Использование давления в технических устройствах реферат

Обновлено: 30.06.2024

А что, школьники уже добились того, что им теперь не надо писать рефераты
САМОСТОЯТЕЛЬНО, а нужно воровать из интернета чужие мысли и переписывать их в тетрадь, выдавая за свои?

Открывай учебник физики в разделе ДАВЛЕНИЕ и на каждую тему там куча примеров как раз по твоему реферату.

Если бы он ПРОСТО ИНТЕРЕСОВАЛСЯ, то либо открыл учебник физики, либо залез в интеренет.
Но ему нужен УЖЕ ГОТОВЫЙ чужой реферат, чтобы тупо списать то, что написал другой-читайте вопрос.

Использование давления воздуха в технических устройствах
Простейшее устройство, использующее в своей работе атмосферное давление, - медицинский шприц. Он состоит из прозрачного цилиндра, внутри которого ходит поршень. Когда нам нужно набрать в шприц лекарственный раствор, мы начинаем поднимать поршень. Воздух между дном и поршнем разрежается. И за счёт разницы давлений внутри шприца и наружного атмосферного давления жидкость будет подниматься вверх, пока не заполнит свободное пространство.
Так же поднимается жидкость в пипетке. По такому же принципу устроены доильный аппарат, поилка для птиц, мыльница на присосках, пылесос.
Первым устройством, использующим атмосферное давление, был всасывающий водяной насос. Его изобрёл и описал древнегреческий механик Ктептизий в 1 веке до н. э. В те времена металлов ещё не было, и насосы изготавливались из дерева. Конечно, они часто ломались и были недолговечны. Но их успешно использовали для тушения пожаров. Позднее, когда началась промышленная революция, с помощью таких насосов стали откачивать воду из шахт и рудников. В наше время водяные насосы используются для подъёма воды из скважин и колодцев.
Самый простой всасывающий насос, как и шприц, также состоит из цилиндра, внутри которого движется плотно пригнанный к стенкам цилиндра поршень. Но в отличие от шприца, в самом поршне и в нижней части цилиндра имеются 2 клапана. Они открываются только вверх. Когда поршень поднимается вверх, воздух в цилиндре разрежается, давление понижается. Открывается нижний клапан, и вода под воздействием атмосферного давления устремляется вверх за поршнем. Когда поршень начинает двигаться вниз, вода давит на нижний клапан, и он закрывается. Но в это же время под давлением воды открывается клапан в самом поршне, разрешая воде заполнять пространство над ним. Когда поршень снова начнёт своё движение вверх, находящаяся в цилиндре над ним вода также будет подниматься и начнёт выливаться в трубу.
Воздушный насос, которым мы накачиваем мяч или автомобильную шину, использует в своей работе сжатый воздух. Простейший воздушный насос похож на шприц. Конечно, его цилиндр и поршень отличается от аналогичных частей шприца размерами и материалом, из которого они изготовлены. Кроме того, такой насос имеет в корпусе 2 отверстия. Одно предназначено для забора воздуха, а в другое вставлен резиновый шланг с ниппелем на конце. Воздух попадает в корпус, когда поршень движется вверх. Опускаясь, поршень сжимает воздух и выталкивает его через ниппель в шину или мяч.
Ниппель - специальное приспособление, пропускающее воздух только в одну сторону. Он представляет собой тоненькую металлическую трубочку, в боковой поверхности которой есть маленькое отверстие. На это отверстие надевают резиновую трубочку, которая раздувается и пропускает воздух, подающийся из насоса под давлением. Обратно выйти трубочка воздуху не позволяет. Этот процесс мы наблюдаем, когда накачиваем простым ручным насосом колесо велосипеда. Если мы не поставим ниппель на шланг насоса, воздух тут же вырвется из колеса наружу.

Работает такой насос по такому же принципу, что и воздушный насос. Но поршень приводится в движение не вручную, а с помощью специального вращающегося маховика. Цилиндр в компрессоре расположен горизонтально, поршень движется влево-вправо. В цилиндре поставлена заслонка, в которой расположен клапан, открывающийся при движении поршня вправо. В этот момент воздух, сжатый поршнем, закачивается в шину или баллон. При движении влево открывается клапан в поршне и атмосферный воздух попадает в цилиндр

Попова Людмила Леонасовна

Итак, строго говоря, мы пьём не только ртом, но и лёгкими; ведь расширение лёгких – причина того, что жидкость устремляется в наш рот.

ВложениеРазмер
davlenie_v_prirode_i_tehnike.docx 77.37 КБ

Предварительный просмотр:

имени А.М. Мамонова

Матусова Алина Вячеславовна.

Попова Людмила Леонасовна.

Мухи и древесные лягушки могут держаться на оконном стекле благодаря крошечным присоскам, в которых создаётся разряжение, и атмосферное давление удерживает присоску на стекле.

Слон использует атмосферное давление всякий раз, когда хочет пить. Шея у него короткая, и он не может нагнуть голову в воду, а опускает только хобот и втягивает воздух. Под действием атмосферного давления хобот наполняется водой, тогда слон изгибает его и выливает воду в рот.

Засасывающее действие болота объясняется тем, что при поднятии ноги под ней образуется разряжённое пространство. Перевес атмосферного давления в этом случае может достигать 1000Н на площадь ноги взрослого человека. Однако копыта парнокопытных животных при вытаскивании из трясины пропускают воздух через свой разрез в образовавшееся разряжённое пространство. Давление сверху и снизу копыта выравнивается, и нога вынимается без особого труда.

… давление на морских глубинах очень велико, поэтому человек не может находиться на глубине без специальных аппаратов. С аквалангом человек может опуститься на глубину около 100 метров. Защитив себя корпусом подводной лодки, человек может опуститься уже до километра в глубь моря. И лишь специальные аппараты – батискафы и батисферы – позволяют опускаться до глубин нескольких километров.

… при глубоком погружении с аквалангом человек должен предохранить себя от кессонной болезни. Она возникает, если аквалангист быстро поднимается с глубины на поверхность. Давление воды резко уменьшается и растворённый в крови воздух расширяется. Образующиеся пузырьки закупоривают кровеносные сосуды, мешая движению крови, и человек может погибнуть. Поэтому аквалангисты всплывают медленно, чтобы кровь успевала уносить образующиеся пузырьки воздуха в легкие.

… Атмосфера вращается вокруг земной оси вместе с Землей. Если бы атмосфера была неподвижна, то на Земле постоянно бы царил ураган со скоростью ветра свыше 1500 км/ч.

… из-за давления атмосферы на каждый квадратный сантиметр нашего тела действует сила 10 Н.

… некоторые планеты солнечной системы тоже имеют атмосферы, однако их давление не позволяет человеку находиться там без скафандра. На Венере, например, атмосферное давление около 100 атм, на Марсе – около 0,006 атм.

…барометры Торричелли являются самыми точными барометров. Ими оборудованы метеорологические станции и по их показаниям проверяется работа Барометров-анероидов.

…барометр-анероид – очень чувствительный прибор. Например, поднимаясь на последний этаж 9-ти этажного дома, из-за различия атмосферного давления на различной высоте мы обнаружим уменьшение атмосферного давления на 2-3 мм рт. ст.

…втыкая иглу или булавку в ткань, мы создаём давление около 100 МПа.

*Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в верёвочном гамаке, который сплетён низ довольно твёрдых шнурков?*

Нетрудно догадаться. Сиденье простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большой поверхности; по этой поверхности и распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.

Для большегрузных автомобилей изготавливают очень широкие шины. Это позволяет снизить давление на дорогу. Давление следует уменьшать при движении по заболоченной поверхности. Для этого настилают деревянные чаги, по которым могут ехать даже танки.

Иглы, лезвия, режущие предметы остро оттачиваются, чтобы при малых силах на острие создавалось большое давление. Такими инструментами намного проще работать.

В животном мире это тоже можно наблюдать. Это – клыки у зверей, когти, клювы и т.д.

Итак, строго говоря, мы пьём не только ртом, но и лёгкими; ведь расширение лёгких – причина того, что жидкость устремляется в наш рот.


ПЕРЕДАЧА ДАВЛЕНИЯ ЖИДКОСТЯМИ И ГАЗАМИ. ЗАКОН ПАСКАЛЯ. ИСПОЛЬЗОВАНИЕ ЗАКОНА ПАСКАЛЯ В ТЕХНИКЕ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Закон сформулирован французским учёным Блезом Паскалем ] .

Следует обратить внимание на то, что в законе Паскаля речь идет не о давлениях в разных точках, поэтому закон справедлив и для жидкости в поле силы тяжести. В случае движущейся несжимаемой жидкости можно условно говорить о справедливости закона Паскаля, ибо добавление произвольной постоянной величины к давлению не меняет вида уравнения движения жидкости ( уравнения Эйлера или, если учитывается действие вязкости, уравнения Навье — Стокса ), однако в этом случае термин закон Паскаля, как правило, не применяется.

Закон Паскаля является следствием закона сохранения энергии и справедлив и для сжимаемых жидкостей (газов), если сжимаемостью среды можно пренебречь

Основная часть:

Твердое тело передает давление по направлению действия силы, поэтому мы можем копать землю, забивать гвозди и т.д. Объясняется это тем, что молекулы тв. тела сильно взаимодействуют и только колеблются около положения равновесия.

Общее свойство газов и жидкостей - что они не сохраняют форму, а текут и принимают форму сосуда, объясняется движением их молекул. Отличие газов – не сохранение и объема, большая сжимаемость может объясняться большим расстоянием и промежутками между частицами.

В цилиндр с поршнем набирают воды (газа) и присоединяют к свободному концу шар с несколькими одинаковыми отверстиями по окружности (шар Паскаля). Нажимая на поршень, можно наблюдать, как струи воды вытекают из шара с одинаковой силой. Объясняется это законом Паскаля.

Закон Паскаля гласит: "Давление, производимое на жидкость или газ, передается в любую точку жидкости или газа одинаково по всем направлениям".
Это утверждение объясняется подвижностью частиц жидкостей и газов во в сех направлениях.

Закон Паскаля положен в основу устройства многих механизмов, использующихся в нефтяной промышленности.

1. гидравлические прессы

2. гидравлические подъемники

3. Системы водоснабжения. Пневматическая система водоснабжения. Насос подает в бак воду, сжимающую воздушную подушку, и отключается при достижении давления воздуха 400 000 Н/м2. Вода по трубам поднимается в помещения. При понижении давления воздуха вновь включается насос.

Разберем принцип работы гидравлического пресса

Если мы нарушаем состояние покоя жидкости в одном из сосудов, например, доливая жидкость, или оказывая давление на ее поверхность, чтобы привести систему в равновесное состояние, к которому стремится любая система, в остальных сообщающихся с данным, сосудах повысится уровень жидкости. Происходит это на основании другого физического закона, названного по имени ученого, сформулировавшего его – закона Паскаля. Закон Паскаля заключается в следующем: давление в жидкости или газе распространяется во все точки одинаково.

На чем же основан принцип работы любого гидравлического механизма? Почему человек может с легкостью поднять автомобиль, весящий больше тонны, чтобы поменять колесо?

Математически закон Паскаля имеет такой вид:

Давление P зависит прямо пропорционально от приложенной силы F. Это понятно – чем сильнее давить, тем больше давление. И обратно пропорционально от площади прилагаемой силы.

Любая гидравлическая машина представляет собой сообщающиеся сосуды с поршнями. Принципиальная схема и устройство гидравлического пресса показаны на фото.

Представьте, что мы надавили на поршень в большем сосуде. По закону Паскаля в жидкости сосуда начало распространятся давление, а по закону о сообщающихся сосудах, чтобы скомпенсировать это давление, в малом сосуде поршень поднялся. Причем, если в большом сосуде поршень сдвинулся на одно расстояние, то в малом сосуде это расстояние будет в несколько раз больше.

Проводя опыт, или математический расчет, несложно заметить закономерность: расстояние, на которые сдвигаются поршни в сосудах разного диаметра, зависят от соотношения меньшей площади поршня к большой. Тоже произойдет, если наоборот, силу прикладывать к меньшему поршню.

Вы здесь: Home Материя и движение О давлении Использование давления в практических целях

Использование давления в практических целях

Человек давно научился использовать давление в своей практической деятельности.

Давление твёрдых тел на службе человеку

Использование давления в практических целях

Трудно назвать точный период, когда появилась первая лопата. Скорее всего, ещё в древние времена, когда люди начали заниматься земледелием. Казалось бы, какое отношение имеет этот инструмент к использованию давления в практических целях? Оказывается, самое прямое.

Из формулы расчёта давления мы знаем, что чем меньше площадь поверхности твёрдого тела, к которому приложена сила, тем бóльшим будет давление, создаваемое этой силой на единицу площади. Конструкция лопаты такова, что когда мы ею копаем землю, то своим весом создаём большое давление на поверхность очень маленькой площади. Чем острее заточена лопата, тем меньшее усилие нам нужно приложить, чтобы она вошла глубоко в землю.

Использование давления в практических целях

По такому же принципу создаёт давление обычная канцелярская кнопка. Достаточно придавить её пальцем, как её заострённый конец легко входит в деревянную поверхность.

Сконцентрировать силу на малой площади и тем самым увеличить давление можно с помощью простого приспособления, называемого клином.

Клин представляет собой призму, рабочие поверхности которой сходятся под острым углом. Если приложить силу к основанию этой призму, то она разложится на 2 составляющие, перпендикулярные рабочей поверхности. Каждая из этих сил создаёт давление на поверхность тела, в которое этот клин вгоняется. Используя клин, например, раскалывают древесину. В Древнем Египте с помощью бронзовых клиньев откалывали каменные блоки для строительства.

Клин - один из простейших механизмов, позволяющих ещё и увеличивать приложенную силу. Отношение силы, которую развивает механизм (нагрузки) к прикладываемой силе (усилию) называется выигрышем силы. Выигрыш силы для клина равен отношению его длины к толщине тупого конца. По принципу клина действуют топор, игла, пилá, нож.

Использование давления воздуха в технических устройствах

Использование давления в практических целях

Простейшее устройство, использующее в своей работе атмосферное давление, - медицинский шприц. Он состоит из прозрачного цилиндра, внутри которого ходит поршень. Когда нам нужно набрать в шприц лекарственный раствор, мы начинаем поднимать поршень. Воздух между дном и поршнем разрежается. И за счёт разницы давлений внутри шприца и наружного атмосферного давления жидкость будет подниматься вверх, пока не заполнит свободное пространство.

Так же поднимается жидкость в пипетке. По такому же принципу устроены доильный аппарат, поилка для птиц, мыльница на присосках, пылесос.

Всасывающий водяной насос

Использование давления в практических целях

Первым устройством, использующим атмосферное давление, был всасывающий водяной насос. Его изобрёл и описал древнегреческий механик Ктептизий в 1 веке до н.э. В те времена металлов ещё не было, и насосы изготавливались из дерева. Конечно, они часто ломались и были недолговечны. Но их успешно использовали для тушения пожаров. Позднее, когда началась промышленная революция, с помощью таких насосов стали откачивать воду из шахт и рудников. В наше время водяные насосы используются для подъёма воды из скважин и колодцев.

Самый простой всасывающий насос, как и шприц, также состоит из цилиндра, внутри которого движется плотно пригнанный к стенкам цилиндра поршень. Но в отличие от шприца, в самом поршне и в нижней части цилиндра имеются 2 клапана. Они открываются только вверх. Когда поршень поднимается вверх, воздух в цилиндре разрежается, давление понижается. Открывается нижний клапан, и вода под воздействием атмосферного давления устремляется вверх за поршнем. Когда поршень начинает двигаться вниз, вода давит на нижний клапан, и он закрывается. Но в это же время под давлением воды открывается клапан в самом поршне, разрешая воде заполнять пространство над ним. Когда поршень снова начнёт своё движение вверх, находящаяся в цилиндре над ним вода также будет подниматься и начнёт выливаться в трубу.

Воздушный насос

Использование давления в практических целях

Воздушный насос, которым мы накачиваем мяч или автомобильную шину, использует в своей работе сжатый воздух. Простейший воздушный насос похож на шприц. Конечно, его цилиндр и поршень отличается от аналогичных частей шприца размерами и материалом, из которого они изготовлены. Кроме того, такой насос имеет в корпусе 2 отверстия. Одно предназначено для забора воздуха, а в другое вставлен резиновый шланг с ниппелем на конце. Воздух попадает в корпус, когда поршень движется вверх. Опускаясь, поршень сжимает воздух и выталкивает его через ниппель в шину или мяч.

Ниппель - специальное приспособление, пропускающее воздух только в одну сторону. Он представляет собой тоненькую металлическую трубочку, в боковой поверхности которой есть маленькое отверстие. На это отверстие надевают резиновую трубочку, которая раздувается и пропускает воздух, подающийся из насоса под давлением. Обратно выйти трубочка воздуху не позволяет. Этот процесс мы наблюдаем, когда накачиваем простым ручным насосом колесо велосипеда. Если мы не поставим ниппель на шланг насоса, воздух тут же вырвется из колеса наружу.

Насос-компрессор

Использование давления в практических целях

Работает такой насос по такому же принципу, что и воздушный насос. Но поршень приводится в движение не вручную, а с помощью специального вращающегося маховика. Цилиндр в компрессоре расположен горизонтально, поршень движется влево-вправо. В цилиндре поставлена заслонка, в которой расположен клапан, открывающийся при движении поршня вправо. В этот момент воздух, сжатый поршнем, закачивается в шину или баллон. При движении влево открывается клапан в поршне и атмосферный воздух попадает в цилиндр.

Гидравлическая машина

Использование давления в практических целях

Устройства, действующие на основе законов о равновесии жидкостей, широко используются в современной технике. Они называются гидравлическими машинами.

Простейшая гидравлическая машина состоит из двух цилиндров, имеющих разные диаметры, соединённых между собой трубкой. Внутри каждого цилиндра движется поршень соответствующего диаметра. Цилиндры заполняют жидкостью. Так как они являются сообщающимися сосудами, то жидкости в них устанавливаются на одном уровне.

Предположим, площади поршней равны S1 и S2. На поршни соответственно действуют силы F1 и F2.

Давление под поршнем меньшей площади р1 = F1/S1. Давление под бóльшим поршнем р2 = F2/S2. Согласно закону Паскаля, давление жидкости передаётся одинаково по всем направлениям. Следовательно, р1 = р2, а F1/S1 = F2/S2. Отсюда следует, что F2/F1 = S2/S1.

На бóльший поршень действует сила во столько раз превышающая силу, действующую на меньший поршень, во сколько раз площадь бóльшего поршня больше площади меньшего.

Отношение F2/F1 называют выигрышем в силе.

Гидравлическая машина позволяет с помощью малой силы уравновесить большую.

Принцип работы гидравлической машины положен в основу работы гидравлического пресса. Такие прессы применяются там, где требуется сила большой величины, например, на маслобойных заводах при выжимке масла из семян, для изготовления деталей под большим давлением на металлургических производствах и др.

Тело, которое нужно сжать, кладут на платформу, соединённую с поршнем бóльшей площади. С помощью меньшего поршня создают давление, которое передаётся на бóльший поршень. Сила, воздействующая на него, многократно превосходит силу, приложенную к малому поршню. Под её действием поднимается платформа вместе со сжимаемым телом. Так как над ней закреплена ещё одна платформа, неподвижная, то тело упирается в неё и сдавливается.

Работа шлюзов

Использование давления в практических целях

На основе закона о сообщающихся сосудах устроена работа шлюзов. Чтобы перевести судно из одного водного пространства в другое, если у них разные уровни воды, делают обводной канал со шлюзом. Например, судну нужно обойти плотину ГЭС на реке. Естественно, уровни воды до плотины и после неё различаются.

Собственно, шлюз - это герметичная камера, которая соединяет две части водного канала. По обеим её сторонам расположены металлические щиты (ворота), которые открываются попеременно в зависимости от направления движения судна. Если судно поднимается по каналу, то для его захода в шлюзовую камеру открываются нижние ворота. После того как оно туда зашло, эти ворота закрывают. Уровень воды в камере с помощью перепускного клапана повышается до её уровня в следующем участке канала. После этого открываются другие ворота, и судно выходит из шлюза. Если судно нужно перевести на участок с более низким уровнем воды, то процесс происходит в обратном направлении.

Описанные выше примеры устройств, использующих в своей работе давление, очень просты по своей конструкции. Но принципы их работы положены в основу гораздо более сложных по своим функциональным возможностям приборов и аппаратов, которые успешно применяются практически во всех отраслях промышленности.

Читайте также: