Исполнительные двигатели постоянного тока реферат

Обновлено: 16.05.2024

Микродвигатели постоянного тока, применяемые в автоматических устройствах для преобразования электрического сигнала в механическое перемещение вала, называются исполнительными двигателями.

В зависимости от конструкции якоря исполнительные двигатели постоянного тока подразделяют на двигатели с якорем обычного типа, полым (печатным) и беспазовым (гладким) якорем.

Двигатели с якорем обычного типа отличаются от машин постоянного тока нормального исполнения шихтованной системой полюсов и ненасыщенной магнитной системой. Первое необходимо, поскольку эти двигатели, в основном, работают в переходных режимах, второе - для уменьшения влияния реакции якоря. Вместо шихтованных полюсов с обмоткой возбуждения в двигателях часто устанавливают постоянные магниты.

Для уменьшения влияния реакции якоря и ЭДС самоиндукции коммутирующей секции и улучшения условий коммутации применяют двигатели с гладким якорем (рис. 10.1). Обмотку 1 такого якоря укладывают на наружной поверхности якоря 2. Ее выполняют в два слоя и заливают эпоксидной смолой с ферромагнитным наполнителем 3.

Микродвигатели этого типа имеют более высокое быстродействие по сравнению с машинами с зубчатым якорем из-за большей индукции в воздушном зазоре(индукция не ограничивается насыщением зубцов) и меньшего момента инерции якоря. Уменьшение момента за счет уменьшенного диаметра (при увеличенной длине). Последнее возможно, поскольку лучшие условия коммутации позволяют значительно увеличить длину и уменьшить диаметр якоря

Значительно снижена инерция в двигателях с полым якорем. Магнитный поток в них создается обмоткой возбуждения (рис. 10.2) или постоянными магнитами, якорь представляет полый стакан 1, расположенный между полюсами 2 с обмоткой возбуждения 3 и неподвижным ферромагнитным сердечником 4, который насаживают на втулку 5 подшипникового щита. Вместо сердечника внутри якоря может быть установлен неподвижный цилиндрический магнит. Обмотку якоря 6 укладывают на цилиндрический каркас и заливают эпоксидным компаундом, концы секций обмотки, как и в обычном двигателе, соединяют с пластинами коллектора 7. Обмотка может быть выполнена и фотохимическим способом (печатная обмотка). Момент инерции полого якоря невелик, благодаря чему существенно повышается быстродействие двигателя. Отсутствие насыщения в зубцах позво-

ляет значительно увеличить индукцию в воздушном зазоре машины, то есть ее магнитный поток и номинальный вращающий момент по сравнению с микродвигателями, имеющими якорь обычного типа, что также способствует повышению быстродействия двигателя.

Поскольку секции обмотки якоря окружены не ферромагнитным материалом, а воздухом, они имеют гораздо меньшую индуктивность, что существенно улучшает условия коммутации двигателя. Щетки в таких микродвигателях работают практически без искрения даже при кратковременных перегрузках, вследствие чего можно применять большие форсировки для ускорения переходных процессов.

Недостатком микродвигателей с полым якорем является необходимость значительного увеличения МДС обмотки возбуждения, так как немагнитный зазор у них гораздо больше, чем в обычных двигателях, что приводит к увеличению потерь в обмотке возбуждения. КПД рассматриваемых двигателе из-за отсутствия потерь мощности в стали имеет такую же величину, как и у микродвигателей с якорем обычной конструкции.

Разновидностью двигателя с полым якорем является двигатель с дисковым якорем, у которого печатная обмотка нанесена на немагнитный диск. Магнитный поток создается постоянными магнитами или электромагнитами, расположенными по одну сторону диска с обеих сторон. В исполнительных двигателях постоянного тока обмотки якоря и главных полюсов питаются от двух независимых источников тока. Одна из них (условно называемая обмоткой возбуждения) подключена постоянно к источнику с неизменным напряжением UB, а на другую (обмотку управления) подается напряжение управления UУ только при необходимости вращения вала двигателя. В зависимости от того, на какую обмотку подается управляющий сигнал, различают два способа управления исполнительными двигателями - якорное (рис. 10.3, а) и полюсное (рис. 10.3, б).

Каждый из этих способов имеет свои преимущества и недостатки. При полюсном управлении меньше мощность управления, а при якорном - выходные характеристики параллельны и линейны.

Тахогенераторы

Тахогенераторы относят к информационным машинам, то есть к машинам от которых требуется высокая точность преобразования электрических или механических входных - сигналов управления соответственно в механические или электрические выходные величины, находящиеся в строго постоянной вполне определенной зависимости от входных сигналов. Тахогенераторы преобразуют частоту вращения механизма, с валом которого они соединены, в строго пропорциональное выходное напряжение:

где частота вращения, угол, на который перемещается вал механизма, связанного с тахогенератором.

В системах автоматики тахогенераторы служат:

для измерения частоты вращения (в этом случае выходное напряжение подается на вольтметр, шкала которого отградуирована в об/мин);

для осуществления обратной связи по скорости в следящих системах;

для осуществления электрического дифференцирования

Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению представляют собой машины постоянного тока чаще с возбуждением от постоянных магнитов (рис. 10.4, б), реже с электромагнитным возбуждением (рис. 10.4, а). В них используют якорь обычного типа, полый или дисковый с печатной обмоткой.

Выходное напряжение тахогенератора выражают, как и напряжение обычного генератора постоянного тока, через ЭДС якоря , падение напряжения в обмотке якоря и падение напряжения на щеточном контакте :

Представив в (10.2) ЭДС по (4.5), ток через напряжение и сопротивление нагрузки:

Решив это равенство относительно напряжения , найдем выражение для выходного напряжения:

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.


На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:


(1)


(2)

где КМ - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; IЯ - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:


(3)

где rЯ - сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т.е. когда и ,


Так как сопротивление rЯ невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря


По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря IЯ . Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т.е. номинальным.

4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи , мощность Pн , частота вращения nн, ток Iн , КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:


где Iян — ток якоря при номинальной нагрузке; Iвн – ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают


Номинальная мощность Рн - это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн .

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн , напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2 , момент М и частота вращения n связаны соотношением:


Потребляемая двигателем из сети мощность Р1 , величины P2, КПД, U, I связаны соотношениями:




где

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

5. КПД двигателей постоянного тока


Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть такова:


(9)

где - потери в обмотке якоря; - потери в обмотке возбуждения; - потери в магнитопроводе якоря; - механические потери.

Потери мощности не зависят, и мало зависят от нагрузки двигателя.

Двигатели рассчитываются таким образом, чтобы максимальное значение КПД было в области, близкой к номинальной мощности. Эксплуатация двигателей при малых нагрузках нежелательна вследствие малых значений rя . Значения КПД двигателей с различными способами возбуждения и мощностью от 1 до 100 кВт при номинальной нагрузке разные и составляют в среднем 0,8.

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.


Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.


Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая — увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя


Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).


Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Изменение частоты вращения вторым способом осуществляется с помощью регулируемого источника напряжения UD2. Изменяя его напряжение регулятором R2, можно изменить ток возбуждения IВ и тем самым магнитный поток двигателя. Как видно из уравнения (8), при постоянной нагрузке (М = соnst) частота вращения находится в сложной зависимости от магнитного потока Ф. Анализ уравнения (8) показывает, что… Читать ещё >

Двигатели постоянного тока ( реферат , курсовая , диплом , контрольная )

Министерство образования и науки Российской Федерации ГОУ ВПО Южно-Уральский государственный университет Филиал в г. Златоусте Реферат Двигатели постоянного тока ЗД-431.583.270 102

Выполнил: Шарипова Ю.Р.

2. Устройство и принцип действия двигателей постоянного тока

3. Пуск двигателей

4. Технические данные двигателей

5. Кпд двигателей постоянного тока

6 Характеристики двигателя постоянного тока

6.1 Рабочие характеристики

6.2 Механическая характеристика

7. Список используемой литературы

1.Введение

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис. 1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных — обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.

Рис.1

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бьльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1)

(2)

где КМ — коэффициент, зависящий от конструктивных параметров машины; Ф — магнитный поток одного полюса; IЯ — ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где rЯ — сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т. е. когда и ,

Так как сопротивление rЯ невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря

По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря IЯ. Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т. е. номинальным.

4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи, мощность Pн, частота вращения nн, ток Iн, КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн — максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:

где Iян — ток якоря при номинальной нагрузке; Iвн — ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают

Номинальная мощность Рн — это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн.

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн, напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2, момент М и частота вращения n связаны соотношением:

Потребляемая двигателем из сети мощность Р1, величины P2, КПД, U, I связаны соотношениями:

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

5. КПД двигателей постоянного тока

Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть такова:

(9)

Потери мощности не зависят, и мало зависят от нагрузки двигателя.

Двигатели рассчитываются таким образом, чтобы максимальное значение КПД было в области, близкой к номинальной мощности. Эксплуатация двигателей при малых нагрузках нежелательна вследствие малых значений rя. Значения КПД двигателей с различными способами возбуждения и мощностью от 1 до 100 кВт при номинальной нагрузке разные и составляют в среднем 0,8.

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f (Iв) при Ia=const и U=const.

Рис. 2. Регулировочная характеристика двигателя В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f (P2), при U=const и rв = const.

Рис. 3. Скоростные характеристики С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая — увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f (P2), при U=const, rв=const.

Полезный момент на валу двигателя Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).

Рис. 4. Моментные характеристики В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до ¼ номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Рис. 5. Изменение к. п. д. двигателя

6.2 Механическая характеристика

Важнейшей характеристикой двигателя является механическая n (M). Она показывает, как зависит частота вращения двигателя от развиваемого момента. Если к обмоткам двигателя подведены номинальные напряжения и отсутствуют дополнительные резисторы в его цепях, то двигатель имеет механическую характеристику, называемую естественной. На естественной характеристике находится точка, соответствующая номинальным данным двигателя (Мн, Ря и т. д. ). Если же напряжение на обмотке якоря меньше номинального, либо Iв т. е. при увеличении сопротивления частота вращения уменьшается. Разным сопротивлениям rд соответствуют различные искусственные механические характеристики, одна из которых приведена на рис. 2 (характеристика 2). С помощью характеристики 2 при заданном моменте М1 можно получить частоту вращения n2.

Изменение частоты вращения вторым способом осуществляется с помощью регулируемого источника напряжения UD2. Изменяя его напряжение регулятором R2, можно изменить ток возбуждения IВ и тем самым магнитный поток двигателя. Как видно из уравнения (8), при постоянной нагрузке (М = соnst) частота вращения находится в сложной зависимости от магнитного потока Ф. Анализ уравнения (8) показывает, что в некотором диапазоне изменения магнитного потока Ф уменьшение последнего приводит к увеличению частоты вращения. Именно этот диапазон изменения потока используют при регулировании частоты вращения.

Каждому значению магнитного потока соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис. 2 (характеристика 4). С помощью характеристики 4 при моменте М1 можно получить частоту вращения n4.

Чтобы регулировать частоту вращения изменением напряжения на зажимах якоря, необходимо иметь относительно мощный регулируемый источник напряжения. Каждому значению напряжения соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2 (характеристика 3). С помощью характеристики 3 при заданном моменте М1 можно получить частоту вращения n3.

Список используемой литературы

1. Кацман М. М. Электрические машины. -М.: Высш. шк., 1993.

2. Копылов И. П. Электрические машины. -М.: Энергоатомиздат, 1986

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Министерство образования и науки Российской Федерации

ГОУ ВПО Южно-Уральский государственный университет

Филиал в г. Златоусте Реферат

Двигатели постоянного тока

ЗД-431.583.270102Выполнил: Шарипова Ю.Р.

Проверил: Румянцев.Е. Содержание

2. Устройство и принцип действия двигателей постоянного тока

3. Пуск двигателей

4. Технические данные двигателей

5. Кпд двигателей постоянного тока

6 Характеристики двигателя постоянного тока

6.1 Рабочие характеристики

6.2 Механическая характеристика

7. Список используемой литературы 1.Введение Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины. Рис.1 На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они,

Несмотря на ряд существенных недостатков, связанных с наличием скользящего контакта между щеткой и коллектором, исполнительные двигатели постоянного тока широко используются в системах автоматического управления, регулирования и контроля, поскольку обладают и рядом положительных качеств, в частности такими как: плавное, широкое и экономичное регулирование частоты вращения; практическое отсутствие ограничений на максимальную и минимальную частоту вращения; большие пусковые моменты; хорошая линейность механических а при якорном управлении и регулировочных характеристик.

Как и любые исполнительные двигатели, эти имеют две обмотки: обмотку возбуждения и обмотку управления. При этом напряжение управления может подаваться либо на обмотку якоря, либо на обмотку возбуждения. Поэтому различают якорное и полюсное управление.

§ 2.1 Якорное управление исполнительным двигателем


Рис. 2.1. Схема включения исполнительного двигателя при якорном управлении

Схема включения двигателя с якорным управлением показана на рис. 2.1. Напряжение возбуждения подается на обмотку полюсов, напряжение управления - на обмотку якоря. Коэффициент сигнала a здесь равен a = Uу/Uв. Для двигателей с постоянными магнитами a = Uу/Uу.ном. Регулирование частоты вращения осуществляется изменением напряжения управления.

При отсутствии насыщения Фв= kфUв, а поскольку Uв = const, магнитный поток возбуждения также остается постоянным, т.е. Фв = const.


Вращающий момент двигателя


Выразим момент в относительных единицах, приняв за базовый момент пусковой момент, развиваемый двигателем при n = 0 и a = 1


Тогда относительное значение момента m = M/Mб


(2.1)

Частота вращения при холостом ходе (m = 0 и a = 1)


(2.2)

Откуда находим cеkф= 1/nо. Подставляя это значение в (2.1), получим


(2.3)

где n = n/nо- относительная частота вращения двигателя.


(2.4)

Уравнение (2.3) есть уравнение механической характеристики исполнительного двигателя при якорном управлении. Решив его относительно n, получим уравнение регулировочной характеристики

Механическая мощность в относительных единицах рмх = mn = n(a - n). Угловую скорость, при которой наступает максимум мощности, найдем известным приемом (dpмх/dn = 0), откуда nм= a/2, а максимальное значение механической мощности будет



Мощность управления

Приняв за базовую единицу мощность управления при коротком замыкании Ру.к (n = О, a = 1)



получим мощность управления в относительных единицах


На рис. 2.2,а представлены механические, на рис. 2.2,б - регулировочные характеристики, а на рис. 2.3 показана зависимость рмх = f(n) исполнительного двигателя. Проанализируем свойства двигателя при якорном способе управления.

Механические характеристикилинейные и параллельные, что означает независимость быстродействия от коэффициента сигнала. Пусковой момент и угловая скорость холостого хода пропорциональны коэффициенту сигнала.


Рис.2.2. Механические (а) и регулировочные (б) характеристики исполнительного двигателя постоянного тока при якорном управлении


Рис. 2.3. Зависимость механической мощности от скорости вращения при якорном управлении

Регулировочные характеристикилинейные. Напряжение трогания пропорционально моменту нагрузки. Линейность механических и регулировочных характеристик является важным достоинством якорного управления.

Мощность управления резко возрастает с увеличением коэффициента сигнала. Кроме того, она доходит до 95 % полной потребляемой мощности двигателя, поскольку является мощностью якорной цепи, что характерно для двигателей постоянного тока.

В данном случае это является существенным недостатком якорного управления, ибо предполагает наличие мощных и дорогих усилителей.

Мощность возбуждения остается величиной постоянной, независящей ни от коэффициента сигнала, ни от частоты вращения. К тому же - она небольшая по величине, что также характерно для машин постоянного тока.

Максимум механической мощности в сильной степени зависит от коэффициента сигнала и даже при a = 1 не превышает 1/4 базовой мощности.

§ 2.3. Полюсное управление исполнительным двигателем


Рис. 2.4. Схема включения исполнительного двигателя при полюсном управлении

Схема управления приведена на рис.2.4 Напряжение управления подается на обмотку главных полюсов, напряжение возбуждения - на обмотку якоря, по которой в течение всего времени работы двигателя протекает ток возбуждения. В двигателях, мощностью более 10 Вт, для его ограничения включают дополнительное сопротивление Rд.

Если пренебречь насыщением магнитной цепь, можно считать Ф = kфUу = kфaUв. Тогда ток якоря



Принимая за базовый момент пусковой (n = 0, a =1))


получим относительное значение момента



С учетом (2.2) уравнение механической характеристики примет вид

Решив его относительно n, получим уравнение регулировочной характеристики


Механическая мощность в относительных единицах рмх= mn = an - a 2 n 2 . Скорость, при которой наступает максимум мощности nм = 0,5/a. Тогда максимальная механическая мощность будет




Мощность возбуждения рв = UвIв. Подставляя значение тока, получим


На рис. 2.5,а представлены механические, на рис. 2.5,б - регулировочные характеристики, а на рис. 2.6 показана зависимость рмх = f(n) исполнительного двигателя при полюсном управлении.


Рис.2.5. Механические (а) и регулировочные (б) характеристики исполнительного двигателя постоянного тока при полюсном управлении

Проанализируем эти графики.

Механические характеристики линейные, но непараллельные, к тому же и неоднозначные (одну и ту же частоту вращения можно получить при разных значениях a). Пусковой момент прямо-, а частота вращения холостого хода обратно пропорциональны коэффициенту сигнала и при малых a может существенно превышать номинальную, что безусловно опасно для двигателя.

Регулировочные характеристикинелинейные, а при m 0,5.

Мощность управления пропорциональна квадрату коэффициента сигнала и не зависит от частоты вращения. Она значительно меньше, чем при якорном управлении, что является достоинством данного способа.

Мощность возбужденияс увеличением частоты вращения уменьшается и тем быстрее, чем больше a.

Максимум механической мощности не зависит от коэффициента сигнала, что также можно отнести к достоинствам полюсного управления.

Несмотря на отмеченные достоинства полюсного управления, предпочтение все-таки следует отдать якорному потому, что оно обеспечивает линейные и однозначные характеристики, в принципе исключает самоход (при полюсном он возможен из-за взаимодействия тока якоря с потоком остаточной намагниченности полюсов), обладает более высоким быстродействием, поскольку индуктивность якоря меньше индуктивности обмотки возбуждения.

Читайте также: