Индуктивное влияние как механизм передачи помех реферат

Обновлено: 02.07.2024

Индуцируемые электромагнитные помехи - в основном та же самая проблема, что и излучаемые, но наоборот. Межсоединения, используемые в системе на основе RS-485, также действуют как антенна, которая получает нежелательные сигналы. Эти нежелательные сигналы могут искажать полезные сигналы, что, в свою очередь, может привести к ошибкам в данных. По той же самой причине, по которой витая пара помогает предотвращать излучение электромагнитных помех, она также поможет снизить влияние наводимых электромагнитных помех. Поскольку два провода расположены вместе и скручены, шум, наведенный на одном проводе будет иметь тенденцию быть тем же самым, что и наведенный на втором проводе. Этот тип шума называют "синфазным шумом". Поскольку приемники RS-485 предназначены для обнаружения сигналов, которые являются противоположностью друг друга, они могут легко подавлять шум, который является общим для обоих проводов.

3.4 Волновое сопротивление витой пары

В зависимости от геометрии кабеля и материалов, используемых в изоляции, витая пара будет обладать соответствующим "волновым сопротивлением (характеристическим импедансом)", которое обычно определяется ее производителем. Спецификация RS-485 рекомендует, но явно не навязывает, чтобы это волновое сопротивление было равно 120 Ом. Рекомендация этого импеданса необходима для вычисления наихудшей нагрузки и диапазонов синфазных напряжений, определенных в спецификации RS-485. По всей видимости, спецификация не диктует этот импеданс в интересах гибкости. Если по каким-либо причинам не может использоваться 120-омный кабель, рекомендуется, чтобы наихудший вариант нагрузки (допустимое число передатчиков и приемников) и наихудшие диапазоны синфазных напряжений были повторно рассчитаны, дабы удостовериться, что проектируемая система будет работать.

3.5 Согласующие резисторы

Поскольку затронуты высокие частоты и большие расстояния, должное внимание должно быть уделено эффектам, возникающим в линиях связи. Однако, детальное обсуждение этих эффектов и корректных методов согласования далеко выходит за рамки настоящей статьи. Помня об этом, техника согласования будет кратко рассмотрена в своей простейшей форме, постольку, поскольку она имеет отношение к RS-485.

Согласующий резистор - это просто резистор, который установлен на крайнем конце или концах кабеля, рисунок 3.4. В идеале, сопротивление согласующего резистора равно волновому сопротивлению кабеля.


Рис 3.4. Согласующие резисторы должны иметь сопротивление, равное волновому сопротивлению витой пары и должны размещаться на дальних концах кабеля.

Если сопротивление согласующих резисторов не равно волновому сопротивлению кабеля, произойдет отражение, т.е. сигнал вернется по кабелю обратно. Это описывается уравнением (Rt-Zo)/(Zo+Rt), где Zo - сопротивление кабеля, а Rt - номинал согласующего резистора. Хотя, в силу допустимых отклонений в кабеле и резисторе, некоторое отражение неизбежно, значительные расхождения могут вызвать отражения, достаточно большие для того, чтобы привести к ошибкам в данных, рисунок 3.5.



Рис. 3.5. Используя схему, показанную на верхнем рисунке, сигнал слева был получен с MAX3485, нагруженным на 120-омную витую пару, и 54-омным согласующим резистором. Сигнал справа был получен при корректном согласовании с помощью 120-омного резистора.

Помня об этом, важно обеспечить максимально-возможную близость значений сопротивления согласующего резистора и волнового сопротивления. Место установки согласующего резистора так-же очень важно. Согласующие резисторы должны всегда размещаться на дальних концах кабеля.

Как общее правило, согласующие резисторы должны быть помещены на обоих дальних концах кабеля. Хотя правильное согласование обоих концов абсолютно критично для большинства системных дизайнов, можно утверждать, что в одном специальном случае необходим только один согласующий резистор. Этот случай имеет место в системе, в которой имеется единственный передатчик, и этот единственный передатчик расположен на дальнем конце кабеля. В этом случае нет необходимости размещать согласующий резистор на конце кабеля с передатчиком, поскольку сигнал всегда распространяется от этого передатчика.

3.6 Максимальное число передатчиков и приемников в сети

Простейшая сеть на основе RS-485 состоит из одного передатчика и одного приемника. Хотя это и полезно в ряде приложении, но RS-485 привносит большую гибкость, разрешая более одного приемника и передатчика на одной витой паре. Допустимый максимум зависит от того, насколько каждое из устройств загружает систему.

В идеальном мире, все приемники и неактивные передатчики будут иметь бесконечный импеданс и никогда не будут нагружать систему. В реальном мире, однако, так не бывает. Каждый приемник, подключенный к сети и все неактивные передатчики увеличивают нагрузку. Чтобы помочь разработчику сети на основе RS-485 выяснить, сколько устройств могут быть добавлены к сети, была создана гипотетическая единица, называемая "единичная нагрузка (unit load)". Все устройства, которые подключаются к сети RS-485, должны характеризоваться отношением множителей или долей единичной нагрузки. Два примера - MAX3485, который специфицирован как 1 единичная нагрузка, и MAX487, который специфицирован как 1/4 единичной нагрузки. Максимальное число единичных нагрузок на витой паре (принимая, что мы имеем дело с должным образом согласованным кабелем, имеющим волновое сопротивление 120 Ом или больше) - 32. Для приведенных выше примеров это означает, что в одну сеть могут быть включены до 32 устройств MAX3485 или до 128 MAX487.

3.7 Примеры правильных сетей

Вооружившись приведенной выше информацией, мы готовы разработать некоторые сети на основе RS-485. Вот несколько простых примеров.

3.7.1 Один передатчик, один приемник

Простейшая сеть - это один передатчик и один приемник, рисунок 3.6. В этом примере, согласующий резистор показан на кабеле на стороне передатчика. Хотя здесь это необязательно, вероятно хорошей привычкой было бы проектировать сети с обоими согласующими резисторами. Это позволят перемещать передатчик в места, отличные от дальнего конца кабеля, а также позволяет, если в этом возникнет необходимость, добавить в сеть дополнительные передатчики.


Рис. 3.6. Сеть RS-485 с одним передатчиком и одним приемником.

3.7.2 Один передатчик, несколько приемников

На рисунке 3.7. представлена сеть с одним передатчиком и несколькими приемниками. Здесь важно, чтобы расстояния от витой пары до приемников были как можно короче.


Рис. 3.7. Сеть RS-485 с одним передатчиком и несколькими приемниками.

3.7.3 Два приемопередатчика

На рисунке 3.8. представлена сеть с двумя приемопередатчиками.


Рис. 3.8. Сеть RS-485 с двумя приемопередатчиками.

3.7.4 Несколько приемопередатчиков

На рисунке 3.9. представлена сеть с несколькими приемопередатчиками. Как и в примере с одним передатчиком и несколькими приемниками, важно, чтобы расстояния от витой пары до приемников были как можно короче.


Рис. 3.9. Сеть RS-485 с несколькими приемопередатчиками.

Раздел: Информатика, программирование
Количество знаков с пробелами: 194837
Количество таблиц: 52
Количество изображений: 45

-связь излучением, или электромагнитная связь (поле в дальней зоне).

Теория цепей может быть применена для рассмотрения только трех первых видов взаимосвязи. Четвертый способ требует для своего рассмотрения применения одной из более общих теорий.

В действительности ни один из указанных видов связи не существует в отдельности, однако, обычно, по меньшей мере, в диапазоне низких или средних частот, один из них превалирует нал остальными.

Связь через общее полное сопротивление

Этот механизм связи возникает, когда разные цепи имеют в своем составе одно или несколько общих сопротивлений.


Благодаря наличию общего сопротивления Zc падение напряжения на сопротивлении нагрузки контура Еi, I1 представляет собой алгебраическую сумму полезной ЭДС Е1 и напряжения помехи, вызванной протеканием тока в контуре Е2, I2, поскольку сопротивление ZL1 обычно намного больше общего сопротивления Zc, таким образом, напряжение помехи составляет величину ZcI2, где Zc соответствует передаточной функции, вследствие чего в данном случае может быть названо передаточным сопротивлением.

Существует два возможных пути ослабления связи через общее полное сопротивление без воздействия на источники помех:

• устранение общего обратного провода (стратегия разомкнутой цепи);

• уменьшение полного сопротивления обратного провода (стратегия короткозамкнутой цепи).

Примеры помех, передаваемых посредством общего полного сопротивления:

• токи КЗ частотой 50/60 Гц в заземлителе, используемом в качестве плоскости нулевого потенциала;

• прямое попадание молнии в контур заземления, цепи или оборудование (например, в антенны);

• разряд статического электричества непосредственно на оборудование;

• перекрестные помехи между цепями, имеющими общее сопротивление;

• гармонические составляющие, колебания и провалы напряжения в цепях электропитания.

Магнитная (индуктивность) связь (наряду со связью через общее полное сопротивление), является наиболее часто встречающимся видом проникновения помех. Данная связь имеет место в любом случае, когда две цепи имеют общий магнитный поток. Обычно таким случаем является ситуация, когда земля является частью обеих цепей и, по крайней мере, по одному проводнику протекает ток.

В простейшем случае, приведенном на рис., связь образуется между двумя параллельными проводниками, расположенными над поверхностью земли, которая служит обратным проводом для обоих контуров.


Пути ослабления магнитной связи.

1. Уменьшение площади петли.

2. Экранирование источника помех.

3. Экранирование цепи источника помехи.

Примеры помех, передаваемых магнитной связью:

- помехи при коммутациях на подстанциях с открытым распределительным устройством;

- помехи, создаваемые магнитными полями, установками промышленной частоты;

- помехи при близких ударах молнии, то есть ударах в непосредственной близости от цепей автоматических и автоматизированных систем технологического управления электротехническими объектами;

- помехи, вызванные разрядами статического электричества вблизи оборудования.

В отличие от индуктивной связи, емкостная связь проявляется под действием электрического поля источника помех, а не протекающих в нем токов.

Емкости связи весьма малы, поэтому при больших расстояниях между источником и приемником помех емкостная связь ощутима лишь при достаточно большом сопротивлении цепи приемника (нагрузочное сопротивление на концах кабеля) либо при очень близком расположении цепей приемника и источника.

Единственным способом ослабления емкостной связи, если невозможна раздельная прокладка проводников или уменьшение сопротивления (стратегия разомкнутой цепи), остается экранирование защищаемого проводника и соединение экрана с заземлением в одной точке.

Примеры помех, передаваемых емкостной связью:

- помехи, создаваемые низкочастотным электрическим полем, создаваемым силовыми установками высокого напряжения;

- помехи, обусловленные быстрыми переходными процессами, вызванными коммутациями в сети низкого напряжения,

- перекрестные помехи в сигнальных кабелях;

- синфазные помехи за счет связи между первичной и вторичной обмотками разделительного трансформатора, оптронов, трансформаторов тока или напряжения подстанции.

Предыдущие рассмотрения основываются на том предположении, что размеры цепи (включая источник и приемник помех) много меньше длины волны λ=c/f, (здесь f — наибольшая частота спектрального состава помехи). В этом случае имеем дело с полями ближней зоны. В зоне, где выполняется это условие, отношение напряженностей электрического и магнитного полей Zw=Е/Н, называемое волновым сопротивлением, может принимать значения, зависящие от вида источника излучения и расстояния между источником и приемником излучения.

Если Zw 377 Ом преобладает электрическое поле, источник (высокоомный) характеризуется большими напряжениями и малыми токами, а в качестве модели связи используют емкостную модель.

При увеличении расстояния от источника отношение Е/Н стремится к 377 Ом, называемому волновым сопротивлением вакуума. В этих условиях отсутствует преобладание какой-либо составляющей поля, которое представляет собой электромагнитное поле излучения.

Расстояние, при котором достигается данное условие, определяет собой границу между дальней и ближней зонами ЭМ поля.

Основными источниками излучаемого ЭМ поля являются молния, коммутации на элегазовых подстанциях, радиопередатчики и переговорные устройства. Первые два являются источниками импульсных полей, два последних источниками фиксированной частоты излучения.

Таким образом, помехи определяются ближней зоной излучения при расстоянии приемника от источника помех до:

5000 м - при частоте f = 0,01 Мгц;

500 м - при частоте f = 0,1 Мгц;

50 м - при частоте f = 1 Мгц;

5 м - при частоте f = 10 Мгц;

0,5 м - при частоте f = 100 Мгц.

Во всех случаях, где выполняются условия дальней зоны, изучение явления становится достаточно сложным (в частности, если размеры цепи больше длины волны), так как теория цепей не может быть больше применена. В этих случаях следует обращаться к обобщенным моделям, основанным на теории Максвелла.

Примеры помех, передаваемых связью излучением:

- помехи, вызванные электрическими переходными процессами при коммутациях на элегазовых подстанциях;

- помехи при удаленных ударах молнии (несколько сотен метров от приемника);

ГОСТ 30372-95 (ГОСТ Р 50397-92)
Межгосударственный стандарт
СОВМЕСТИМОСТЬ ТЕХНИЧЕСКИХ СРЕДСТВ
ЭЛЕКТРОМАГНИТНАЯ
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
электромагнитная помеха:
электромагнитное явление, процесс, которые
снижают или могут снизить качество
функционирования технического средства.
2

• допустимая помеха: электромагнитная помеха, при
которой качество функционирования технического
средства, подверженного ее воздействию,
сохраняется на заданном уровне
• недопустимая помеха: электромагнитная помеха,
воздействие которой снижает качество
функционирования технического средства до
недопустимого уровня
3

4. Источники электромагнитных помех на электрических станциях и подстанциях

1 – короткие замыкания (КЗ) , 2 – грозовые разряды
3 – переходные режимы работы высоковольтного
оборудования (в том числе, вызванные коммутациями)
6 - радиосредства
4

Источники электромагнитных помех на электрических
станциях и подстанциях
4 – коммутации
электромеханических
устройств различного
назначения
5 – штатная работа
силового
электрооборудования (до и
выше 1 кВ)
6 – работа портативных
раций, используемых
персоналом
7 – электростатический
разряд
5

6. Источники электромагнитных помех на электрических станциях и подстанциях

• Переходные процессы в цепях высокого напряжения при
коммутациях силовыми выключателями и разъединителями;
• Переходные процессы в цепях высокого напряжения при коротких
замыканиях, срабатывании разрядников или ограничителей
перенапряжений;
• Электрические и магнитные поля промышленной частоты,
создаваемые силовым оборудованием станций и подстанций;
• Электромагнитные поля высокой частоты, создаваемые ударами
молнии, радиопередающими устройствами, преобразовательными
установками;
• Переходные процессы в заземляющих устройствах подстанций,
обусловленные токами КЗ промышленной частоты и токами молний;
• Быстрые переходные процессы при коммутациях в индуктивных
цепях низкого напряжения;
• Переходные процессы в цепях различных классов напряжения при
ударах молнии непосредственно в объект или вблизи него;
• Разряды статического электричества;
• Электромагнитные возмущения в цепях оперативного тока;
6

7. Классификация электромагнитных помех

Электромагнитные помехи по совокупности
признаков могут быть разделены на
следующие классы:
• Естественные и искусственные
• Функциональные и нефункциональные
• Широкополосные и узкополосные
• Синфазные и противофазные
7

Естественные помехи:
- Удар молнии
- Разряды статического электричества
Искусственные помехи:

-
Коммутация оборудования
Работа электродвигателя
Работа радиопередатчика
и т.п.
Источник искусственных помех – работа технических средств.
8

Функциональные помехи:
Источник помехи является функциональным, если для него эта
помеха является полезным сигналом.
Интенсивность помех определена.
Работа радиопередающих устройств (радио- и телепередатчики)
Микроволновые печи
Работа испытательных генераторов
и т.п.
Нефункциональные помехи:
Нефункциональными являются источники, которые создают ЭМП
в качестве побочного эффекта в процессе работы.
Интенсивность помех не определена.
Автомобильная система зажигания
Работа коллекторного двигателя
Сварочный аппарат
Тиристорные преобразователи, регуляторы, выпрямители
Коммутации электрического тока
и т.п.
9

Узкополосные помехи
Спектр близок к линейчатому – максимальный уровень приходится на
одну частоту, возможно наличие гармоник малых порядков.
При этом энергия спектра сосредоточена в основном в относительно
узкой полосе частот около некоторой фиксированной частоты ω0
Пример: гармонический сигнал
Источники узкополосных помех – системы связи, системы питания
на переменном токе
Широкополосные помехи
Условия, описанные для узкополосных помех, не выполняются.
Пример: последовательность прямоугольных импульсов, одиночные
апериодические импульсы, одиночные колебательные затухающие
импульсы и т.п.
Источники широкополосных помех: удары молнии, разряды
статического электричества, коммутация индуктивной нагрузки,
газоразрядные лампы и т.п.
10

11. узкополосные и широкополосные источники.

• Как уже отмечалось процесс
называется узкополосным, когда
энергия спектра сосредоточена в
основном в относительно узкой полосе
частот около некоторой фиксированной
частоты.
• широкополосным, если указанное
условие не выполняется
11

13. Систематизация разновидностей электромагнитных помех

14. Спектры помех, генерируемых различными приборами и оборудованием

15. Виды помех во вторичных цепях

16. Противофазные (дифференциальные) помехи и синфазные помехи (общего типа)

Ud – противофазное напряжение электромагнитных помех
Uc1, Uc2 – синфазные напряжения электромагнитных помех
16

• Противофазные напряжения помех
(симметричные, поперечные) возникают
между проводами двухпроводной линии
• Синфазные напряжения помех
(несимметричные, продольные)
возникают между каждым проводом и
землёй
17

• Противофазные напряжения помех
непосредственно накладываются на полезные
сигналы в сигнальных цепях или на напряжение
питания в цепях электроснабжения,
воздействуют на линейную изоляцию между
проводами и могут быть восприняты как
полезные сигналы в устройствах автоматизации
и тем самым вызывать ошибочное
функционирование.
• Синфазные помехи обусловлены главным
образом разностью потенциалов в цепях
заземления устройства и воздействуют на
изоляцию между проводом и землей.
18

21. Способы описания и основные параметры помех

• Помехи можно представить и описать как во временной, так и в
частотной области. Однако, обычно не так важно точное описание
формы помехи, как ее точные параметры, от которых зависит ее
мешающее воздействие.
• Для периодических помех такими являются: частота f и амплитуда
Xmax. Эти параметры определяют амплитуду напряжения помехи во
вторичных контурах Umax.
• Для непериодических помех важнейшими параметрами являются
следующие:
- скорость изменения Δx / Δt (скорость нарастания или спада). Данная
величина определяет максимальное напряжение помехи Usmax,
вызванной во вторичной цепи;
- интервал времени Δt , в течение которого помеха х имеет
максимальную скорость изменения амплитуды; этот интервал
идентичен длительности действия напряжения помехи us во
вторичной цепи;
- максимальное значение изменения амплитуды Δx , пропорциональное
интегралу напряжения помехи вторичной цепи по времени (площади
импульса помехи).
21

Пояснение параметров периодических (а)
и непериодических (б) переходных помех
Г – источник сигнала, П – приемник сигнала
Х – помеха (напряжение или ток)
Us – напряжение помехи, обусловленное связью:
1 – влияющий контур, 2 – контур подверженный влиянию
3 – канал передачи помехи
22

23. Описание электромагнитных влияний в частотной и временной областях

В принципе электромагнитные влияния могут
рассматриваться как во временной, так и в
частотной области. Однако поскольку
передаточные свойства путей связи и средств
помехоподавления удобнее представлять в
частотной области, такое представление чаще
всего предпочитают и для помех. Пересчет
периодических процессов из временной
области в частотную выполняют при помощи
ряда Фурье, пересчет однократных импульсных
процессов - при помощи интеграла Фурье.
23

24. Представление периодических функций времени в частотной области. Ряд Фурье.

25. Ряд Фурье для последовательности прямоугольных импульсов имеет вид:

26. Представление непериодических функций времени в частотной области. Интеграл Фурье.

При определении спектра непериодической импульсной функции выполним
предельный переход, воспользовавшись комплексной формой записи ряда
Фурье для периодических функций (пределы интегрирования – Т/2 и +Т/2):
Так как в линейчатом спектре ряда Фурье расстояние
между спектральными линиями соответствует
Можно также записать
Далее выполняется предельный переход при T →∞ и Δω →0

где
- представляет собой преобразование Фурье
функции u(t) называемое спектральной
плотностью u(t);
- носит название плотности распределения амплитуд.
Для непериодической функции u(t) обратное преобразование Фурье
имеет вид:
27

28. Пример

29. Описание помех с использованием ЭМС-номограммы

Для быстрой практической реализации преобразования Фурье
используют ЭМС-номограмму. Она позволяет построить
огибающую плотности распределения амплитуд, синтезировать
импульс, эквивалентный помехе, учесть частотнозависимые
свойства пути передачи и средства защиты.
Рассмотрим трапециевидный импульс, для которого плотность
распределения амплитуд определяется выражением
Sin f Sin f k
U ( f ) 2U m
f
f k
29

ЭМС-номограмма базируется на аппроксимации огибающей
плотности распределения амплитудной плотности тремя
отрезками прямой.
Для низкочастотного диапазона f fH (fH=1/ ) огибающая
параллельна оси абсцисс, так как синус приблизительно равен
своему аргументу:
U ( f ) 2U m const
Плотность распределения амплитуд гармоник (в дБ) зависит исключительно
от площади импульса:
2U
U ( f ) Дб 20 lg m
A0 , где А0=1 мкВ с
Для среднечастотного диапазона 1/ f k:
U( f )
2U m
f
2U m
f
то есть спад амплитуды с частотой
составляет 20 дБ/декаду:
u ( f ) Дб 20 lg
В высокочастотном диапазоне f fB (fB=1/ k)
U ( f ) 2U m
1 1
f f k
u ( f ) Дб
2U m
20 lg 2 2
f k A0
2U m
fA0
то есть спад с ростом частоты
составляет 40 дБ/декада.

32. Пример расчета

Sin f Sin f k
U ( f ) 2U m
f
f k
U( f ): 2 Um
τ
sin( π f τ ) sin( π f τ k)
π f τ
π f τ k
U1 ( f ):
U( f )
f: 0 .. 100000
Um: 1000
τ: 0.01
τ k: 0.0001
100
10
1
U1( f )
0.1
0.01
-3
1
10
1
10
-4
1
10
1
100
f
3
10
1
4
10
1
5
10
32

33. Расчет ЭМС-номограммы

-6
U0: 10
Sin f Sin f k
U ( f ) 2U m
f
f k
Um: 1000
τ: 0.01
U( f ): 2
В
Um sin( π f τ ) sin( π f τ k)
τ
U0
π f τ
π f τ k
τ k: 0.0001
U1 ( f ): 20
log U( f )
(
)
f: 0 .. 300000
Построить ЭМС-монограмму импульса с заданными параметрами – длительностью,
крутизной фронта, амплитудой.
fn:
1
π τ
fb:
f1: 0 , 1 .. fn
f2: fn , fn +
f3: fb , fb +
1
π τ k
fn
U11( f1 ): 20
log 2 Um
10 .. fb
(
(
U22( f2 ): 20
log 2
100 .. 500000
U33( f3 ): 20
log 2
(
fb
Гц
31.831
τ
U0
Um
U11( 0 )
)
π f2
U0
)
Um
2
2
3.183 Гц
π f3 τ k U0
U33( fb )
3
10
В
146.021
В
106.021
)
33

35. Виды связи между источником и приемником помехи

В зависимости от механизма распространения между
источником и приемником (подверженными влиянию цепями
и аппаратурой) ЭМП могут разделяться на емкостные,
индуктивные и кондуктивные.
При воздействии высокочастотного электромагнитного поля в
данной зоне говорят еще о наведенных электромагнитных
помехах.
Емкостными и индуктивными называют ЭМП,
распространяющиеся в виде соответственно электрического
и магнитного полей в непроводящих средах.
Кондуктивные ЭМП - это помехи, возникающие в общих
цепях, например в заземлении или любых металлических
конструкциях.
35

36. Практическое занятие 3

37. Каналы передачи помех

39. Гальваническое влияние

Индуктивное влияние обусловлено паразитным потокосцеплением между контурами промышленных устройств и образо­ванными при ударах молнии или разрядах статического элект­ричества.


В качестве первого простого примера на рис. 3.22, а показаны два индуктивно связанных контура. Если в контуре 1 имеет место быстрое изменение тока , например при коммута­циях, то в контуре 2 индуктируется напряжение помехи


, (3.18)

где Ф - магнитный поток, пронизывающий контур 2; L12 - вза­имная индуктивность контуров 1 и 2.



Рис. 3.22. Индуктивное влияние между промышленными токовыми контурами: а - принципиальная схема двух токовых контуров 1 и 2 с расстоянием d ними; б -погонная взаимная индуктивность взависимости от a/d; в-е меры по снижению влияния (пояснения см. в тексте)

Взаимная индуктивность зависит от конфигурации и разме­ров контуров, и для показанных на рис. 3.22, а. контуров она рассчитывается как:


. (3.19.)

Погонная взаимная индуктивность в зависимости от отношения a/d может быть определена из графика на рис. 3.22, б.

Используя (3.18) и (3.19) при l = 1 м, a/d = 0,1 и Δit= 1000 А/с, получаемнапряжение помехи ust = 2,3 В.

Второй пример - разряд статического электричества на проводящий корпус прибора С (рис. 3.23). В контуре, находящемся внутри прибора и удаленном от проводника с током разряда iESD на среднее расстояние r0, индуктируется напряжение


(3.20.)

Где l и а - длина и ширина контура соответственно.


Рис. 3.23. Индуктивное влияние разряда ста­тического электричества ESD на петлю l, а внутри прибора G

При выводе (3.20) использованы элементарные соотношения:

, , и

Например, при а = l = 1 см, r0 = 5 см и скорости изменения то­ка во времени 10 А/нс, возможной при разряде статического электричества, напряжение помехи равно 4 В.

Следующие примеры индуктивного влияния показаны на рис. 3.24 и 3.25. Магнитное поле канала молнии индуктирует в контурах напряжения, которые можно определить из (3.20).

На рис. 3.24 выделены два таких контура. Первый образован проводами сигнального контура и имеет площадь a1l. Второй, площадью а21, создан заземленным проводом сигнального контура и землей. При r0 = 25 м, l= 20 м, а1 = 0,4 см, а2 = 60 см и Δi/Δt = 200 кА/мкс из (3.20) вычисляется напря­жение ust1 = 128 В в первой петле, ust2 = 19,2 кВ - во второй. Эти напряжения могут привести, к пробоям и связанным с ними повреждениям приборов g1 и g2, если не предусмотрены специ­альные защитные меры


Рис. 3.24. Индуктивное влияние тока молнии на электрические контуры в уст­ройстве автоматизации:

В - канал молнии; G1,G2 - приборы устройства

Рисунок 3.25 дает представление о петле в здании G, образованной сетью питания и линией передачи данных. При r0 = 11 м, а = 15 м, l = 10 м и Δi/Δt = 200 кА/мкс индуктированное в петле напряжение согласно (3.20) достигает 540 кВ. При отсутствии средств защиты, включенные в обе сети компьюте­ры, несомненно, будут выведены из строя.

Рис. 3.25. Индуктивное влияние тока молнии на электрический контур внут­ри здания G образованный проводами питания и сигнальными линиями при ударе молнии в молниеприемник В здания.


Мероприятия по снижению индуктированных напряжений предусматривают на основе соотношений (3.18)-(3.20):

- снижение до возможных пределов взаимной индуктивности L12, т.е. уменьшение l за счет сокращения длины проводников, увеличение расстояния между сетевыми и информационными проводами, уменьшение площади контура, подвергающегося воздействию;

- уменьшение скорости изменения во времени потока ΔФ/Δt при помощи короткозамкнутой петли К, расположенной непосредственно у сигнального контура (рис. 3.22, в), или соединение печатной панели экрана S мостиком В в замкнутое кольцо (см. рис. 3.17, б);

- осуществление связи контуров 1 и 2 ортогонально направлению силовым линиям магнитного поля (рис. 3.22, г). Этот способ эффективен в устройствах, выполненных в виде катушек;

- компенсация индуктированного в контуре 2 напряжения путем скрутки проводов (рис. 3.22, д). При этом частичные потоки Фi создают напряжения, направленные противоположно.

- снижение действия созданного магнитного потока путем скручивания соединительных проводов контура 1. При этом соз­даются встречно направленные компоненты потока, а их воз­действие на вторичный контур компенсируется;

- экранирование кабелей, соединительных проводов (рис. 3.22, е), модулей и приборов ферромагнитными экранами (трубами, металлическими шлангами, стальными корпусами), причем экранирующее воздействие тем сильнее, чем выше магнитная проницаемость материала и толще стенка экрана. Проводящие соединения между экраном и землей необяза­тельны, однако они необходимы для защиты от напряжения прикосновения. Для ослабления воздействий, вызванных мол­нией, применяется ферромагнитное экранирование кабелей пе­редачи данных, проложенных по воздуху, экраны заземляются на обоих концах.

Читайте также: