Инженерные расчеты в mathcad реферат

Обновлено: 07.07.2024

Основные задачи: научиться пользоваться основными компонентами данного математического пакета, строить графики зависимостей функций и переменных, а так же пользоваться справкой программы. Теоретический раздел включает в себя основные понятия и описание синтаксиса программы MathCAD 2001 Pro. Описываются основные компоненты программы и принцип работы с ними. Данная работа включает в себя два… Читать ещё >

  • пакет символьной математики mathcad в инженерных расчетах

Введение. Пакет символьной математики MATHCAD в инженерных расчетах ( реферат , курсовая , диплом , контрольная )

mathcad математика образование О системе с такой вычислительной мощью, как у MathCAD 2001 PRO, еще пару десятков лет назад не могли мечтать даже разработчики уникальной научной и космической аппаратуры. Но эта мощь нисколько не затрудняет удивительно простое и интуитивно предсказуемое общение с системой на общепринятом языке математических формул и графиков.

Исключительно велика роль систем класса MathCAD в образовании. Облегчая решение сложных математических задач, система снимает психологический барьер при изучении математики. Грамотное применение систем в учебном процессе обеспечивает повышение фундаментальности математического и технического образования, содействует подлинной интеграции процесса образования в нашей стране и наиболее развитых западных странах, где подобные системы применяются уже давно. Новые версии MathCAD позволяют готовить электронные уроки и книги с использованием новейших средств мультимедиа, включая гипертекстовые и гипермедиа-ссылки, изысканные графики.

Математические и научно — технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из-под руки способного физика, химика или инженера выходят далёкие от совершенства программы. Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Здесь рассматриваются возможности и эволюция одной из таких систем — MathCAD.

Основные задачи: научиться пользоваться основными компонентами данного математического пакета, строить графики зависимостей функций и переменных, а так же пользоваться справкой программы.

Данная работа включает в себя два основных раздела — теоретический и практический.

Теоретический раздел включает в себя основные понятия и описание синтаксиса программы MathCAD 2001 Pro. Описываются основные компоненты программы и принцип работы с ними.

Практическая часть включает в себя подробное рассмотрение решений индивидуального задания вручную и средствами MathCAD. Описание сопровождается иллюстрациями решений. При желании ознакомления с вычислениями в данной программе, можно посмотреть электронный вариант файлов задач или листинги программ, которые приведены в качестве приложения к курсовой работе.

Ниже приведены три примера решения типовых задач теплоэнергетики [68], которые дают представления об особенностях работы в среде Mathcad.

Задача 1. Расчет термодинамических свойств воды и водяного пара. Ниже представлено формирование функции пользователя vw(p), предназначенной для определения удельного объема кипящей воды на линии насыщения (vw) от давления (p), и функции hss(T, p), предназначенной для определения удельной энтальпии перегретого пара (hss) от температуры (T) и давления (p).

Расчет удельного объема кипящей воды на линии насыщения сводится к интерполяции (здесь задействована встроенная Mathcad-функция interp) кубическими сплайнами (cspline) табличных данных, хранящихся в двух векторах: P – табличные значения давления и V – табличные значения удельного объема. Элементы векторов – величины размерные: давление измеряется в мегапаскалях (106Pa), а удельный объем – в литрах на килограмм (m3/1000kg). В векторах P и V (они транспонируются из векторов-строк в вектора-столбцы) показаны только крайние элементы (далее будут показаны экраны дисплея, отображающие работу в среде Mathcad):

Созданную функцию с одним аргументом можно вызвать в традиционном виде (функция), а также в виде префиксного и постфиксного операторов.

При этом в расчетах возможны различные размерности давления, объема и массы (здесь kgf – килограмм силы, galUK – британский галлон, lb – фунт и lbf – фунт силы и ft – фут). Далее представлено решение обратной задачи через встроенную Mathcad-функцию root (поиск корня уравнения) – определение давления при заданном значении удельного объема кипящей воды.

Пользовательскую функцию hss(T, p) с двумя аргументами можно вызывать в традиционной форме (функция), а также инфиксным и древовидным оператором.

Особенности Mathcad, проиллюстрированные примерами:

1. Интерфейс пользователя в среде Mathcad опирается на операторы ввода и операторы вывода значений переменных и выражений.

В среде Mathcad три оператора ввода:

A ¬ ■ – ввод значения локальной переменной, область видимости которой ограничена местом ввода переменной и концом вычислительной процедуры, отмеченной вертикальной чертой, фиксирующей начало и конец программного блока (см. выше программу формирования функции vw(p));

A := ■ – ввод значения полуглобальной переменной, область видимости которой – это часть Mathcad-документа, расположенная правее и ниже места ввода переменной;

A º ■ – ввод значения глобальной переменной, область видимости – весь Mathcad-документ.

Кроме того, в Mathcad-документе возможны ссылки на другой Mathcad-документ (на соответствующий Mathcad-файл на диске – файл с расширением mcd), переменные и пользовательские функции которого, становятся видимыми в текущем Mathcad-документе.

В среде Mathcad два оператора вывода:

A = ■ ■ – вывод численного значения переменной или выражения: на месте первого операнда появляется числовая константа, а на месте второго ¾ соответствующая размерность (см. табл. 5.17), если константа размерная; пользователь вправе менять размерность по умолчанию на любую другую, определенную к данному моменту;

A ® ■ – вывод символьного значения переменной или выражения.

Переменные в среде Mathcad могут хранить скалярное, векторное и матричное значения.

Переменные в среде Mathcad подразделяются на пользовательские и встроенные (предопределенные ¾ табл. 5.16).

Таблица 5.16. Встроенные переменные Mathcad

Имя встроенной переменной и ее значение по умолчанию

Число p. В численных расчетах Mathcad использует значение p с учетом 15 значащих цифр. В символьных вычислениях p сохраняет свое точное значение

Основание натуральных логарифмов. В численных расчетах Mathcad использует значение e с учетом 15 значащих цифр. В символьных вычислениях e сохраняет свое точное значение

Бесконечность. В численных расчетах это заданное большое число (10307). В символьных вычислениях – бесконечность

Процент. Используется его в выражениях, подобных 10 × % или как масштабирующий множитель в поле, отводимом для единиц размерности

Допускаемая погрешность для различных алгоритмов аппроксимации (интегрирования, решения уравнений, поиска минимумов и максимумов и т.д.)

Допускаемая погрешность для равенств и неравенств, входящих в решение оптимизационных задач с ограничениями

Определяет индекс первого элемента векторов и матриц

Ширина столбца, используемая при записи файлов функцией WRITEPRN

Число значащих цифр, используемых при записи файлов функцией WRITEPRN

Используется в качестве счетчика кадров при создании анимационных клипов

Переменные ввода и вывода в Mathcad-компонентах в среде MathConnex (инструмент, входящий в состав Mathcad и позволяющий интегрировать Mathcad, MatLab и Excel, а также реализовывать динамические модели)

Текстовая переменная, хранящая адрес текущего документа на диске

2. В работе с Mathcad есть особенность, позволяющая называть Mathcad не просто математическим, а физико-математическим пакетом. Часто решая физическую задачу, пользователь делает ошибки не в формулах и не в счете, а в размерностях физических величин. Пакет Mathcad поддерживает основные системы физических величин (СИ, килограмм-метр-секунда, грамм-сантиметр-секунда и британскую систему единиц) и ведет контроль за соответствием размерностей (табл. 5.17).

Для присваивания величине размерности за числовой константой ставится знак умножения (но его можно и не ставить) и вводится название соответствующей размерности. – L := 5 × m (или L := 5 m, что более соответствует общепринятой норме записи размерностей).

Таблица 5.3.2. Список единиц измерения физических величин, встроенных в Mathcad

day (день), hr (час), min (минута), s (секунда, sec и yr (год)

Вязкость динамическая (dynamic viscosity)

Вязкость кинематическая (dynamic viscosity)

atm (атмосфера физическая), in_Hg (дюймы ртутного столба), Pa (паскаль), psi (фунт силы на квадратный дюйм) и torr (мм ртутного столба)

cm (сантиметр), ft (фут), in (дюйм), km (километр), m (метр), mi (миля), mm (миллиметр) и yd (ярд)

Gy (грей) и Sv (зиверт)

F (фарада), farad (фарада), mF (миллифарада), nF (нанофарада), pF (пикафарада)и statfarad (статфарада)

С или coul (кулон) и statcoul (статкулон)

H или henry (генри), mH (микрогенри), mH (миллигенри) и stathenry (статгенри)

Индукция магнитного поля (magnetic flux density)

gauss (гаусс), stattesla (статтесла), T или tesla (тесла)

Количество вещества (substance)

Магнитный поток (magnetic flux)

statweber (статвебер) и Wb или weber (вебер)

gm (грамм), kg (килограмм), lb (фунт), mg (миллиграмм), oz (унция), slug (пуд), ton (тонна британская) и tonne (тонна метрическая)

hp (лошадиная сила) или kW или W или watt (ватт)

Напряженность магнитного поля (magnetic field strange)

Oe или oersted (эрстед)

fl_oz (объемная унция), gal (галлон), L или liter (литр) и mL (миллилитр)

acre (акр) и hectare (гектар)

kV или KV (киловольт), mV (милливольт), statvolt (статвольт) и V или volt (вольт)

mho или S или siemens (сименс) и statsiemens (статсименс)

dyne (дина), kgf (килограмм силы), lbf (фунт силы) и N или newton (ньютон)

Сила света (luminosity)

cd (кандела) и Im (люмен)

kph (километр в час) и mph (миля в час)

kW (килом), MW (мегом), ohm (ом), statohm (статом) и W (ом)

K (градусы Кельвина) и R (градусы Ренкина)

A или amp (ампер), KA (килоампер), mA (микроампер), mA (миллиампер) и statamp (статампер)

deg (угловой градус), rad (радиан) и str (стерадиан)

g (ускорение свободного падения)

GHz (гигагерц), Hz (герц), kHz (килогерц), KHz (килогерц) и MHz (мегагерц)

BTU (британская тепловая единица), cal (калория), erg (эрг), J (джоуль), joule (джоуль) и kcal (килокалория)

3. В пакет Mathcad интегрирован мощный математический аппарат, позволяющий численно и аналитически решать разнообразные задачи. Перечень групп встроенных функций Mathcad приведен ниже:

функции Бесселя (Bessel);

функции комплексных чисел (Complex Numbers);

функции решения дифференциальных уравнений и систем (задача Коши, краевая задача, уравнения в частных производных – Differential Equation Solving);

функции типа выражения (Expression Type);

функции работы с файлами (File Access);

функции преобразований Фурье (Fourier Transform);

гиперболические функции (Hyperbolic);

функции обработки образов (Image Processing);

функции интерполяции и экстраполяции (Interpolation and Prediction);

логарифмические и экспоненциальные функции (Log and Exponential);

функции теории чисел и комбинаторики (Numbers Theory/Combinatorics);

функции ступенек и условия (Piecewise Continuous);

функции плотности вероятности (Probably Density);

функции распределения вероятности (Probably Distribution);

функции случайных чисел (Random Numbers);

функции регрессии и сглаживания (Regression and Smoothing);

функции обработки сигналов (Signal Processing);

функции решения алгебраических уравнений и систем, а также решения оптимизационных задач (Solving);

функции сортировки (Sorting);

специальные функции (Special);

статистические функции (Statistics);

текстовые функции (String);

тригонометрические функции (Trigonometric);

функции округления и работы с частью числа (Truncation and Round-Off);

функции работы с векторами и матрицами (Vector and Matrix);

функции волнового преобразования (Wavelet Transform).

В систему Mathcad, кроме того, интегрированы средства символьной математики, что позволяет решать поставленные задачи (этап задачи) не только численно, но и аналитически ¾ см. третью задачу.

Кроме математических функций в Mathcad-документе можно работать с математическими операторами, которые вводятся через нажатие соответствующих кнопок панелей инструментов.

Одна из причин популярности Mathcad заключается в том, что пользователь вправе вставлять в документы либо функцию, либо оператор в зависимости от того, к чему он привык, изучая математику в школе или в институте. Благодаря этому Mathcad-документ максимально похож на лист с математическими выкладками, написанными от руки или созданными в среде какого-либо текстового процессора (MS Word, Scientific Word, ChiWriter и др.).

4. Математические выражения в среде Mathcad записываются в их общепринятой нотации: числитель находится сверху, а знаменатель – внизу, в интеграле пределы интегрирования также расположены на своих привычных местах. Казалось бы, это все мелочи, никак не влияющие на вычислительный процесс. Но. Программа должна быть понятной не только для компьютера, но и для человека. Пользователь, анализируя Mathcad-документ на экране дисплея или на бумаге принтера, видит, что данная величина записана в числителе и ее рост приводит к возрастанию всего выражения. А это очень важно при анализе математических моделей, форма и содержание которых едины.

5. В среде Mathcad процесс создания программы идет параллельно с ее отладкой и оптимизацией. Пользователь, введя в Mathcad-документ новое выражение, может не только сразу подсчитать, чему оно равно при определенных значениях переменных и в выбранной системе размерностей, но и построить график или поверхность, беглый взгляд на которые может безошибочно показать, где кроется ошибка, если она была допущена при вводе формул или при создании самой математической модели. Отладочные фрагменты можно оставить в готовом документе для того, чтобы, например, еще раз убедить воображаемого или реального оппонента в правильности модели. Система Mathcad оборудована средствами анимации, что позволяет реализовать созданные модели не только в статике (числа, таблицы, графики), но и в динамике (анимационные клипы).

6. Пакет Mathcad дополнен справочником по основным математическим и физико-химическим формулам и константам, которые можно автоматически переносить в документ без опасения внести в них искажения, нередкие при ручной работе. К пакету Mathcad можно приобрести те или иные электронные учебники по различным дисциплинам: решение обыкновенных дифференциальных уравнений, статистика, термодинамика, теория управления, сопротивление материалов и т.д. Прежде чем решать возникшую проблему, пользователь может изучить электронный учебник и перенести из него в свой документ нужные фрагменты, отдельные формулы и константы.

7. Не выходя из среды Mathcad, возможно открывать новые документы на других серверах и пользоваться теми преимуществами информационных технологий, предоставляемых Internet. Ниже приведено диалоговое окно, открываемое из среды Mathcad, с помощью которого пользователи Mathcad могут обмениваться информацией и вести совместные проекты по таким разделам: математика и статистика, астрономия и навигация, электроэнергетика, физика, химия и химическая промышленность и т.д.

Задача 2. Расчет параметров цикла Ренкина. Ниже представлен расчет в среде Mathcad термического КПД простейшего цикла Ренкина[1] [1]:

Расчет предваряется заданием (п. 1) пользовательских размерностей физических величин (МПа, бар, мм рт ст, м, кг, кДж и ат), которые связываются со встроенными в Mathcad – Pa, torr, m, kg, J, kgf и cm (см. табл. 5.17).

Расчет КПД цикла ведется двумя способами:

в режиме суперкалькулятора (п.п. 2 и 3 ¾ см. выше);

в режиме программного формирования функции пользователя, возвращающей кпд цикла (п. 4 ¾ см. ниже).

Режим суперкалькулятора удобен при отладке расчета (при поиске в нем ошибок) и при подготовке его протокола к проверке (например, к оппонированию рецензентом). Значение введенной переменной или переменной, рассчитанной по заданной пользователем формуле, там же выводится на экран дисплея и/или бумагу принтера с выбранной пользователем размерностью и точностью.

Функции, возвращающие термодинамические параметры воды и водяного пара, вводятся в расчет ссылкой (Reference – см. начало п. 3) на соответствующий Mathcad-документ (см. выше задачу 1). После ссылки на документ, где задаются функции пользователя по свойствам воды и водяного пара) в рабочем документе становятся доступны (видимы) функции, возвращающие нужные термодинамические свойства. Далее расчет ведется по рутинным формулам, задающим основные параметры цикла: степень сухости пара, выходящего из турбины (x2), удельную работу турбины (lT), удельную работу насоса (lн), теплоту, подводимую в цикле (qk), и, наконец, сам термический КПД цикла (hт).

При формировании функции h т все промежуточные значения оператором ■ ¬ ■ заносятся в локальные переменные, область видимости которых ограничена самой программой-функцией. Вертикальные линии отмечают начала и концы соответствующих операторных блоков.

Функция пользователя hт(p 1, p 2, T 1) позволяет средствами Mathcad построить табличные (п. 4.3) и графические (п. 4.4) зависимости, связывающие КПД цикла с его параметрами:

Задача 3. Оптимизация ступенчатого испарения в барабанном котле. Ниже представлен протокол решения средствами символьной математики Mathcad задачи об оптимальном парораспределении в барабане котла со ступенчатым испарением. Рассматривается трехступенчатое испарение: необходимо определить доли пара, генерируемые в первом (переменная x) и втором (y) отсеках, при которых концентрация примеси в паре, выходящем из котла, была бы минимальна.

Исходные данные расчета (см. п. 1): величина продувки из котла (переменная Пр), суммарные коэффициенты выноса примеси по отсекам (отношение концентрации примеси в паре к концентрации примеси в котловой воде – K p) и концентрация примеси в питательной воде (C в – формальный параметр, не влияющий на результат, но участвующий в промежуточных выкладках).

Ключевое место расчета – аналитическое формирование функции Cп(x, y), возвращающей концентрацию пара в зависимости от парораспределения в отсеках:

Формируется функция Cп(x, y) с помощью оператора символьных преобразований: ■ ■ ®, где первый операнд – это преобразуемое выражение, а второй – ключевое слово (или вертикальная цепочка ключевых слов), задающее направление преобразования (решение уравнения или системы как в задаче 3, упрощение выражения, раскрытие скобок, факторизация и т.д.). Данные операторы вводятся через нажатие соответствующих кнопок панели символьных преобразований.

В задаче 3 в п. 2 аналитически решаются относительно отмеченной переменной (параметр ключевого слова solve) составленные пользователем уравнения материального баланса примеси по отсекам: поступающая в отсек примесь (произведение концентрации на расход воды) частично уносится с паром, остальная часть продувается в соседний отсек. Возможное отложение примеси на внутренних поверхностях котла, равно как и вымывание примеси с поверхностей котла, в расчете не учитывается. Решения упрощаются (simplify) без вывода промежуточного результата и вручную (с некоторой модификацией) переносятся пользователем в оператор задания функции Св1(x) := ■. Так формируются три функции с именами Свi, где i – номер отсека. После этого по уравнению материального баланса составляется целевая функция Cп(x, y).

Поиск минимума функции Cп(x, y) предваряется ее графическим анализом (п. 3):

График линий уровня показывает, что при x ~ 0.9 и y ~ 0.1 находится минимум, который уточняется (п. 4.1) через аналитическое решение системы двух алгебраических уравнений, составленных из частных производных функции Cп(x, y) и приравненных к нулю. Система Mathcad выдала восемь решений – координаты точек, где обе частные производные функции Cп(x, y) равны нулю (это могут быть минимумы, максимумы, седла). Один из корней системы (x = 0.891, y= 0.0912) – решение оптимизационной задачи.

Список литературы

[1] [1] В Mathcad-документ в качестве комментариев могут вноситься не только тексты, комментирующие расчет, но и рисунки. В частности, расчет КПД проиллюстрирован схемой цикла и его T-s диаграммой.

Нажмите, чтобы узнать подробности

Математические и научно-технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из под руки способного физика, химика или инженера выходят далёкие от совершенства программы.

Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Рассматрим возможности и эволюция одной из таких систем - MathCAD.

MATHCAD - универсальный математический пакет, предназначенный для выполнения инженерных и научных расчетов. Основное преимущество пакета - естественный математический язык, на котором формируются решаемые задачи. Объединение текстового редактора с возможностью использования общепринятого математического языка позволяет пользователю получить готовый итоговый документ. Пакет обладает широкими графическими возможностями, расширяемыми от версии к версии. Практическое применение пакета существенно повышает эффективность интеллектуального труда.

От других продуктов аналогичного назначения MATHCAD отличается ориентация на создание высококачественных документов (докладов, отчетов, статей) в режиме WYSIWYG (What You See Is What You Get). Это означает, что, внося изменения, пользователь немедленно видит их результаты и в любой момент может распечатать документ во всем блеске. Работа с пакетом за экраном компьютера практически совпадает с работой на бумаге с одной лишь разницей - она более эффективна. Преимущества MATHCAD состоит в том, что он не только позволяет провести необходимые расчеты, но и оформить свою работу с помощью графиков, рисунков, таблиц и математических формул. А эта часть работы является наиболее рутинной и мало творческой, к тому же она и время емкая и малоприятная.

MathCAD является интегрированной системой программирования, ориентированной на проведение математических и инженерно-технических расчетов.

Система MathCAD содержит текстовый редактор, вычислитель и графический процессор.

Текстовый редактор - служит для ввода и редактирования текстов. Тексты являются комментарии и входящие в них математические выражения не выполняются. Текст может состоять из слов, математических выражений и формул, спецзнаков. Отличительная черта системы - использование общепринятой в математике символики (деление, умножение, квадратный корень).

Вычислитель - обеспечивает вычисление по сложным математических формулам, имеет большой набор встроенных математических функций, позволяет вычислять ряды, суммы, произведения, определенный интеграл, производные, работать с комплексными числами, решать линейные и нелинейные уравнения, проводить минимизацию функции, выполнять векторные и матричные операции и т.д. Легко можно менять разрядность чисел и погрешность интеграционных методов.

Графический процессор - служит для создания графиков. Он сочетает простоту общения с пользователем с большими возможностями графических средств. Графика ориентирована на решение типичных математических задач. Возможно быстрое изменение размеров графиков, наложение их на текстовые надписи и перемещение их в любое место документа. MathCAD автоматически поддерживает работу с математическим процессором. Последний заметно повышает скорость расчетов и вывода графиков, что существенно в связи с тем, что MathCAD всегда работает в графическом режиме. Это связано с тем, что только в этом режиме можно формировать на экране специальные математические символы и одновременно применять их вместе с графиками и текстом. MathCAD поддерживает работу со многими типами принтеров, а так же с плоттерами.

MathCAD - система универсальная, т.е. она может использоваться в любой области науки и техники, везде, где применяются математические методы. Запись команд в системе MathCAD на языке, очень близком к стандартному языку математических расчетов, упрощает постановку и решение задач.

Многие задачи, решаемые с помощью математических пакетов, сводятся к решению уравнений - алгебраических, степенных, тригонометрических, к поиску значений неизвестных, превращающих эти уравнения в тождества строго или приближенно. Успех в решении подобных задач зависит не только от мощности соответствующих инструментов, встроенных в Mathcad, но и от знания пользователем их особенностей, нюансов, сильных и слабых сторон.

Встроенные решатели MathCad.

Инструменты решения аналитических уравнений и их систем в Mathcad собраны в трех "ящиках с инструментами" (toolbox):

встроенные функции категории Решение уравнений в диалоговом окне Вставка функции;

команды символьных преобразований из меню Символьные операции, в частности, команда Переменная | Решить.

операторы символьных преобразований, в частности, оператор solve (решить для переменной) из панели инструментов Символьные;

Как следует из названий, два последних инструмента — это символьная математика, математика компьютерных аналитических преобразований. В первом же пункте отмечены встроенные функции, и некоторые из них имеют двоякую сущность — могут возвращать численный или символьный ответ в зависимости от того, каким оператором вывода их "потревожили" — оператором → (символьный вывод) или оператором = (численный вывод).

Поиск нулей и функций и решение уравнений

Для решения одиночных уравнений предназначены встроенные функции root (корень) и polyroots (корни полинома). Если быть точным, то функции root и polyroots, возвращают не корни уравнений, а нули функций. В случае, когда функции root и polyroots необходимо применить к поиску корня (корней) уравнения, то его следует преобразовать в функцию: перенести одну из частей уравнения в другую, поменяв его знак, и работать с "ненулевой" частью как с функцией. Например, уравнение a·x = b преобразуется в функцию f(x):=a·x – b

Функция root первоначально имела только два аргумента: первый из них — это анализируемая функция (в полном ее написании y(x), а не просто y), у которой ищется нуль, а второй отмечал аргумент (неизвестное), найденное значение которого делает функцию равной нулю. В двухаргументной функции root заложен метод секущих, требующий первого приближения. Вблизи которого определяется вторая опорная точка, равная значению первого приближения плюс значение встроенной (системной) переменной TOL, значение которой по умолчанию равно 0.0001, умноженной на значение первого приближения. Через эти две точки проводится секущая, пересечение которой с осью х дает очередное (третье) приближение. Итерации к корню (к

нулю функции) заканчиваются тогда, когда в очередном приближении значение функции будет отличаться от нуля менее чем на значение встроенной (системной) переменной TOL.

Примечание

Функцию root несложно приспособить и для решения обратных задач, когда необходимо найти значение аргумента функции по заданному значению самой функции (см. рис., где ищется диаметр шара объемом 30 куб. см).


Метод половинного деления

Пусть уравнение имеет на отрезке единственный корень, причем функция на данном отрезке непрерывна.

Разделим отрезок пополам точкой . Если , то возможны два случая:

- функция меняет знак на отрезке ;

- функция меняет знак на отрезке .

Выбирая в каждом случае тот отрезок, на котором функция меняет знак, и, продолжая процесс половинного деления дальше, можно дойти до сколь угодно малого отрезка, содержащего корень уравнения.

Решение в пакете Mathcad методом половинного деления уравнения


1. Задание функции:


2. Построение графика функции.


3. Задание функции, реализующей метод половинного деления (Рисунок 1.3). Здесь аргументы функции: - имя функции, - левая и правая координаты концов отрезка; - точность вычисления корня.

4. Вычисление значения корня уравнения:


5. Проверка найденного значения корня:


Решение систем линейных алгебраических уравнений

Сначала поговорим о решении систем линейных алгебраических уравнений, которые в матричной форме записываются так: A∙X=B, где A — квадратная матрица коэффициентов при неизвестных (вектор X), а B — вектор свободных членов. Первоначально для решения такой системы в среде Mathcad был предназначен оператор A –1 ∙B — произведение инвертированной (обратной) матрицы A на вектор свободных членов B. Затем (в версии 7 и выше) в Mathcad была введена функция lsolve.


Система уравнений, коэффициенты при неизвестных и свободные члены которой вводятся в расчет первыми двумя операторами, показанными на рис., не может быть решена через произведение А –1 на В, т. к. матрица А сингулярная (вырожденная). На рис. обратная матрица от матрицы A определялась с помощью численной, а не символьной математики Mathcad (оператор =, а не оператор →). Численную же математику по другому называют математикой приближенных вычислений, имея в виду, что она, как правило, дает не точные, а приближенные ответы. Приближенный ответ возможен и при инвертировании вырожденной матрицы, что может привести к неверному ответу при решении соответствующей системы линейных алгебраических уравнений.


В среде Mathcad только в 2000-й версии стало возможным избежать грубой ошибки, показанной на рис. В Mathcad был введен контроль за вырожденностью матрицы при работе и с численной математикой (сброшенный флажок использовать строгую проверку вырожденности матрицы).

Линейная алгебра в этом случае гласит, что у системы с вырожденной матрицей может либо не быть ни одного решения, либо существовать бесконечное множество решений ("впадание в крайности"), два из которых и найдены на рис (вторая и третья строки операторов, заканчивающихся проверкой решения А∙Х=исходный вектор свободных членов системы. На рис. показано, как средствами символьной математики можно найти это множество решений через уравнение линии.


Решение нашей системы с вырожденной матрицей коэффициентов при неизвестных (т. е. аналитическое (параметрическое) описание прямой линии, образованной пересечением трех плоскостей) можно получить проще, чем показано на рис. 3.17. Для этого нужно отказаться от инструментов, применяемых к линейным системам (функции lsolve и rref, см. рис. 3.17), а прибегнуть к универсальному оператору solve, предназначенному для аналитического решения уравнений общего вида (рис. 3.20).

Графическая интерпретация задачи сводится к тому, что три плоскости могут пересекаться либо в одной точке, либо в линии, либо вовсе не иметь общих точек пересечения (параллельность двух или трех плоскостей).


Решение систем нелинейных уравнений

Для решения системы нелинейных уравнений используются два блока: given…find() и given…minerr (). Так как система нелинейных уравнений может иметь несколько решений, то полученные результаты зависят от начальных значений искомых переменных. В обоих случаях получаются приближенные решения, для которых рекомендуется делать проверку. Обычно в Mathcad требуется, чтобы количество уравнений было равно количеству искомых переменных, но в некоторых случаях, когда с точки зрения классической математики может быть получено точное решение и при меньшем количестве уравнений, данное условие может быть нарушено. На листинге представлены примеры использования блоков given…find() и given…minerr () для решения систем нелинейных уравнений.


Решить систему двух нелинейных уравнений


методом Ньютона.


Рисунок 2.1 - Задание координатной сетки

1. Зададим координатную сетку и вычислим значения координат и в узлах сетки (рисунок 2.1).

Рисунок 2.2 - График функции и карта линий уровня

2. Построим график функции и карты линий уровня (рисунок 2.2) (на которых наглядно видно, что данная система имеет решение, и причем единственное) с использованием панели Graph (рисунок 2.3).

Рисунок 2.3 - Панель Graph

3. Точки пересечения линий одинакового уровня дают решение данной системы уравнений.

4. Зададим начальное приближение переменных:

Рисунок 2.4 - Вектор-функция, задающая систему уравнений

6. Зададим функцию (рисунок 2.5), реализующую метод Ньютона (функция возвращает таблицу, содержащую значения координат на каждом шаге итерации и соответствующие значения координат вектор-функции).

Запустив программу, получим итерационную последовательность, которая показывает, как находятся приближения. Здесь две первые строки - это значения и соответственно, а последние две строки - значения данных функций при найденных значениях и . В ноль функции обращаются на седьмом шаге. Значит, решением будет являться пара чисел и .

7. Проверяем решение системы нелинейных уравнений с помощью блока Given. Minerr (рисунок 2.6).

Рисунок 2.6 - Проверка численного решения при помощи встроенных функций пакета Mathcad

Система Mathcad обладает широкими возможностями численного решения уравнений и систем уравнений.

Функция root, блоки Given…Find, Given…Minerr. В ходе численного решения обычно выделяют два этапа:

отделение корней – определение интервала нахождения каждого корня или определение приблизительного значения корня. В системе Mathcad наиболее наглядным будет отделение корней уравнения графическим способом;

уточнение корней – нахождение численного значения корня с указанной точностью.

1. Гурский, Д.А. Вычисления в MATCHCAD 12 / Д.А.Гурский, Е.С. Турбина. - СПб.: Питер, 2006. - 544с.

2. Поршнев, С.В. Численные методы на базе MATCHCAD /С.В. Поршнев, И.В. Беленкова. - СПб.: БХВ-Питербург, 2005. - 464с.

3. Макаров, Е.Г. Инженерные расчёты в MATCHCAD 14 / Е.Г Макаров. -СПб.: Питер, 2007.- 592с.

4. Очков, В. Mathcad 14 для студентов, инженеров и конструкторов / В. Очков. - BHV.: - Спб, 2007. - 368с.

5. Шушкевич, Г. Компьютерные технологии в математике. Система Mathcad 14. Часть1 / Г. Шушкевич, С. Шушкевич. - Издательство Гревцова. 2010. - 288с.

6. Максфилд, Б. Mathcad в инженерных расчётах/Б. Максфилд.- Корона-век, 2012. - 368с.

7. Охорзин, В.А. Прикладная математика в системе Mathcad/ В.А.Охорзин.- Лань, 2009. - 352с.

8. Копчёнова, Н.В. Вычислительная математика в примерах и задачах/Н.В.Копчёнова, И.А.Марон. - М.: - Наука, 1972. - 368с.

9. Дьяконов, В. Mathcad 2000. Учебный курс / В. Дьяконов. - СПб.: Питер, 2001. - 592с.

10. Березин, И.С. Методы вычислений / И.С. Березин. Н.П. Жидков.-М.: - Наука,1966. - 632с.

атематические и научно-технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ , написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из под руки способного физика, химика или инженера выходят далёкие от совершенства программы.

Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Здесь рассматриваются возможности и эволюция одной из таких систем - MathCAD.

Фирма MathSoft Inc.(США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCAD заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе. В ходе работы с системой пользователь готовит так называемые документы. Они одновременно включают описания алгоритмов вычислений, программы управляющие работой систем, и результат вычислений. По внешнему виду тексты мало напоминают обычной программы.

Mathcad —это популярная система компьютерной математики, предназначенная для автоматизации решения массовых математических задач в самых различных областях науки, техники и образования. Название системы происходит от двух слов — MATHematica (математика) и CAD (Computer Aided Design — системы автоматического проектирования, или САПР). Так что вполне правомерно считать Mathcad математическими САПР.

К важным достоинствам новых версий Mathcad относятся настройка под любой мало- мальски известный тип печатающих устройств, богатый набор шрифтов, возмож­ность использования всех инструментов Windows, прекрасная графика и современ­ный многооконный интерфейс. В новые версии Mathcad включены эффективные средства оформления документов в цвете, возможность создания анимированных (движущихся) графиков и звукового сопровождения. Тут же текстовый, формульный и графический редакторы, объединенные с мощным вычислительным потен­циалом. Предусмотрена и возможность объединения с другими математическими и графическими системами для решения особо сложных задач. Отсюда и название таких систем — интегрированные системы.

Впрочем, в решении задач интеграции создатели Mathcad пошли намного дальше — эта система обеспечивает подлинную интеграцию с целым рядом других математических, графических и офисных систем. Для этого в нее включен специальный системный интегратор MathConnex. Летом 1999 года выпущена новейшая версия системы — Mathcad 2000. В ней суще­ственно увеличено число встроенных функций, улучшены графические возмож­ности, повышены скорость вычислений и удобство работы.

Состав системы Mathcad

Как интегрированная система Mathcad 2000 содержит следующие основные компо­ненты:

1. Редактор документов — редактор с возможностью вставки математических вы­ражений, шаблонов графиков и текстовых комментариев;

2. MathConnex системный интегратор, обеспечивающий интеграцию Mathcad с рядом иных программных продуктов;

3. Центр ресурсов — система управления ресурсами системы;

4. Электронные книги — электронные книги с описанием типовых расчетов в раз­личных областях науки и техники;

5. Справочная система — система для получения справочных данных по тематичес­кому и индексному каталогу, а также для поиска нужных данных по ключевому слову или фразе;

6.Быстрые шпаргалки QuickSheets — короткие примеры с минимальными ком­ментариями, описывающие применение всех встроенных операторов и функций системы;

7. Броузер Интернета — собственное средство выхода в Интернет.

Системы реализуют типовые и весьма обширные возможности Windows 95/98/NT, включая доступность множества шрифтов, работу со всеми типами принтеров, од­новременное выполнение нескольких разнохарактерных задач и (в последних вер­сиях) реализацию технологии обмена объектами OLE2. В режиме редактирования возможна одновременная работа с рядом документов и перенос объектов из одного окна в другое.

Предусмотрен также импорт любых графических изображений — от простых и спе­циальных графиков функций до многокрасочных репродукций художественных произведений. Введены средства анимации рисунков и воспроизведения видеофай­лов со звуковым стереофоническим сопровождением. Это наряду с улучшенной визуализацией сложных расчетов позволяет пользователю готовить электронные статьи и книги высокого качества. Начиная с версии Mathcad 8.0, было предусмот­рено упрощенное построение двумерных графиков и вращение трехмерных графи­ков мышью. Теперь в версию Mathcad 2000 введено упрощенное построение и трех­мерных графиков.

Особый интерес представляют встраиваемые в систему электронные книги, содер­жащие справки и примеры применений системы по ряду разделов математики, ме­ханики, физики, электротехники и радиотехники, а также по интерфейсу системы. Справки содержат математические формулы и иллюстрации. Можно выделить нужную справку (формулу или рисунок) и перенести ее в текст документа. Библио­теки и пакеты расширений системы Mathcad 2000 — еще одно мощнейшее средство расширения возможностей системы и ее профессиональной ориентации на решение задач в различных предметных областях. Особо надо отметить системный интегратор MathConnex. По существу это отдельное приложение, обеспечивающее использование в составе одного документа блоков из разных систем, например Mathcad, Excel, MATLAB и др. Интеграции различных математических и графических систем, несомненно, принадлежит будущее компь­ютерной математики, и MathConnex — хорошее начало этому.

Варианты системы Mathcad 2000

Новейшая версия Mathcad 2000 выпущена в трех основных вариантах:

1. Mathcad 2000 Standard — упрощенный вариант, удобный для большинства пользо­вателей и применяемый в учебных целях;

2. Mathcad 2000 Professional (или PRO) — профессиональный вариант, ориентиро­ванный на математиков и научно-педагогических работников, заинтересованных в автоматизации своих достаточно сложных и трудоемких расчетов;

3. Mathcad 2000 Premium — расширенный за счет сопутствующих систем вариант, предназначенный для профессиональных математиков и ученых.

Важно отметить, что Mathcad не только средство для решения математических за­дач. Это, по существу, мощная математическая САПР, позволяющая готовить на высочайшем полиграфическом уровне любые относящиеся к науке и технике мате­риалы — документацию, научные отчеты, книги и статьи, диссертации, дипломные и курсовые проекты и т. д. При этом в них одновременно могут присутствовать тексты сложного вида, любые математические формулы, графики функций и различные иллюстративные материалы. Mathcad 2000 PRO позволяет также готовить и высококачественные электронные уроки и книги с гиперссылками. Наиболее обширными возможностями в подготов­ке сложных документов с инженерными чертежами и графиками обладает версия Mathcad 2000 Premium.

Особенности новых версий Mathcad

Mathcad — бурно развивающаяся система. Ее новые версии выходят чуть ли не еже­годно.

Уже версия Mathcad 7.0 PRO отличалась рядом принципиальных особенностей:

Версия Mathcad 8.0 PRO предоставляет еще целый ряд полезных возможностей:

  • около 50 новых математических функций (элементарных, специальных, статис­тических и др.);
  • новые функции оптимизации maximize и minimize;
  • решение задач линейного программирования;
  • новые функции контроля типа данных;
  • улучшенный блок решения систем нелинейных уравнений — снято ограничение на полное число уравнений (ранее было не более 50), теперь их число может до­стигать 200;
  • введение набора методов численного интегрирования с возможностью выбора конкретного метода через контекстное меню, вызываемое щелчком правой кноп­ки мыши при установке указателя на знак интеграла;
  • возможность проведения бинарных вычислений;
  • эффективные средства сглаживания данных;
  • выполненный в стиле Microsoft Office 97 строгий интерфейс с плоскими кнопками;
  • более рациональное расположение команд в главном меню;
  • улучшенные средства ввода и форматирования текста;
  • команды редактирования Find (найти) и Replace (найти и заменить);
  • новая возможность блокировки и скрытия областей;
  • улучшенный вывод таблиц;
  • возможность записи документов в формате HTML, принятом в Интернете;
  • возможность записи документов в формате предшествующих версий;
  • поддержка новой графики OpenGL и ActiveX;
  • применение мастеров для создания сложных трехмерных графиков;
  • существенно улучшенные средства форматирования графиков;
  • просмотр графиков в увеличенном масштабе;
  • применение улучшенной (более плавной) функциональной окраски поверхно­стей;
  • возможность изображения на одном трехмерном графике поверхностей и фигур разного типа;
  • возможность изображения на одном трехмерном графике разных объектов, пе­ресекающихся в пространстве;
  • возможность вращения трехмерных графиков в пространстве мышью;
  • анимация трехмерных графиков при нажатии клавиши Shift.

Наконец, новейшая версия Mathcad 2000 прибавила к этим возможностям еще ряд новых и существенных отличий:

  • улучшен интерфейс системы, в частности интеграция с Интернетом перенесена в центр ресурсов;
  • введен ряд новых функций для финансово-экономических расчетов, создания матриц трехмерных поверхностей, численного решения дифференциальных уравнений в составе блока Given, контроля типа размерных переменных и др.;
  • введен набор функций для выполнения регрессии — экспоненциальной, лога­рифмической, синусоидальной и др.;
  • введен набор логических операторов;
  • расширены возможности функции root — теперь она может искать корень не только по заданному приближению (функция с двумя параметрами), но и в заданном интервале (функция с четырьмя параметрами);
  • введено ускоренное и упрощенное построение трехмерных графиков;
  • предусмотрено наложение надписей на блоки документов, в том числе графичес­кие;
  • введена трассировка ошибок;
  • существенно обновлен набор примеров в центре ресурсов;
  • обеспечен контроль орфографии англоязычных текстов на трех диалектах англий­ского языка.

Из этих внушительных списков новых возможностей разных версий системы Mathcad отчетливо видно, что система быстро развивается, становясь все более мощной и удобной.

Понятие о документах

Фактически документы Mathcad объединяют Код, написанный на визуально-ориен­тированном языке программирования Mathcad, с результатами его работы и тек­стовыми и формульными комментариями. Напомним, что визуально-ориентиро­ванные языки программирования задают программу не в виде малопонятных кодов, а в виде визуально понятных объектов. Язык программирования Mathcad ориенти­рован на математические вычисления и потому практически не отличается от обыч­ного языка математических статей, отчетов и книг. Это огромное достоинство сис­темы Mathcad, которое делает документы Mathcad вполне ясными даже школьникам и студентам младших курсов вузов, имеющим элементарные знания по математике.

Итак, уникальное свойство Mathcad — возможность описания математических алгоритмов в естественной математической форме с применением общепринятой символики для математических знаков, таких, например, как квадратный корень, знак деления в виде горизонтальной черты, знак интеграла и т. д. Это делает доку­мент, видимый на экране дисплея, чрезвычайно похожим на страницы текста мате­матических книг или научных статей.Такой подход значительно облегчает восприятие математической сущности решае­мой задачи и избавляет пользователя от изучения некоторого промежуточного язы­ка программирования (например Фортрана, Бейсика, Паскаля и т. д.). Можно ска­зать, что в Mathcad идея решения математических задач без их программирования доведена до высшего совершенства — подавляющее большинство задач требуют лишь корректного формульного описания решениям не нуждаются в подготовке программ в их общепринятом понимании.

Особые средства оформления

Работа с символами кириллицы

Все версии Mathcad под Windows позволяют работать как с латинскими буквами, так и с кириллицей (буквами русского алфавита), греческим алфавитом и вообще с любыми символами, доступными в Windows. Более того, благодаря применению масштабируемых TTF-шрифтов можно управлять как размером символов, так и их начертанием (делая буквы прямыми или наклонными, тонкими или жирными). Все это дает возможность готовить документы и электронные книги высокого каче­ства как на английском, так и на русском языках.

Впрочем, не стоит забывать, что это достоинство — результат работы системы в сре­де Windows, которая может быть русифицированной. Это порой ведет к разноязычности надписей на элементах интерфейса. Греческие символы и математические спецзнаки раньше были недоступны в текстовых комментариях, теперь же и этот недостаток полностью устранен.

Понятие о входном языке общения и языке реализации Mathcad

Как следует из вышесказанного, общение пользователя с системой Mathcad проис­ходит на уровне так называемого входного языка, максимально приближенного к обычному языку описания математических задач. Поэтому решение таких задач не требует программирования в общепринятом смысле — написания программ на неко­тором промежуточном языке или в машинных кодах.

Вот, к примеру, как выглядит вычисление квадрата переменной х с заданным значе­нием х=3 на популярном языке Бейсик и на Mathcad:

Читайте также: