Интерфейсы передачи информации в мехатронике реферат

Обновлено: 02.07.2024

Рис. 1. Функционал мехатроники
Внешней средой для мехатронных устройств является технологическое окружение, с которым будет происходить взаимодействие. Когда мехатронная система выполняет свои функции, то это происходит благодаря рабочим органам. Следует отметить, что данное научное направление является довольно молодым, в нём много неточностей и расплывчатых формулировок даже в научной литературе, поэтому со временем некоторые теоретические принципы могут поменяться.

Рис. 2. Компоненты мехатроной системы
Мехатронные системы формируются из трех компонентов, которые связаны между собой информационными и энергетическими потоками [1]:
1. Электромеханическый. Сюда относят механические звенья, передачи, электродвигатели, сенсоры, рабочий орган, дополнительные электротехнические элементы, сенсоры. Все составляющие применяются для того, чтобы обеспечить необходимые движения. Особую важность для корректного выполнения поставленных задач имеют сенсоры. Они собирают данные про состояние объекта работ и внешней среды, непосредственно мехатронного устройства и его составляющих.
2. Электронный. Сюда относят микроэлектронные устройства, силовые преобразователи и измерительные цепи.
3. Компьютерный. Сюда относятся микроконтроллеры и электронно-вычислительные машины высшего уровня.
На данный момент времени выделяют четыре функции мехатронных систем [2]:
1. Управление процессом механического движения в режиме реального времени с одновременной обработкой информации, что поступают с их сенсоров.
2. Соорганизация своих действий с внешними источниками влияния.
3. Взаимодействие с человеком посредством специального интерфейса в автономном режиме или в реальном времени.
4. Организация обмена данными между сенсорами, периферийными устройствами и другими составляющими элементами системы.
Теперь хотелось бы рассмотреть преимущества мехатронных систем. Сравнение будет проводиться с традиционными средствами автоматизации [1]:
1. Относительно низкая стоимость систем, что достигается благодаря значительной интеграции, стандартизации и унификации всех составляющих интерфейсов и элементов.
2. Возможность реализации точных и сложных движений благодаря методам интеллектуального управления

Зарегистрируйся, чтобы продолжить изучение работы

Рис. 1. Функционал мехатроники
Внешней средой для мехатронных устройств является технологическое окружение, с которым будет происходить взаимодействие. Когда мехатронная система выполняет свои функции, то это происходит благодаря рабочим органам. Следует отметить, что данное научное направление является довольно молодым, в нём много неточностей и расплывчатых формулировок даже в научной литературе, поэтому со временем некоторые теоретические принципы могут поменяться.

Рис. 2. Компоненты мехатроной системы
Мехатронные системы формируются из трех компонентов, которые связаны между собой информационными и энергетическими потоками [1]:
1. Электромеханическый. Сюда относят механические звенья, передачи, электродвигатели, сенсоры, рабочий орган, дополнительные электротехнические элементы, сенсоры. Все составляющие применяются для того, чтобы обеспечить необходимые движения. Особую важность для корректного выполнения поставленных задач имеют сенсоры. Они собирают данные про состояние объекта работ и внешней среды, непосредственно мехатронного устройства и его составляющих.
2. Электронный. Сюда относят микроэлектронные устройства, силовые преобразователи и измерительные цепи.
3. Компьютерный. Сюда относятся микроконтроллеры и электронно-вычислительные машины высшего уровня.
На данный момент времени выделяют четыре функции мехатронных систем [2]:
1. Управление процессом механического движения в режиме реального времени с одновременной обработкой информации, что поступают с их сенсоров.
2. Соорганизация своих действий с внешними источниками влияния.
3. Взаимодействие с человеком посредством специального интерфейса в автономном режиме или в реальном времени.
4. Организация обмена данными между сенсорами, периферийными устройствами и другими составляющими элементами системы.
Теперь хотелось бы рассмотреть преимущества мехатронных систем. Сравнение будет проводиться с традиционными средствами автоматизации [1]:
1. Относительно низкая стоимость систем, что достигается благодаря значительной интеграции, стандартизации и унификации всех составляющих интерфейсов и элементов.
2. Возможность реализации точных и сложных движений благодаря методам интеллектуального управления .
3. Высокий уровень надежности, долговечности и помехозащищенности.
4. Компактность используемых модулей, что позволяет обходиться меньшей площадью.
Также стоит отметить, что мехатронные системы можно относительно легко совмещать для достижения возможности выполнения конкретных задач. Благодаря упрощению кинематических цепей машины обладают хорошими динамическими и массогабаритными характеристиками.


2 Мехатронные системы в компьютерах
2.1 Стиральные машины
В начале 1990-х годов дорогостоящие стиральные машины содержали в себе микроконтроллеры для процесса синхронизации стирки. Они оказались надежными и экономичными рабочими элементами, поэтому многие более дешевые машины теперь также включают в себя микроконтроллеры, а не электромеханические таймеры. С 2010 года на большинстве стиральных машин есть сенсорные панели, полноцветные или цветные дисплеи, а также сенсорные панели управления, которые регулируются микроконтроллерами, призванными служить в качестве мехатронной системы [9].

Рис. 3. Пример микроконтроллера стиральной машины Indesit
Микроконтроллеры используются для управления как IGBT транзистора для моторного привода, так и системы управления стиральной машинкой. Микроконтроллеры для стиральных машин нуждаются в возможности эффективно контролировать крутящий момент и количество воды, подходящее для количества белья. Компания Toshiba решила модернизировать микроконтроллеры с помощью системы Vector Engine для эффективного и плавного управления несколькими функциями сразу, например, отгрузка порошка и залив воды.
В новейших стиральных машинах используется инверторное управление для стирки и сушки с использованием микроконтроллеров нового поколения. Управление инвертором помогает уменьшить шум и вибрацию стирки/вращения и позволяет стиральной машине регулировать количество воды и крутящего момента двигателя в соответствии с промывочной нагрузкой. IGBT транзисторы используются для двигателя и микроконтроллеров в качестве элемента общего контроля за процессом стирки. Кроме того, интеллектуальный силовой модуль (англ. IPD) используется для управления циркуляционным насосом для воды в сушилке. Коррекция коэффициента мощности (англ. PFC) IC или IGBT транзистора используется в цепи источника питания для поддержания гармоник во входном токе ниже предела IEC [9].
2.2 ABS – антиблокировочная тормозная система
Антиблокировочная тормозная система (англ. ABS) - это противоугонная тормозная система безопасности, используемая на самолетах и ​​наземных транспортных средствах, таких как автомобили, мотоциклы, грузовики и автобусы. ABS функционирует, предотвращая блокировку колес во время торможения, тем самым поддерживая тяговый контакт с дорожной поверхностью [3].

Рис. 4. ABS на мотоцикле BMW
ABS - это автоматизированная система, которая использует принципы порогового торможения, которые когда-то применялись водителями с более устаревшими тормозными системами, отличными от ABS. ABS работает намного быстрее и эффективнее, чем может среагировать большинство водителей. Хотя ABS обычно предлагает улучшенное управление транспортным средством и уменьшает расстояния остановки на сухих и скользких поверхностях, на рыхлых гравийных или заснеженных поверхностях, ABS может значительно увеличить тормозной путь, при этом улучшая управление рулем в критичных ситуациях. Поскольку ABS был введен в производство транспортных средств, такие системы становятся все более изощренными и эффективными. Современные версии мехатронных систем в составе ABS могут не только препятствовать торможению колес, но также изменять параметр смещения переднего тормоза. Эта функция, в зависимости от ее конкретных возможностей и реализации, известна по-разному, как электронное распределение тормозных усилий, система контроля тяги, помощь при экстренном торможении или электронный контроль устойчивости (англ. ESC) [3].
2.3 Лифты
Лифт – это тип вертикальной транспортировки, который перемещает людей или грузы между этажами или уровнями здания, судна или другого сооружения. Лифты, как правило, питаются от электродвигателей, которые либо приводят тяговые кабели, и противовесные системы, такие как подъемник, или с помощью гидравлической жидкости в насосе для подъема цилиндрического поршня, такого как домкрат [7].

Рис. 6. Робот-пылесос iRobot Roomba
2.5 Робототехнический комплекс
Роботехнический комплекс - это робот, способный передвигаться. Мобильная робототехника обычно считается подполем робототехники и информатики. Компоненты мобильного робототехнического комплекса - это контроллер, программное обеспечение для управления, датчики и исполнительные механизмы. Контроллер обычно представляет собой микропроцессор, встроенный микроконтроллер или персональный компьютер (ПК) [2].

Рис. 7. Роботизированный комплекс МРК
Программное обеспечение для мобильного управления может быть либо языком уровня сборки, либо языками высокого уровня, такими как C, C ++, Pascal, Fortran или специальным программным обеспечением реального времени

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Мехатроника является научно-технической дисциплиной, которая изучает построение электромеханических систем нового поколения, обладающих принципиально новыми качествами и, часто, рекордными параметрами.

Некоторые исследователи видят главную суть мехатроники в объединении, прежде всего, механики и электроники, в отличие от электромеханики, появившейся в свое время на стыке механики и электротехники.

Обычно мехатронная система является объединением собственно электромеханических компонентов с новейшей силовой электроникой, которые управляются с помощью различных микроконтроллеров, ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП, интеллектуальные силовые преобразователи и т. п. Это уменьшает массу и размеры системы, повышает ее надёжность и дает некоторые другие преимущества. Любая система, управляющая группой приводов может считаться мехатронной. В частности, если она управляет группой реактивных двигателей космического аппарата.

Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы. К сожалению, такие подвесы дороги и сложны в управлении и в нашей стране применяются редко (на 2005 г.). Одной из областей применения электромагнитных подвесов являются турбины, перекачивающие газ по трубопроводам. Обычные подшипники здесь плохи тем, что в смазку проникают газы — она теряет свои свойства.

Мехатронными модулями называют составляющие мехатронной системы. Такие модули могут объединять в одном корпусе несколько компонентов, например, двигатель, редуктор и датчики.

Рисунок 1 – Составные части мехатроники

Мехатроника изучает особые методологический подход построения машин с качественно новыми характеристиками. Этот подход является универсальным и может быть применен в машинных системах различного назначения. Однако, следует отметить, что обеспечить высокое качество управления мехатронной системой можно только с учетом специфики конкретного управляемого объекта.

В определении подчеркивается синергетический характер интеграции составляющих элементов мехатронных объектов. Синергия - это совместное действие, направленное на достижение единой цели. При этом важно, что составляющие части непросто дополняют друг друга, а объединяются таким образом, что образованные системы обладают качественно новыми свойствами. В мехатронике все энергетические и информационные потоки направлены на достижение единой цели в реализации заданного управляемого движения.

Интегрированные мехатронные элементы выбираются разработчиком уже на стадии проектирования машин, а затем обеспечиваются необходимые инженерная и технологическая поддержка при производстве и эксплуатации машин. В этом отличие мехатронных машин от традиционных, когда пользователь зачастую был вынужден самостоятельно объединять систему в разнородные механические , электронные и информационные управляющие устройства различных изготовителей. Именно поэтому многие сложные комплексы показали на практике низкую надежность и невысокую технико-экономическую эффективность.

Методологической основой разработки мехатронных систем служат методы параллельного проектирования. При традиционном проектировании машин с компьютерным управлением проводятся разработка механической ,электронной , сенсорной и компьютерной частей системы, а затем выбор интерфейсных блоков. Особенность параллельного проектирования заключается в одновременном и взаимосвязанном синтезе всех компонентов системы.

Базовыми объектами изучения мехатроники является мехатронный модуль, который выполняет движения по одной управляемой кординате. Из таких модулей как из функциональных кубиков компануются сложные системы модульной архитектуры.

Мехатронные системы предназначены для реализации заданного движения. Критерий качества выполнения движения мехатронных систем – проблемное ориентирование, то есть определяется постановкой конкретной прикладной задачи. Специфика задач автоматизированного машиностроения состоит в реализации перемещений выходных звеньев рабочего органа технологической машины (инструмент на станке). При этом необходимо координировать управление пространством перемещения мехатронных систем с управлением различными внешними процессами.

Примерами таких процессов могут служить регулирование силового взаимодействия рабочего органа с объектом работ при механообработке, контроль и диагностика текущего состояния критических элементов мехатронных систем, управление дополнительными технологическими воздействиями на объект работ при комбинированных методах обработки, управление вспомогательным оборудованием, выдача и прием сигналов от устройств электроавтоматики. Такие сложные координированные движения называют функциональными движениями.

В современных мехатронных системах для реализации высокого качества и точности движения применяются методы интеллектуального управления. Данная группа методов опирается на новые идеи теории управления современным аппаратным и программным средством вычислительной техники, перспективные подходы к синтезу управляемого движения мехатронных систем.

Мехатроника как новая область науки и техники находится в стадии своего становления, ее терминология, границы и классификационные признаки еще строго не очерчены.

Мехатронные устройства - это выделившийся в последние десятилетия класс машин или узлов машин, базирующийся на использовании в них достижений точной механики, электропривода, электроники, компьютерного управления. Хотя все эти элементы можно встретить в громадном количестве традиционной техники, все же можно выделить ряд признаков мехатронного устройства к которым можно отнести следующие.

1.Наличие интеграции следующих функциональных элементов:

-выходного механического звена (ВМЗ), выполняющего внешние функции мехатронного устройства;

-двигателя выходного звена с механизмом передачи движения к ВМЗ, привода ВМЗ;

-усилителя-преобразователя энергии питания двигателя (УПЭП);

-устройства цифрового программного управления приводом;

- информационной системы, контролирующей состояние внешнего мира и внутренних параметров мехатронного устройства.

2. Минимум преобразований информации и энергии (например, прямое цифровое управление безредукторным приводом) - принцип минимума преобразований.

3. Использование одного и того же элемента мехатронного устройства для реализации нескольких функций (например, параметры двигателя (ток, противо-ЭДС) используются для измерения его момента и скорости) - принцип совмещения функций.

4. Проектирование функций различных элементов мехатронного устройства таким образом, чтобы цели служебного назначения изделия достигались совместным выполнением этих функций без их дублирования и с максимальным эффектом (принцип синергетики).

5. Объединение корпусов узлов мехатронного устройства - принцип совмещения корпусов.

Рисунок 2 – Принцип построения мехатронной системы

Устройство компьютерного управления осуществляет следующие основные функции:

1. Управление процессом механического движения мехатронного модуля или многомерной системы в реальном времени с обработкой сенсорной информации.

2. Организация управления функциональными движениями мехатронной системы, которая предполагает координацию управления механическим движением мехатронной системы и сопутствующими внешними процессами. Как правило, для реализации функции управления внешними процессами используются дискретные входы/выходы устройства.

3. Взаимодействие с человеком-оператором через машинный интерфейс в режимах автономного программирования (режим off-line) и непосредственно в процессе движения мехатронной системы (режим on-line).

4. Организация обмена данными с периферийными устройствами, сенсорами и другими устройствами системы.

Задачей мехатронной системы является преобразование входной информации, поступающей с верхнего уровня управления в целенаправленное механическое движение с управлением на основе принципа обратной связи. Характерно, что электрическая энергия (гидравлическая, пневматическая) используется в современных системах как промежуточная энергетическая форма.

Построение мехатронных модулей на основе синергетической интеграции элементов.

Мехатронные модули – это базовые функциональные компоненты мехатронных систем и машин с компьютерным управлением, предназначенные для выполнения движений, как правило, по одной управляемой координате.

Качественно новые свойства мехатронных модулей по сравнению с традиционными приводами достигаются синергетической интеграцией составляющих элементов.

Синергетическая интеграция – это не просто соединение отдельных частей в систему с помощью интерфейсных блоков, а построение единого приводного модуля через конструктивное объединение и даже взаимопроникновение элементов, которые имеют, как правило, различную физическую природу.

Назначением мехатронных модулей является реализация заданного управляемого движения, как правило, по одной управляемой координате.

Сущность мехатронного подхода к проектированию состоит в объединении в единый приводной модуль составляющих элементов. Применение мехатронного подхода к проектированию модуля движения базируется на определении возможных точек интеграции элементов в структуре привода. Выявив также точки интеграции можно затем на основе технико-экономического и технологического анализа принимать конкретные инженерные решения на проектирование и изготовления модуля движения. Приведем схему энергетических и информационных потоков в электромеханическом мехатронном модуле.

На вход мехатронного модуля поступает информация о цели движения, которое формируется верхним уровнем системы управления, а выходом является целенаправленное мехатронное движение конечного звена, например, перемещение выходного вала модуля.

Для физической реализации электромеханического мехатронного модуля теоретически необходимы четыре основных функциональных блока последовательно-соединенные: информационно-электрический и электромеханический функциональный преобразователь в прямой цепи и электро-информационный и механико- информационныи преобразователи в цепи обратной связи.

Мехатроные технологические машины в машиностроении.

Построение диагностического прогноза в развитие машиностроения и выбор основных тенденций и стратегий его развития концентрируется на:

1. интеграции технологий и знаний

2. интеллектуализации производственных технологий

3. мехатронных технолологий машинах и роботах

4. сквозных информационных систем

Во многих областях техники МС приходят на смену традиционным механическим машинам, которые уже не соответствуют современным качественным требованиям. Мехатронный подход в построении машин нового поколения заключается в переносе функциональной нагрузки от механических узлов к интеллектуальным, электронным, компьютерным информационным компонентам, которые легко перепрограммируются под новую задачу и при этом являются относительно дешевыми. Анализ производственных машин показывает что доля механической части сократилась с 70% в начале 90-х годов до 25-30% в настоящее время. Принципиально важно подчеркнуть, что мехатр подход в проектирование предпологает не расширение, а именно замещение функций традиционно выполняемые механическими элементами системы на электронные и компьютерные блоки.

Принципиально важно, что тенденция перехода от чисто механических к мехатронным технологиям в современном машиностроении не закрывает механику. Наоборот стимулирует ее развитие на фоне с интеллектуальными компонентами в рамках единой мехатронной системы. Системный подход диктует новые требования к встроенным механическим и гибридным компонентам, что в свою очередь ведет к развитию новых технологий и конструкторских решений в области механики

Мехатроника является научно-технической дисциплиной, которая изучает построение электромеханических систем нового поколения, обладающих принципиально новыми качествами и, часто, рекордными параметрами.

Некоторые исследователи видят главную суть мехатроники в объединении, прежде всего, механики и электроники, в отличие от электромеханики, появившейся в свое время на стыке механики и электротехники.

Обычно мехатронная система является объединением собственно электромеханических компонентов с новейшей силовой электроникой, которые управляются с помощью различных микроконтроллеров, ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП, интеллектуальные силовые преобразователи и т. п. Это уменьшает массу и размеры системы, повышает ее надёжность и дает некоторые другие преимущества. Любая система, управляющая группой приводов может считаться мехатронной. В частности, если она управляет группой реактивных двигателей космического аппарата.

Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы. К сожалению, такие подвесы дороги и сложны в управлении и в нашей стране применяются редко (на 2005 г.). Одной из областей применения электромагнитных подвесов являются турбины, перекачивающие газ по трубопроводам. Обычные подшипники здесь плохи тем, что в смазку проникают газы — она теряет свои свойства.

Мехатронными модулями называют составляющие мехатронной системы. Такие модули могут объединять в одном корпусе несколько компонентов, например, двигатель, редуктор и датчики.


Рисунок 1 – Составные части мехатроники

Мехатроника изучает особые методологический подход построения машин с качественно новыми характеристиками. Этот подход является универсальным и может быть применен в машинных системах различного назначения. Однако, следует отметить, что обеспечить высокое качество управления мехатронной системой можно только с учетом специфики конкретного управляемого объекта.

В определении подчеркивается синергетический характер интеграции составляющих элементов мехатронных объектов. Синергия - это совместное действие, направленное на достижение единой цели. При этом важно, что составляющие части непросто дополняют друг друга, а объединяются таким образом, что образованные системы обладают качественно новыми свойствами. В мехатронике все энергетические и информационные потоки направлены на достижение единой цели в реализации заданного управляемого движения.

Интегрированные мехатронные элементы выбираются разработчиком уже на стадии проектирования машин, а затем обеспечиваются необходимые инженерная и технологическая поддержка при производстве и эксплуатации машин. В этом отличие мехатронных машин от традиционных, когда пользователь зачастую был вынужден самостоятельно объединять систему в разнородные механические , электронные и информационные управляющие устройства различных изготовителей. Именно поэтому многие сложные комплексы показали на практике низкую надежность и невысокую технико-экономическую эффективность.

Методологической основой разработки мехатронных систем служат методы параллельного проектирования. При традиционном проектировании машин с компьютерным управлением проводятся разработка механической ,электронной , сенсорной и компьютерной частей системы, а затем выбор интерфейсных блоков. Особенность параллельного проектирования заключается в одновременном и взаимосвязанном синтезе всех компонентов системы.

Базовыми объектами изучения мехатроники является мехатронный модуль, который выполняет движения по одной управляемой кординате. Из таких модулей как из функциональных кубиков компануются сложные системы модульной архитектуры.

Мехатронные системы предназначены для реализации заданного движения. Критерий качества выполнения движения мехатронных систем – проблемное ориентирование, то есть определяется постановкой конкретной прикладной задачи. Специфика задач автоматизированного машиностроения состоит в реализации перемещений выходных звеньев рабочего органа технологической машины (инструмент на станке). При этом необходимо координировать управление пространством перемещения мехатронных систем с управлением различными внешними процессами.

Примерами таких процессов могут служить регулирование силового взаимодействия рабочего органа с объектом работ при механообработке, контроль и диагностика текущего состояния критических элементов мехатронных систем, управление дополнительными технологическими воздействиями на объект работ при комбинированных методах обработки, управление вспомогательным оборудованием, выдача и прием сигналов от устройств электроавтоматики. Такие сложные координированные движения называют функциональными движениями.

В современных мехатронных системах для реализации высокого качества и точности движения применяются методы интеллектуального управления. Данная группа методов опирается на новые идеи теории управления современным аппаратным и программным средством вычислительной техники, перспективные подходы к синтезу управляемого движения мехатронных систем.

Мехатроника как новая область науки и техники находится в стадии своего становления, ее терминология, границы и классификационные признаки еще строго не очерчены.

2 СТРУКТУРА И ПРИНЦИПЫ ПОСТРОЕНИЯ МЕХАТРОННЫХ СИСТЕМ

Мехатронные устройства - это выделившийся в последние десятилетия класс машин или узлов машин, базирующийся на использовании в них достижений точной механики, электропривода, электроники, компьютерного управления. Хотя все эти элементы можно встретить в громадном количестве традиционной техники, все же можно выделить ряд признаков мехатронного устройства к которым можно отнести следующие.

1.Наличие интеграции следующих функциональных элементов:

-выходного механического звена (ВМЗ), выполняющего внешние функции мехатронного устройства;

-двигателя выходного звена с механизмом передачи движения к ВМЗ, привода ВМЗ;

-усилителя-преобразователя энергии питания двигателя (УПЭП);

-устройства цифрового программного управления приводом;

- информационной системы, контролирующей состояние внешнего мира и внутренних параметров мехатронного устройства.

2. Минимум преобразований информации и энергии (например, прямое цифровое управление безредукторным приводом) - принцип минимума преобразований.

3. Использование одного и того же элемента мехатронного устройства для реализации нескольких функций (например, параметры двигателя (ток, противо-ЭДС) используются для измерения его момента и скорости) - принцип совмещения функций.

4. Проектирование функций различных элементов мехатронного устройства таким образом, чтобы цели служебного назначения изделия достигались совместным выполнением этих функций без их дублирования и с максимальным эффектом (принцип синергетики).

5. Объединение корпусов узлов мехатронного устройства - принцип совмещения корпусов.

Устройство компьютерного управления осуществляет следующие основные функции:

1. Управление процессом механического движения мехатронного модуля или многомерной системы в реальном времени с обработкой сенсорной информации.

2. Организация управления функциональными движениями мехатронной системы, которая предполагает координацию управления механическим движением мехатронной системы и сопутствующими внешними процессами. Как правило, для реализации функции управления внешними процессами используются дискретные входы/выходы устройства.

3. Взаимодействие с человеком-оператором через машинный интерфейс в режимах автономного программирования (режим off-line) и непосредственно в процессе движения мехатронной системы (режим on-line).

4. Организация обмена данными с периферийными устройствами, сенсорами и другими устройствами системы.

Задачей мехатронной системы является преобразование входной информации, поступающей с верхнего уровня управления в целенаправленное механическое движение с управлением на основе принципа обратной связи. Характерно, что электрическая энергия (гидравлическая, пневматическая) используется в современных системах как промежуточная энергетическая форма.

Построение мехатронных модулей на основе синергетической интеграции элементов.

Мехатронные модули – это базовые функциональные компоненты мехатронных систем и машин с компьютерным управлением, предназначенные для выполнения движений, как правило, по одной управляемой координате.

Качественно новые свойства мехатронных модулей по сравнению с традиционными приводами достигаются синергетической интеграцией составляющих элементов.

Синергетическая интеграция – это не просто соединение отдельных частей в систему с помощью интерфейсных блоков, а построение единого приводного модуля через конструктивное объединение и даже взаимопроникновение элементов, которые имеют, как правило, различную физическую природу.

Назначением мехатронных модулей является реализация заданного управляемого движения, как правило, по одной управляемой координате.

Сущность мехатронного подхода к проектированию состоит в объединении в единый приводной модуль составляющих элементов. Применение мехатронного подхода к проектированию модуля движения базируется на определении возможных точек интеграции элементов в структуре привода. Выявив также точки интеграции можно затем на основе технико-экономического и технологического анализа принимать конкретные инженерные решения на проектирование и изготовления модуля движения. Приведем схему энергетических и информационных потоков в электромеханическом мехатронном модуле.

На вход мехатронного модуля поступает информация о цели движения, которое формируется верхним уровнем системы управления, а выходом является целенаправленное мехатронное движение конечного звена, например, перемещение выходного вала модуля.

Для физической реализации электромеханического мехатронного модуля теоретически необходимы четыре основных функциональных блока последовательно-соединенные: информационно-электрический и электромеханический функциональный преобразователь в прямой цепи и электро-информационный и механико- информационныи преобразователи в цепи обратной связи.

Мехатроные технологические машины в машиностроении.

Построение диагностического прогноза в развитие машиностроения и выбор основных тенденций и стратегий его развития концентрируется на:

2. интеллектуализации производственных технологий

3. мехатронных технолологий машинах и роботах

4. сквозных информационных систем

Во многих областях техники МС приходят на смену традиционным механическим машинам, которые уже не соответствуют современным качественным требованиям. Мехатронный подход в построении машин нового поколения заключается в переносе функциональной нагрузки от механических узлов к интеллектуальным, электронным, компьютерным информационным компонентам, которые легко перепрограммируются под новую задачу и при этом являются относительно дешевыми. Анализ производственных машин показывает что доля механической части сократилась с 70% в начале 90-х годов до 25-30% в настоящее время. Принципиально важно подчеркнуть, что мехатр подход в проектирование предпологает не расширение, а именно замещение функций традиционно выполняемые механическими элементами системы на электронные и компьютерные блоки.

Принципиально важно, что тенденция перехода от чисто механических к мехатронным технологиям в современном машиностроении не закрывает механику. Наоборот стимулирует ее развитие на фоне с интеллектуальными компонентами в рамках единой мехатронной системы. Системный подход диктует новые требования к встроенным механическим и гибридным компонентам, что в свою очередь ведет к развитию новых технологий и конструкторских решений в области механики

3 УРОВНИ ИНТЕГРАЦИИ МЕХАТРОННЫХ СИСТЕМ

В качестве основного классификационного признака в мехатронике представляется целесообразным принять уровень интеграции составляющих элементов. В соответствии с этим признаком можно разделять мехатронные системы по уровням или по поколениям, если рассматривать их появление на рынке наукоемкой продукции исторически. Мехатронные модули первого уровня представляют собой объединении только двух исходных элементов. Типичным примером модуля первого поколения может служить "мотор-редуктор", где механический редуктор и управляемый двигатель выпускаются как единый функциональный элемент.

Мехатронные системы на основе этих модулей нашли широкое применение при создании различных средств комплексной автоматизации производства (конвейеров, транспортеров, поворотных столов, вспомогательных манипуляторов).

Мехатронные модули второго уровня появились в 80-х годах в связи с развитием новых электронных технологий, которые позволили создать миниатюрные датчики и электронные блоки для обработки их сигналов. Объединение приводных модулей с указанными элементами привела к появлению мехатронных модулей движения, состав которых полностью соответствует введенному выше определению, когда достигнута интеграция трех устройств различной физической природы: механических, электротехнических и электронных. На базе мехатронных модулей данного класса созданы управляемые энергетические машины(турбины и генераторы), станки и промышленные роботы с числовым программным управлением. Развитие третьего поколения мехатронных систем обусловлено появлением на рынке сравнительно недорогих микропроцессоров и контроллеров на их базе и направлено на интеллектуализацию всех процессов, протекающих в мехатронной системе, в первую очередь - процесса управления функциональными движениями машин и агрегатов. Одновременно идет разработка новых принципов и технологий изготовления высокоточных и компактных механических узлов, а также новых типов электродвигателей (в первую очередь высокомоментных, бесколлекторных и линейных), датчиков обратной связи и информации. Синтез новых прецизионных, информационных и измерительных наукоемких технологий дает основу для проектирования и изготовления интеллектуальных мехатронных модулей и систем. В дальнейшем мехатронные машины и системы будут объединяться в мехатронные комплексы на базе единых интеграционных платформ.

Цель создания таких комплексов - добиться сочетания высокой производительности и одновременно гибкости технико-технологической среды за счет возможности ее реконфигурации, что позволит обеспечить конкурентоспособность и высокое качество выпускаемой продукции на рынках XXI века.

4 СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ МЕХАТРОННЫХ СИСТЕМ

Объемы мирового производства мехатронных устройств ежегодно увеличиваются, охватывая все новые сферы. Сегодня мехатронные модули и системы находят широкое применение в следующих областях :

ВВЕДЕНИЕ 3
1. Понятие мехатроники. Определение мехатронного
устройства. 5
1.1 Признаки и состав мехатронных систем 8
2. Примеры мехатронных систем в военной технике для
систем вооружения 9
2.1 Робот-разведчик Минатома РФ 11
2.2 Специальные мобильные роботы "Вездеход ТМ-3" и "Варан" 13
2.3 Мехатронный робот-станок "РОСТ 300" 15
3. Перспективы дальнейшего применения мехатронных систем
в рассматриваемой области 18
ЗАКЛЮЧЕНИЕ 25
ЛИТЕРАТУРА 27

Использование Интернет-технологий в мехатронике и робототехнике открывает новые перспективы в развитии распределенных систем управления и сбора данных. Задачи дистанционного мониторинга экспериментов и контроля удаленных технических систем с помощью Интернета могут быть выполнены с минимальными затратами практически в любой точке мира за счет широкого распространения и доступности глобальной сети.
Дистанционное управление мехатронными объектами с использованием Интернета подразумевает не только сбор данных при помощи информационно-измерительной аппаратуры, но и подачу управляющих воздействий на исполнительные элементы различных типов. Эта задача для систем вооружения является, пожалуй, наиболее перспективной, но вместе с тем сложной для практической реализации. Анализ современных тенденций, а также ряда реально осуществленных проектов показывает, что Интернет является достаточно эффективным и удобным средством организации дистанционного управления техническими объектами, преимуществами которого являются:
- возможность организовать дистанционное управление реальными объектами и экспериментами практически из любой точки мира;
- снижение затрат на создание специализированных каналов связи;
- возможность организации доступа широкого круга специалистов экспертов, территориально удаленных друг от друга, к уникальному оборудованию в режиме реального времени.
Перспективные области применения Интернет-робототехники прежде всего для систем вооружения включают:
- дистанционное управление в условиях агрессивной окружающей среды (мобильные роботы);
- астрономия (создание роботизированных автономных телескопов);
- дистанционное образование (создание вир?

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Читайте также: