЧА

Образец меди, 13,6 см. Полуостров Кинави, Мичиган, США

Образец меди, 13,6 см. Полуостров Кинави, Мичиган, США

Среднее содержание меди в земной коре (кларк) — (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т — подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди — пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS2. Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ

Медь

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди – Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ

Браслеты из меди

Браслеты из меди

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Медь — один из первых металлов, хорошо освоенных человеком из-за доступности для получения из руды и малой температуры плавления. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк. Медный век, когда значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Экспериментальные исследования С. А. Семёнова с сотрудниками показали, что, несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий

В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришёл на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди.

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, в Сибири, на Алтае, на территории Украины.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник (1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.).

С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике.

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где было богатое месторождение.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр. ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник.

Среднее содержание меди в земной коре (кларк) — (4,7-5,5)·10−3% (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10−7% и 10−7% (по массе) соответственно.

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Жезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси).

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

Атомная плотность меди (N0) = 8,52 * 10 28 (атом/м³).

В электротехнике
Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C: 0,01724-0,0180 мкОм·м/), медь широко применяется в электротехнике для изготовления силовых и других кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %.

Теплообмен
Система охлаждения из меди на тепловых трубках в ноутбуке
Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб
В связи с высокой механической прочностью и пригодностью для механической обработки медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

Сплавы на основе меди

Сплавы, в которых медь значима

Повреждённая пожаром дюралевая деталь дирижабля Гинденбург (LZ 129)
Дюраль (дюралюминий) определяют как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к механическим воздействиям.

Соединения меди
Оксиды меди используются для получения оксида иттрия-бария-меди (купрата) YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения
Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за того ,что медь является катализатором полимеризации ацетилена (образует соединения меди с ацетиленом), трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006.

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 510 и 578 нм.

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн тонн. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т — подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн. Основными производителями меди в России являлись:

Компания тыс. тонн %
Норильский никель 425 45 %
Уралэлектромедь 351 37 %
Русская медная компания 166 18 %

Лидерами производства были:

Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
США (1,170/1,310),
Перу (1,190/1,220),
КНР (0,946/1,000),
Австралия (0,870/0,850),
Россия (0,740/0,750),
Индонезия (0,797/0,650),
Канада (0,589/0,590),
Замбия (0,520/0,560),
Казахстан (0,407/0,460),
Польша (0,452/0,430),
Мексика (0,347/0,270).
По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается, что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская Республика. Эскондида — самый большой в мире карьер, в котором добывают медную руду (расположен в Чили). В зависимости от глубины залегания, руда добывается открытым или закрытым методом.

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её растворения в слабом растворе серной кислоты и последующего выделения металлической (черновой) меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20—40 % железа, 22—25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки — 1450 °C.

С целью окисления сульфидов и железа полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4—99,4 % меди, 0,01—0,04 % железа, 0,02—0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0—99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит раствор раствор серной кислоты с медным купоросом. В ходе электролиза происходит повышение концентрации серной кислоты. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлама, который идёт на переработку с целью извлечения ценных металлов. При получении 1000 тонн электролитической меди можно получить до 3 кг серебра и 200 г золота. Катоды выгружают через 5—12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Читайте также: