Индукционные измерительные приборы реферат

Обновлено: 07.07.2024

Устройство. Индукционный прибор состоит из двух неподвижных электромагнитов 2 и 3 (рис. 329) и подвижного алюминиевого диска 4, укрепленного на одной оси со стрелкой.

При прохождении переменных токов I1 и I2 по катушкам электромагнитов создаются два магнитных потока Ф1 и Ф2, сдвинутых один относительно другого по фазе, которые пронизывают диск. Эти потоки при своем изменении индуцируют в диске вихревые токи Iв1 и Iв2. В результате взаимодействия вихревых токов с магнитными полями обоих электромагнитов (тока Iв1 с потоком Ф2 и тока Iв2 с потоком Ф1) возникает вращающий момент М, под влияниеВм которого происходит поворот подвижной части прибора. Противодействующий момент в вольтметрах, амперметрах и ваттметрах создается спиральной пружиной 1 или растяжками.

Среднее за период значение вращающего момента М пропорционально произведению действующих значений магнитных потоков Ф1 и Ф2 и синусу угла сдвига фаз ? между этими потоками:

где c1 — постоянная для прибора величина.

Рис. 329. Устройство индукционного измерительного механизма

Рис. 329. Устройство индукционного измерительного механизма

Чтобы получить наибольшее значение вращающего момента, угол сдвига фаз между потоками устанавливают 90° путем включения в цепи катушек дополнительных активных и реактивных сопротивлений. При этом условии средний вращающий момент в вольтметрах и амперметрах будет пропорционален произведению действующих значений токов I1 и I2, протекающих по катушкам электромагнитов. Этой величиной будет определяться также и угол поворота стрелки:

В ваттметрах ? = kUI cos ? = kP, так как ток I1 пропорционален току I в цепи, I2 — напряжению U, а угол ? равен углу 90° — ?.

Применение. Индукционные приборы, так же как и электродинамические, могут быть использованы в качестве амперметра, вольтметра и ваттметра. Катушки электромагнитов включаются в этих случаях так же, как и катушки электродинамического прибора (см. рис. 327).

Достоинством индукционных приборов являются высокая стойкость к перегрузкам, большой вращающий момент и малая чувствительность к внешним магнитным полям. К недостаткам относятся сравнительно невысокая точность и зависимость показаний от частоты переменного тока и температурных влияний.

Индукционные приборы используют, главным образом, в качестве ваттметров и счетчиков электрической энергии и в промышленных установках и на электровозах переменного тока.

Устройство. Индукционный прибор состоит из двух неподвижных электромагнитов 2 и 3 (рис. 329) и подвижного алюминиевого диска 4, укрепленного на одной оси со стрелкой.

При прохождении переменных токов I1 и I2 по катушкам электромагнитов создаются два магнитных потока Ф1 и Ф2, сдвинутых один относительно другого по фазе, которые пронизывают диск. Эти потоки при своем изменении индуцируют в диске вихревые токи Iв1 и Iв2. В результате взаимодействия вихревых токов с магнитными полями обоих электромагнитов (тока Iв1 с потоком Ф2 и тока Iв2 с потоком Ф1) возникает вращающий момент М, под влияниеВм которого происходит поворот подвижной части прибора. Противодействующий момент в вольтметрах, амперметрах и ваттметрах создается спиральной пружиной 1 или растяжками.

Среднее за период значение вращающего момента М пропорционально произведению действующих значений магнитных потоков Ф1 и Ф2 и синусу угла сдвига фаз ? между этими потоками:

M = c1?1?2 sin? (102)

где c1 — постоянная для прибора величина.



Рис. 329. Устройство индукционного измерительного механизма

Чтобы получить наибольшее значение вращающего момента, угол сдвига фаз между потоками устанавливают 90° путем включения в цепи катушек дополнительных активных и реактивных сопротивлений. При этом условии средний вращающий момент в вольтметрах и амперметрах будет пропорционален произведению действующих значений токов I1 и I2, протекающих по катушкам электромагнитов. Этой величиной будет определяться также и угол поворота стрелки:

? = kI1I2 (103)

В ваттметрах ? = kUI cos ? = kP, так как ток I1 пропорционален току I в цепи, I2 — напряжению U, а угол ? равен углу 90° — ?.

Применение. Индукционные приборы, так же как и электродинамические, могут быть использованы в качестве амперметра, вольтметра и ваттметра. Катушки электромагнитов включаются в этих случаях так же, как и катушки электродинамического прибора (см. рис. 327).

Достоинством индукционных приборов являются высокая стойкость к перегрузкам, большой вращающий момент и малая чувствительность к внешним магнитным полям. К недостаткам относятся сравнительно невысокая точность и зависимость показаний от частоты переменного тока и температурных влияний.

Индукционные приборы используют, главным образом, в качестве ваттметров и счетчиков электрической энергии и в промышленных установках и на электровозах переменного тока.



Индукционные измерительные приборы

Эта система характеризуется применением нескольких неподвижных катушек, питаемых переменным током и создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение.

Эта система характеризуется применением нескольких неподвижных катушек, питаемых переменным током и создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение.

Индукционные приборы применяются только при переменном токе в качестве ваттметров и счетчиков электрической энергии (реже амперметров и вольтметров). Ознакомимся с теорией индукционных приборов. Следует отметить, что в настоящее время индукционные ваттметры заводами электроизмерительных приборов не выпускаются. Они заменены, ферро-динамичеокими ваттметрами, удовлетворяющими требованиям ГОСТ; показания последних меньше зависят от температуры и частоты. На фиг. 333 показан электромагнит 1 и алюминиевый диск 2, могущий поворачиваться на оси. Проходящий по обмотке электромагнита переменный ток создает переменный магнитный поток, индуктирующий в алюминиевом диске э. д. с.

Из 86 известно, что индуктированная э. д. с. отстает по фазе на 90° от магнитного потока Ф1, создающего эту э.д.с. Ток i1, возникший в алюминиевом диске, совпадает с э. д. с. по фазе и также отстает от магнитного потока Ф1 на 90°. Ток i1, взаимодействуя с магнитным потоком Ф1, может создать силу, под действием которой диск будет поворачиваться. Но в данном случае этого не произойдет (см. фиг. 334, а).

Сила взаимодействия F, пропорциональная току i1 и магнитному потоку Ф1, меняя четыре раза в течение периода свое направление, не даст возможности диску поворачиваться. Если над диском расположить рядом второй электромагнит, то его магнитный поток Ф2 создаст в диске индуктированный ток i2. Если добиться того, чтобы потоки Ф1 и Ф2 были сдвинуты по фазе, то и токи i1 и i2 окажутся сдвинутыми по фазе и угол между Ф1 и i2 или Ф2 и i1 уже не будет 90°. Из фиг. 334, б видно, что в этом случае сила взаимодействия будет преобладать в каком-то одном направлении, в результате чего диск будет вращаться. Если потоки Ф1 и Ф2 будут сдвинуты по фазе на 90°, то сила, действующая на диск, будет наибольшей.

Индукционные приборы делятся на две группы: приборы с бегущим и приборы с вращающимся магнитным полем.

Рассмотрим устройство и работу индукционного прибора с бегущим полем (фиг. 335).

На магнитопроводе 1 располагается катушка 2, состоящая из большого числа витков тонкой проволоки. Магнитный поток, создаваемый этой катушкой, большей своей частью проходит через магнитный шунт 3, а остальная часть пронизывает алюминиевый диск 4. Под диском помещается U-образ-ный магнитопровод 5, на котором располагают обмотку 6, разделенную на две части и намотанную из нескольких витков толстой проволоки. Магнитный поток этой обмотки дважды пронизывает диск. Два магнитных потока, сдвинутых по фазе друг относительно друга, индуктируют в алюминиевом диске вихревые токи, которые, взаимодействуя с потоками, создают вращающий момент, под влиянием которого диск проходит в движение.

Успокоение диска производится подковообразным магнитом 7.

5. Какова должна быть периодичность осмотров конденсаторной установки (без отключения) на объектах без постоянно дежурного персонала.

2.2.39. Осмотр РУ без отключения должен проводиться:

на объектах с постоянным дежурством персонала — не реже 1 раза в 1 сутки; в темное время суток для выявления разрядов, коронирования — не реже 1 раза в месяц;

на объектах без постоянного дежурства персонала — не реже 1 раза в месяц, а в трансформаторных и распределительных пунктах — не реже 1 раза в 6 месяцев.

При неблагоприятной погоде (сильный туман, мокрый снег, гололед и т.п.) или сильном загрязнении на ОРУ должны быть организованы дополнительные осмотры.

Обо всех замеченных неисправностях должны быть произведены записи в журнал дефектов и неполадок на оборудовании и, кроме того, информация о них должна быть сообщена ответственному за электрохозяйство.

Замеченные неисправности должны устраняться в кратчайший срок.

1. Работа без снятия напряжения на токоведущих частях или вблизи их.

Относится работа, выполняемая с прикосновением к токоведущим частям, находящимся под напряжением (рабочим или наведенным), или на расстоянии от этих токоведущих частей менее допустимых.

Вопрос 40.Какие работы относятся к работам со снятием напряжения?

Относятся работы, когда с токоведущих частей электроустановки, на которой будут проводиться работы, отключением коммутационных аппаратов, отсоединением шин, кабелей, проводов снято напряжение и приняты меры, препятствующие подаче напряжения на токоведущие части к месту работы.

Индукционная система.

Принцип работы приборов индукционной системы основан на действии вращающегося, бегущего или переменного магнитного поля переменного тока (создаваемого одним или несколькими неподвижными электромагнитами) на подвижную часть, представляющую собой чаще всего металлический диск. Укрепленный на одной оси с указательной стрелкой алюминиевый диск помещается между электромагнитами таким образом, что их магнитные потоки, пронизывая диск, индуцируют в нем ЭДС и токи. Взаимодействие между индуцированными токами и переменными потоками электромагнитов вызывает вращение диска.

Индукционные приборы разделяются на однопоточные, вращающий момент которых создается взаимодействием одного потока и тока, и многопоточные, вращающий момент которых создается взаимодействием нескольких (не менее двух) потоков и токов.

Рис. 2.3.1. Схема измерительного механизма индукционных приборов: а – однопоточного; б – двухпоточного

В однопоточных приборах (рис. 2.3.1, а

) создаваемый катушкой 1 переменный магнитный поток пронизывает алюминиевый диск 3, индуцируя в нем ЭДС и токи. Укрепленный на асимметрично расположенной оси 2 диск перекрывает (экранирует) часть силовых линий магнитного поля катушки. Под влиянием сил взаимодействия потока и индуцированных токов диск поворачивается в сторону уменьшения его площади, находящейся в зоне действия магнитного поля. На рис. 2.3,1,
б
приведена принципиальная схема устройства простейшего двухпоточного прибора с одним электромагнитом и медным экраном. Переменный магнитный поток катушки 1 частично перекрывается экраном 3 и разбивается на две части: 1) пронизывающую часть диска 2, расположенную против экрана, и 2) пронизывающую часть диска, не закрытую экраном. Наличие экрана создает два пронизывающих диск потока, смещенных в пространстве. Кроме того, вследствие дополнительных потерь на вихревые токи в экране первый поток отстает по фазе от второго потока. Оба потока, сдвинутые по фазе и в пространстве, создают бегущее поле, поворачивающее диск в сторону направления вращения поля (от части полюса, не закрытой экраном, к закрытой). Иногда вместо медных экранов применяют короткозамкнутые медные витки (кольца), которые надеваются на катушки с таким расчетом, чтобы они перекрывали часть полюсных наконечников. Одно и двухпоточные приборы с экраном обладают сравнительно небольшим вращающим моментом и в настоящее время не применяются.

На рис. 2.3.2 приведены принципиальная схема устройства и векторная диаграмма двухпоточного индукционного прибора с бегущим полем. Укрепленный симметрично на оси 2 алюминиевый диск 3 пронизывается двумя смещенными в пространстве потоками Ф1 и Ф2.

Если переменные токи I1 и I2, протекающие по обмоткам двух катушек 4 и 5, сдвинуты по фазе на угол y, то из предположения, что сердечники катушек не насыщены, а потери на гистерезис и вихревые токи в них отсутствуют, следует, что и потоки Ф1 и Ф2 будут сдвинуты по фазе на тот же угол y. Потоки Ф1 и Ф2, пронизывая диск, будут индуцировать в нем ЭДС Е1 и Е2, вызывающие в диске токи I’1 и I’2. Электродвижущие силы Е1 и Е2 и совпадающие с ними по фазе токи I’1 и I’2 будут отставать от своих потоков на угол p/2.

Результирующий момент слагается из двух моментов: момента М1, возникающего от взаимодействия потока Ф1 с током I’2, и момента М2, создаваемого взаимодействием потока Ф2 с током I’1. Значения моментов, возникающих от взаимодействия между собственными потоками и токами (Ф1 с током I’1 и Ф2 с током I’2), незначительны, а если принять, что диск имеет только активное сопротивление, то они равны нулю (так как угол сдвига между потоком и током, им индуцированным, равен p/2). Подвижная часть приборов, обладающая значительной инерцией, не будет реагировать на изменения мгновенных значений вращающего момента в течение каждого периода переменного тока, и отклонение ее вместе со стрелкой 1, а, следовательно, и показания прибора будут зависеть от среднего значения вращающего момента. Как известно, среднее за период значение вращающего момента МВР от взаимодействия переменного потока Ф с индуцированным им в диске током I пропорционально значениям взаимодействующих потока Ф и тока I, а также косинусу угла g сдвига по фазе между ними, т.е.

Моменты М1 и М2 могут быть определены по следующим формулам:

На основании данных векторной диаграммы, приведенной на рис. 2.3.2, б

, эти равенства могут быть представлены в следующем виде:


Противоположные знаки моментов М1 и М2 указывают на то, что один контур тока (I’1) втягивается во взаимодействующее с ним поле (Ф2), а другой (I’2) выталкивается из взаимодействующего с ним поля (Ф1). Оба момента совпадают по направлению и поворачивают диск в одну и туже сторону, что подтверждается проверкой по правилу левой руки с учетом сдвига фаз между потоками и токами.

Поэтому результирующий момент, действующий на диск, равен . Результирующий момент направлен в сторону от опережающего по фазе потока (в данном случае Ф1) к отстающему. При неизменном сопротивлении диска и синусоидальном характере изменения потоков с частотой f

токи равны: ; . Тогда выражение для результирующего момента примет следующий вид:

Вращающий момент индукционных приборов пропорционален произведению магнитных потоков, пронизывающих контур, синусу угла сдвига между ними и зависит от частоты тока. Из последней формулы следует, что для создания вращающего момента необходимо иметь не менее двух переменных потоков (или двух составляющих одного потока), сдвинутых по фазе и смещенных в пространстве. В случае совпадения потоков по фазе y = 0 и siny

= 0 вращающий момент равен нулю. Максимальный вращающий момент будет при наибольших значениях магнитных потоков и сдвига фаз между ними в ¼ периода (y = 90° и
siny
= 1). При ненасыщенных сердечниках потоки Ф1 и Ф2 прямо пропорциональны токам I1 и I2, протекающим по обмоткам катушек 4 и 5 (рис. 2.3.2) и, следовательно, значение результирующего момента равно

Противодействующий вращению подвижной части момент МПР может быть создан пружиной (при использовании в качестве ваттметра), и в этом случае он будет пропорционален углу закручивания a: МПР = DКР a. Для момента равновесия МВР = МПР или

I1 I2
sin
y = DКР a, откуда угол поворота подвижной части прибора равен

т.е. пропорционален произведению токов, проходящих через катушки (либо пронизывающих диск потоков), синусу угла сдвига между ними и зависит от частоты тока.

К числу достоинств индукционных приборов следует отнести большой вращающий момент (до 5 г·см), малое влияние внешних магнитных полей, стойкость к перегрузкам (подвижная часть приборов не требует подвода тока и выполняется весьма прочной), надежность в работе. Изменение температуры окружающей среды вызывает изменение активного сопротивления диска, что в некоторой степени влияет на показания приборов.

В отличие от приборов переменного тока других систем индукционные приборы могут применяться в сетях с одной определенной частотой: на приборах обычно указывается номинальная частота измеряемой величины. Даже небольшое изменение частоты, как в сторону ее увеличения, так и в сторону уменьшения приводит к большим погрешностям измерений. В связи с этим амперметры и вольтметры индукционной системы не получили широкого распространения.

Индукционные измерительные механизмы используются преимущественно в счетчиках электрической энергии для цепей переменного тока промышленной частоты.

Индукционные измерительные приборы . Счетчики электрической энергии.

На основе индукционного измерительного механизма выполняются, как правило, счетчики электрической энергии. Устройство и векторная диаграмма прибора индукционной системы показаны на рисунке:


Механизм состоит из двух индукторов выполненных в виде стержневого и П-образного индукторов, между которыми находится подвижный неферромагнитный (алюминиевый) диск. На индукторах намотаны обмотки, по которым протекают соответственно токи I1 и I2, возбуждающие магнитные потоки Ф1 и Ф2. С осью диска связан счетный механизм, который считает число оборотов диска. Для предотвращения холостого вращения диска (для предотвращения самохода) в непосредственной близости от него укреплен постоянный магнит (тормозной магнит). Принцип действия прибора следующий:

При подключении прибора в сеть переменного тока токи I1 и I2 возбуждают магнитные потоки Ф1 и Ф2, которые совпадают по фазе с соответствующими токами (см. векторную диаграмму). Магнитные потоки, пересекая плоскость диска, индуцируют в нем переменные Э.Д.С. Е1 и Е2 которые отстают от своих потоков на угол 90 ° . Под действием этих Э.Д.С. в диске возникают два вихревых тока Iд1 и Iд2 совпадающих по фазе с соответствующими Э.Д.С. (сопротивление диска считаем чисто активным).

В результате втягивания контура тока Iд1 потоком Ф2 и выталкивания контура тока Iд2 потоком Ф1, возникают два противоположно-направленных момента, действующих на диск. Их мгновенные значения:

к1 и к2- коэффициенты пропорциональности.

Уравнения для магнитных потоков можно записать как:

Вихревые токи, наводимые в диске соответствующими потоками, будут определяться как:

Среднее значение моментов можно рассчитать по формулам:

Так как , а уравнение для суммарного вращающего момента, действующего на диск, будет равно:

Токи, наводимые в диске, могут быть определены как:

f- частота питающий цепи, к3 и к4- коэффициенты пропорциональности.

Максимальный вращающий момент достигается при .

Для создания тормозного момента и обеспечения равномерного вращения диска в конструкции предусмотрен постоянный тормозной магнит.

В результате взаимодействия поля магнита и вращения диска, возникает вихревой ток:

ω - угловая скорость вращения диска, к5- коэффициент пропорциональности.

Взаимодействие iв с Фп вызывает тормозной момент, равный:

Достоинства приборов индукционной системы.

Приборы имеют большой вращающий момент, мало подвержены влиянию внешних магнитных полей и имеют большую перегрузочную способность.

Недостатки приборов индукционной системы.

К недостаткам следует отнести невысокую точность, большое самопотребление, зависимость показаний от частоты и температуры.

Однофазный счетчик электрической энергии.

Если катушку 1 включить параллельно источнику энергии, а катушку 2 последовательно потребителю, тогда:

Из векторной диаграммы видно, что при .

Тогда можно записать:

При неизменной мощности нагрузки Р, вращающий и тормозной моменты равны друг другу.

, или . Если это равенство представить в виде: , то после интегрирования за промежуток времени от t1 до t2 получим:

- постоянная прибора; N- число оборотов за время t=t2-t1

Величина, называемая постоянной счетчика, определяется следующим выражением:

Величина, называемая номинальной постоянной счетчика, определяется как:

k- передаточное число счетчика – число оборотов на единицу энергии.

Погрешность счетчика, обусловленная трением оси в опорах и другими неучтенными факторами, рассчитывается по формуле:

Однофазные счетчики выпускают на частоты 50 и 60 Гц, на рабочий ток до 40 А и на напряжения 110, 120, 127, 220, 230, 240 и 250 В. Классы точности счетчиков ниже 1.

Совокупность двух или трех однофазных измерительных механизмов образуют трехфазный счетчик.

Промышленностью выпускаются счетчики типов:

Счетчики активной энергии – СА 3- для трех проводных цепей и СА 4 для четырех проводных цепей.

Счетчики реактивной энергии – СР 3 для трех проводных цепей и СР 4 для четырех проводных цепей.

Эта система характеризуется применением нескольких неподвижных катушек, питаемых переменным током и создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение.

Эта система характеризуется применением нескольких неподвижных катушек, питаемых переменным током и создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение.


Индукционные приборы применяются только при переменном токе в качестве ваттметров и счетчиков электрической энергии (реже амперметров и вольтметров). Ознакомимся с теорией индукционных приборов. Следует отметить, что в настоящее время индукционные ваттметры заводами электроизмерительных приборов не выпускаются. Они заменены, ферро-динамичеокими ваттметрами, удовлетворяющими требованиям ГОСТ; показания последних меньше зависят от температуры и частоты. На фиг. 333 показан электромагнит 1 и алюминиевый диск 2, могущий поворачиваться на оси. Проходящий по обмотке электромагнита переменный ток создает переменный магнитный поток, индуктирующий в алюминиевом диске э. д. с.

Из 86 известно, что индуктированная э. д. с. отстает по фазе на 90° от магнитного потока Ф1, создающего эту э.д.с. Ток i1, возникший в алюминиевом диске, совпадает с э. д. с. по фазе и также отстает от магнитного потока Ф1 на 90°. Ток i1, взаимодействуя с магнитным потоком Ф1, может создать силу, под действием которой диск будет поворачиваться. Но в данном случае этого не произойдет (см. фиг. 334, а).


Сила взаимодействия F, пропорциональная току i1 и магнитному потоку Ф1, меняя четыре раза в течение периода свое направление, не даст возможности диску поворачиваться. Если над диском расположить рядом второй электромагнит, то его магнитный поток Ф2 создаст в диске индуктированный ток i2. Если добиться того, чтобы потоки Ф1 и Ф2 были сдвинуты по фазе, то и токи i1 и i2 окажутся сдвинутыми по фазе и угол между Ф1 и i2 или Ф2 и i1 уже не будет 90°. Из фиг. 334, б видно, что в этом случае сила взаимодействия будет преобладать в каком-то одном направлении, в результате чего диск будет вращаться. Если потоки Ф1 и Ф2 будут сдвинуты по фазе на 90°, то сила, действующая на диск, будет наибольшей.

Индукционные приборы делятся на две группы: приборы с бегущим и приборы с вращающимся магнитным полем.

Рассмотрим устройство и работу индукционного прибора с бегущим полем (фиг. 335).

На магнитопроводе 1 располагается катушка 2, состоящая из большого числа витков тонкой проволоки. Магнитный поток, создаваемый этой катушкой, большей своей частью проходит через магнитный шунт 3, а остальная часть пронизывает алюминиевый диск 4. Под диском помещается U-образ-ный магнитопровод 5, на котором располагают обмотку 6, разделенную на две части и намотанную из нескольких витков толстой проволоки. Магнитный поток этой обмотки дважды пронизывает диск. Два магнитных потока, сдвинутых по фазе друг относительно друга, индуктируют в алюминиевом диске вихревые токи, которые, взаимодействуя с потоками, создают вращающий момент, под влиянием которого диск проходит в движение.

Успокоение диска производится подковообразным магнитом 7.

На фиг. 336 показано устройство индукционного прибора с вращающимся магнитным полем. На магнитопровод 1, собранный из отдельных листов электротехнической стали, наматываются две обмотки, причем одна обмотка 2 располагается на двух противоположных полюсных выступах магнитопровода, а другая 3— на двух других также противоположных выступах. Между полюсами на оси находится алюминиевый цилиндр 4. На оси крепятся также стрелка 5 и спиральная пружина 6. Внутри алюминиевого цилиндра помещен цилиндрический стальной сердечник 7, назначением которого является уменьшен! е магнитного сопротивления. При пропускании переменного тока обмотки 2 и 3 создают два магнитных потока.


Выше было сказано, что для получения наибольшего момента вращения необходимо создать между магнитными потоками сдвиг, по фазе равный 90°. Это достигается тем, что одну пару катушек наматывают из небольшого числа витков толстой проволоки. Такая обмотка представляет активное сопротивление, и ток в ней совпадает по фазе с напряжением. Другая пара катушек наматывается из большого числа витков тонкой проволоки, что вызывает между током и напряжением сдвиг, близкий к 90°, вследствие большого индуктивного сопротивления этой пары катушек. Сдвиг по фазе между потоками можно получить также путем подбора и включения дополнительных активных и индуктивных сопротивлений. Перемещающееся по окружности воздушного зазора магнитное поле будет тем самым вращаться с определенной скоростью относительно оси подвижной системы прибора. Это поле, пересекая алюминиевый цилиндр 4, будет индуктировать в нем вихревые токи, которые, взаимодействуя с магнитным полем, будут поворачивать цилиндр в сторону вращения поля. Из рассмотрения принципа действия индукционных приборов с вращающимся магнитным полем видно, что они работают на том же принципе, как и двухфазные асинхронные короткозамкнутые двигатели.

Успокоение прибора осуществляется за счет вихревых токов, индуктируемых в верхних частях алюминиевого цилиндра п-ри движении его в поле двух постоянных магнитов (один из них на чертеже не показан). Внешние магнитные поля не оказывают влияния на работу индукционных приборов в виду наличия в них сильного собственного магнитного поля. Достоинствами индукционных приборов являются также прочность конструкции, стойкость к перегрузкам, надежность в работе. Недостатками индукционных приборов являются: пригодность их только для переменного тока, неравномерность шкалы, зависимость показаний от температуры и частоты, малая точность (1,0—1,5%). Расход мощности в индукционных приборах составляет 2—4 Вт.


5 Апрель, 2009 23824 ]]> Печать ]]>

Читайте также: