Химическая модификация синтетических волокон реферат

Обновлено: 04.07.2024

Основным направлением технического прогресса в промышленности химических волокон в настоящее время является не столько разработка новых видов волокнообразующих полимеров, сколько модификация уже известных химических волокон, вырабатываемых в промышленных масштабах. Модификация придает волокнам новые заранее заданные свойства и тем самым улучшает их качество и расширяет область применения. В настоящее время для модификации волокон используется большое количество методов, которые могут быть разделены на две группы: физическая и химическая модификация волокон.

Физическая (структурная) модификация заключается в направленном изменении надмолекулярной структуры волокон. Наибольшее распространение получили следующие методы физической модификации.

Ориентация и вытягивание нитей. Проводится на стадии формования и отделки нитей для повышения прочности и устойчивости к многократным деформациям.

При вытягивании происходит распрямление макромолекул и ориентация их агрегатов в осевом направлении волокна, т.е. образуется более упорядоченная структура. В результате нити становятся более прочными, но менее растяжимыми из-за большой растяжимости макромолекул. Поэтому затем проводят термообработку с целью релаксации внутренних напряжений и частичной усадки нитей (т.е. приобретение макромолекулами изогнутой формы при сохранении их ориентации).

Введение добавок в раствор или расплав полимера небольшого количества низкомолекулярных реагентов, которые располагаются между макромолекулами полимера, не вступая в химическое взаимодействие с ним. Таким образом, можно изменить блеск, придать извитость, повысить степень белизны, устойчивость к фотохимической и термической деструкции, получить люминисцентные волокна и т.д.

Формование нитей из смеси полимеров. В этом случае необходимым условием является наличие общего растворителя. В результате нить приобретает ценные свойства каждого из компонентов.

Профилирование волокон - используются фильеры, имеющие отверстия различной формы: треугольники, многолучевые, звездочки, трилистники и т.д. Волокна приобретают шероховатость и повышенную цепкость, а изделия из них - объемность и пористость. За счет фильер специального профиля получают полые синтетические волокна, что увеличивает гигроскопичность и теплозащитные свойства изделий.

Химическая модификация волокон и нитей заключается в частичном направленном изменении химического состава полимера.

Синтез волокнообразующих сополимеров, когда каждая макромолекула может включать в себя звенья одного и другого полимера. Полученные волокна и нити, как правило, отличаются повышенной растворимостью, улучшенной накрашиваемостью, увеличенной гигроскопичностью и эластичностью. Примером могут служить волокна: виньон, дайнел.

Синтез привитых сополимеров. Процесс заключается к прививке к боковым реакционноспособным группам основного полимера звеньев сополимера и используется для модификации не только химических, но и натуральных волокон. Например, волокно мтилон.

Сшивание, т.е. образование между макромолекулами поперечных химических связей. Это ведёт к повышению термостойкости, уменьшению набухаемости и растворимости волокон и нитей, уменьшение сминаемости.

Искусственные волокна.

Сырьем для получения искусственных волокон служат природные высокомолекулярные соединения. К ним относятся гидратцеллюлозные, ацетилцеллюлозные и белковые.

Гидратцеллюлозные волокна получают из древесины ели, сосны, пихты, бука, хлопкового пуха.

Вискозные волокна и нити являются наиболее распространенными среди искусственных волокон. Исходным сырьем для их получения является древесная целлюлоза. На заводы искусственного волокна целлюлоза поступает в виде картонных листов, которые обрабатывают 18%-ным раствором едкого натра (процесс мерсеризации). В результате образуется щелочная целлюлоза [С6Н7О2(ОН)3NaОН]n. Щелочная целлюлоза отжимается и измельчается для повышения скорости протекания реакций при последующей обработке. Щелочная целлюлоза проходит процесс предсозревания, т.е. выдерживание в течение 10-30 часов при температуре 25-30ºС (для понижение степени полимеризации, что обеспечивает в дальнейшем необходимую вязкость раствора). Затем ее обрабатывают сероуглеродом и получают ксантогенат целлюлозы





,

который растворяют в 4-5% растворе NaОН и получают прядильный раствор.

При формовании выделяются сероуглерод, сероводород, сера и другие соединения, поэтому полученные нити подвергают отделке, включающей в себя промывку, десульфацию (удаление серы), отбелку, кисловку, авиваж (поверхностная обработка).

Затвердевание (коагуляция) струек происходит неравномерно, что приводит к образованию так называемых оболочки и ядра волокна. Наиболее прочной является оболочка (в 3,5 раза). Плотность волокна 1,52 м/мм.

Под микроскопом вискозное волокно (табл. 1.1.) представляет собой цилиндр с большим количеством продольных полос, т.к. выступы и впадины по разному отражают свет. Линейная плотность волокон 0,2-0,7 текс. Линейная плотность комплексных нитей зависит от количества элементарных нитей в комплексной.

Относительное разрывное усилие обычного волокна находится в пределах 16-20 сН/текс, высокопрочного – до 45 сН/текс. В мокром состоянии разрывное усилие волокна снижается на 50-60%.

Блеск. Волокна и нити выпускаются в виде блестящих (резкий, холодный блеск) и матированных. В последнем случае в раствор добавляется порошок двуокиси титана. Песчинки, находящиеся на поверхности, рассеивают свет и создают впечатление матовой поверхности.

Волокно не обладает термопластичностью. Изделия могут в течении небольшого времени эксплуатироваться при температуре 100-120°С без потери прочности. Характер горения волокна аналогичен хлопку. Волокно обладает невысокой стойкостью к действию кислот и щелочей. Из вискозных нитей вырабатывают платьевые, сорочечные и декоративные ткани, трикотажные полотна для бельевых и верхних изделий, текстильно-галантерейные изделия и др. Из вискозных волокон в чистом виде и в смеси с другими волокнами вырабатывают платьевые, костюмные и сорочечные ткани, трикотажные полотна для белья, спортивной и верхней одежды.




За последние 100 лет население Земли удвоилось. Но еще больше возросли потребности людей. Выработка природных волокон – шерсти, хлопка, натурального шелка, льна, конопли – стала заметно отставать от спроса. Так, за последние 40 лет, она увеличилась лишь на 25%, а спрос – на 100%.

Устранить это несоответствие помогла химия. Ежегодно на заводах производится миллионы километров искусственного шелка и других химических волокон из природной целлюлозы или из угля, известняка, поваренной соли и воды. Сегодня доля химических волокон в общей их выработке составляет уже более 28%. За последние 15 лет объем мирового производства волокон увеличился в 3 раза.

Огромное значение химических волокон очевидно. В самом деле, если затраты труда на изготовление синтетического полиамидного шелка принять за 100%, то для искусственного вискозного шелка они составят 60%, для шерсти 450%, а для натурального шелка еще больше – 25000%!

Шерсть на овце за 3 месяца отрастает в среднем на 30 мм. А на заводе химического волокна прядильная машина за 1 минуту вытягивает до 5000 м нити!

Даже закоренелые скептики, которых раньше было не так уж мало, в последние годы могли воочию убедиться в том, что цельносинтетические волокна по прочности, стойкости к воде, погоде, свету, бактериям и насекомым, эластичности и способности защищать от холода часто превосходят волокна природного происхождения – шерсть, хлопок и шелк.

Химики во многих странах непрерывно трудятся над созданием новых волокон и улучшением качества уже известных. Не отстают от них и технологи. Изменяя состав сырья и технологию его переработки, они улучшают качество тканей и придают им ряд особых свойств, например, делают их водоотталкивающими или не теряющими форму. В результате на международном рынке непрерывно появляются новые марки тканей.

Всего химики уже предложили почти 1000 различных типов синтетических волокон, однако из них лишь несколько производятся промышленностью в крупных масштабах. В настоящее время наибольшее значение имеют четыре типа волокон: поливинилхлоридные, полиамидные, полиакрилонитрильные и полиэфирные.

Выбор именно этих волокон обусловлен не только химическими, физическими и технологическими факторами, но и, прежде всего, экономическими причинами. При массовом производстве сырье обязательно должно быть дешевым и легкодоступным. Кроме того, необходимо, чтобы свойства конечных продуктов можно было варьировать в широких пределах. Упомянутые типы волокон удовлетворяют всем этим требованиям.

Первое цельносинтетическое волокно было выпущено промышленностью в 1934 г. под названием волокно РС.

1. Химические волокна

Химические волокна делятся на искусственные и синтетические. Искусственные волокна изготовляют из природных высокомолекулярных соединений, в основном из целлюлозы. Синтетические волокна изготовляют из синтетических высокомолекулярных соединений.

Химические волокна изготовляются в виде бесконечной нити, состоящей из многих отдельных волокон или из одного волокна, или же в виде штапельного волокна – коротких отрезков (штапелек) некрученого волокна, длина которых соответствует длине волокна шерсти или хлопка. Штапельное волокно аналогично шерсти или хлопку служит полупродуктом для получения пряжи. Перед прядением штапельное волокно может быть смешано с шерстью или хлопком.

1.1. Понятие о технологии изготовления химических волокон.

Первая стадия процесса производства любого химического волокна заключается в приготовлении прядильной массы, которую в зависимости от физико-химических свойств исходного полимера получают растворением его в подходящем растворителе или переводом его в расплавленное состояние.

Вторая стадия заключается в формировании волокна. Для формирования раствор или расплав полимера с помощью специального дозирующего устройства подается в так называемую фильеру. Фильера представляет собой небольшой сосуд из прочного теплостойкого и химически стойкого материала с плоским дном, имеющим большое число (до 25 тыс.) маленьких отверстий, диаметр которых может колебаться от 0,04 до 1,0 мм.

При формировании волокна из расплава полимера тонкие струйки расплава из отверстий фильеры попадают в пространство, где они охлаждаются и затвердевают. Если формирование волокна производится из раствора полимера, то могут быть применены два метода: сухое формирование, когда тонкие струйки поступают в обогреваемую шахту, где под действием циркулирующего теплого воздуха растворитель улетучивается, и струйки затвердевают в волокна; мокрое формирование, когда струйки раствора полимера из фильеры попадают в так называемую осадительную ванну, в которой под действием различных содержащихся в ней химических веществ струйки полимера затвердевают в волокна.

Во всех случаях формирование волокна ведется под натяжением. Это делается для того, чтобы ориентировать (расположить) линейные молекулы высокомолекулярного вещества вдоль оси волокна. Если этого не сделать, то волокно будет значительно менее прочным. Для повышения прочности волокна его обычно дополнительно вытягивают после того, как оно частично или полностью отвердеет.

После формирования волокна собирают в пучки или жгуты, состоящие из многих тонких волокон. Полученные нити промывают, подвергают специальной обработке – мыловке или замасливанию (для облегчения текстильной переработки) или высушивают. Готовые нити наматывают на катушки или шпули.

При производстве штапельного волокна нити режут на отрезки (штапельки). Штапельное волокно собирают в кипы.

2. Природные волокна

Природные волокна – это натуральные текстильные волокна, образующиеся в природных условиях прочные и гибкие тела малых поперечных размеров и ограниченной длины, пригодные для изготовления пряжи или непосредственно текстильных изделий (например, нетканых). Одиночные волокна, не делящиеся в продольном направлении без разрушения, называются элементарными (волокна большой длины – элементарными нитями); несколько волокон, продольно скрепленных (например, склеенных) между собой, называются техническими. По происхождению, которое определяет и химический состав волокон, различают волокна растительного, животного и минерального происхождения.

2.1. Волокна растительного происхождения

Волокна растительного происхождения формируются на поверхности семян (хлопок), в стеблях растений (тонкие стеблевые волокна – лён, рами; грубые – джут, пенька из конопли, кенаф и др.) и в листьях (жесткие листовые волокна, например, манильская пенька (абака), сизаль). Общее название стеблевых и листовых волокон – лубяные. Растительные волокна представляют собой одиночные клетки с каналом в центральной части. При их формировании образуется сначала наружный слой (первичная стенка), внутри которого постепенно откладываются несколько десятков слоёв синтезирующейся целлюлозы (вторичная стенка). Такая структура волокон определяет особенности их свойств – относительно высокую прочность, небольшое удлинение, значительную влагоёмкость, а также хорошую накрашиваемость, обусловленную большой пористостью (30% и более).

Важнейшее текстильное волокно – хлопок. Семена хлопчатника, опушенные волокном, называются хлопком – сырцом. При его первичной обработке от семян последовательно отрывают хлопок – волокно (длина > 20 мм), более короткие волокна (пух, или линт) и подпушек (делинт, длина до 5 мм). Состав хлопка-волокна (% по массе): целлюлоза до 96%, пентозаны 1,5-2,0, жиры и воски 1, азотсодержащие и белковые вещества 0,3, зола 0,2-0,4. Пряжу из этого волокна применяют (иногда в смеси с другими природными или химическими волокнами) для выработки тканей бытового и технического назначения, трикотажа (преимущественно бельевого и чулочного), гардинно-тюлевых изделий, веревок, канатов, швейных ниток и др. Непосредственно из хлопка-волокна изготовляют нетканые и ватные изделия. Хлопок низших сортов, пух и подпушек применяют для получения эфиров целлюлозы. Основные хлопководческие страны – страны СНГ (около 25% мирового сбора), Китай, США, Индия, Пакистан, Турция, Египет.

Лубяные волокна выделяют из растений главным образом в виде технических волокон. Среди тонкостебельных волокон наиболее важен лен (содержит около 80% целлюлозы, до 8% пентозанов, более 5% лигнина), среди грубостебельных волокон основное значение имеют джут (около 70% целлюлозы, до 30% пентозанов и лигнина) и пенька. Из льняной пряжи изготовляют бельевые и другие ткани, парусину, брезент, пожарные рукава, шнуры, из так называемой оческовой пряжи (получаемой из отходов первичной обработки льна) – мешочные ткани, холсты, низкокачественную парусину и брезент. Льняное волокно часто применяют в смеси си химическими, например, полиэфирными, или хлопком. Льноводство развито в странах СНГ (северо-западные области России, западная часть Украины, Беларуси, стран Прибалтики), в ряде стран Центральной и Северной Европы.

Грубостебельные волокна перерабатывают в толстую пряжу для мешочных и тарных тканей, а также для канатов, веревок, шпагатов. Основные страны – производители джута – Индия, Бангладеш, Пакистан, Индонезия, Китай. Коноплеводство развито в СНГ (европейская часть России, Украина, страны Средней Азии), многих странах Западной Европы, Индии, Пакистане и др. Листовые лубяные волокна, используемые в канатном производстве, для плетения циновок и др., выделяют из тропических растений, произрастающих в странах Африки, Центральной Америки, в Индонезии, на Филиппинах и др. Эти волокна с успехом заменяются синтетическими.

2.2. Волокна животного происхождения

Шерстяное волокно характеризуется невысокой прочностью, большой эластичностью и гигроскопичностью, малой теплопроводностью. Перерабатывают его (в чистом виде или в смеси с химическими волокнами) в пряжу, из которой изготовляют ткани, трикотаж а также фильтры, прокладки и т.д.

Шелк – продукт выделения шелкоотделительных желез насекомых, из которых основное промышленное значение имеет тутовый шелкопряд. Гусеница шелкопряда выпускает нить, состоящую из двух элементарных фиброиновых нитей толщиной около 15 мкм каждая, склеенных другим белковым веществом – серицином. Укладывая нить вокруг себя, гусеница формирует плотную многослойную оболочку (кокон). При размотке коконов соединяют обычно 5-10 элементарных нитей, получая шелк-сырец. Образующиеся при этом отходы разрывают на короткие отрезки и перерабатывают в пряжу. Шелк обладает высокой прочностью, эластичностью, большим влагопоглощением, приятным матовым блеском, легкой накрашиваемостью. Из шелковых нитей вырабатывают платьевые (креповые и др.), декоративные и галстучные ткани, атласы, вышивальные нитки, из пряжи – разные полотна и др.

2.3. Волокна минерального происхождения

К волокнам минерального происхождения относятся асбесты (наиболее широко используют хризолит-асбест), расщепляя которые получают технические волокна. Перерабатывают их (обычно в смеси с 15-20% хлопка или химических волокон) в пряжу, из которой изготовляют огнезащитные и химически стойкие ткани, фильтры и др. Непрядомое короткое асбестовое волокно используют в производстве композитов (асбопластиков), картонов и др.

Объём мирового производства природных волокон в 1980 г. составил (млн. т/год): хлопок – 14,1, лен – 0,6, джут – 3,0, прочие грубостебельные и жесткие – 1,0, шерсть (мытая) – 1,6, шелк-сырец – 0,05.

3. Синтетические волокна

К синтетическим волокнам относятся: полиамидные, полиакрилонитрильные, полиэфирные, перхлорвиниловые, полиолефиновые волокна.

3.1. Полиамидные волокна

Полиамидные волокна, во многих отношениях превосходящие по качеству все природные и искусственные волокна, завоевывают все большее и большее признание. К наиболее распространенным полиамидным волокнам, выпускаемым промышленностью, относятся капрон и нейлон. Сравнительно недавно получено полиамидное волокно энант.

Капрон – полиамидное волокно, получаемое из поликапроамида, образующегося при полимеризации капролактама (лактама аминокапроновой кислоты):


Исходный капролактам практически получается двумя путями:



Далее оксим циклогексана в кислой среде (олеум) претерпевает перегруппировку Бекмана, характерную для оксимов многих кетонов. В результате такой перегруппировки происходит разрыв углерод-углеродной связи и расширение цикла; при этом атом азота входит в цикл:



2. Из бензола:

Окисление циклогексана проводят кислородом воздуха в жидкой фазе при 130-140 o С и 15-20 кгс / см 2 в присутствии катализатора – стеарата марганца. При этом образуются циклогексанон и циклогексанол в соотношении 1:1. Циклогексанол дегенерирует до циклогексанона, а последний превращается в капротам описанным выше способом.

При строительстве новых и расширении существующих производств капролактама будет использоваться преимущественно вторая схема его получения. При этом окисление циклогексанона воздухом будет интенсифицировано за счет повышения температуры реакции до 190-200 0 С, что существенно сократит продолжительность реакции.

Полимеризацию капролактама ведут на тех заводах, которые производят синтетическое волокно. Капролактам перед полимеризацией расплавляют. Для предотвращения окисления лактама процесс полимеризации протекает при 15-16 кгс/см 2 при температуре около 260 0 С, проводят в атмосфере азота. Образовавшийся в результате полимеризации капролактама полимер застывает в белую роговидную массу, которую затем измельчают и обрабатывают водой при повышенной температуре для измельчения не прореагировавшего мономера и образовавшихся димеров и тримеров.

Для формирования волокна капрона высушенный полимер загружают в закрытые стальные аппараты, снабженные решетками, на которых он расплавляется при 260-270 0 С в атмосфере азота. Отфильтрованный под давлением сплав поступает в фильеры. Образующиеся после выхода из фильеры волокна охлаждают в шахте и наматывают на бобины. Сразу с бобин пучок волокон направляют на вытяжку, крутку, промывку и сушку.

Волокно капрон по внешнему виду напоминает натуральный шелк; по прочности оно значительно превосходит его, но несколько менее гигроскопично. Это волокно находит широкое применение для изготовления высокопрочного корда, тканей, чулочных и трикотажных изделий, канатов, сетей и др.

Волокно нейлон (анид). Получается из полиамида – продукта поликонденсации так называемой соли АГ (гексаметилендиаминадипинат).

Соль АГ получается взаимодействием адипиновой кислоты с гексаметилендиамином в метаноле:



Поликонденсация проводится в автоклаве при 275-280 0 С в атмосфере азота:



Полиамид, полученный в результате поликонденсации соли АГ, в расплавленном виде продавливают через щелочное отверстие в ванну с холодной водой. Застывшую смолу сушат, измельчают, плавят и из расплава формируют волокно.

В последнее время российскими химиками создано новое полиамидное волокно энант, отличающееся эластичностью, светостойкостью и прочностью. Энант получается поликонденсацией ω-аминоэнантовой кислоты. Технологические процессы получения волокон капрон и энант схожи между собой.

3.2. Полиэфирные волокна

Лавсан – синтетическое волокно, получаемое из полиэтилентерефталата. Исходным сырьем для производства полиэтилентерефталата служит диметилтерефталат (диметиловый эфир терефталевой кислоты) или терефталевая кислота.

Диметилтерефталат сначала нагревают при 170-280 o С, с избытком этиленгликоля. При этом происходит переэтефикация и получается диэтилолтерефталат:




Диэтилолтерефталат подвергается поликонденсации в вакууме (остаточное давление 1-3 мм. рт. ст.) при 275-280 o С в присутствии катализаторов (алкоголяты щелочных металлов, PbO и др.):




Применение диметилтерефталата, а не свободной терефталевой кислоты для получения полиэфира объясняется тем, что для последней реакции поликонденсации решающее значение имеет чистота терефталевой кислоты. Поскольку получение чистой кислоты является весьма сложной задачей, все ранее разработанные технологические процессы получения лавсана основывались на применении в качестве исходного мономера диметилтерефталата.

В настоящее время крупнейшие зарубежные фирмы применяют в качестве исходного мономера не диметилтерефталат, а терефталевую кислоту высокой степени очистки, что дает возможность исключить из технологического процесса громоздкую стадию переэтерификации и, в связи с этим, значительно удешевить стоимость всего технологического процесса.

Полученный полиэфир выливают из реактора в виде ленты в осадительную ванну с водой или барабан, где он затвердевает. Затем его измельчают, сушат и формируют на машинах, аналогичных применяемым в производстве капрона.

Волокно лавсан очень прочно, упруго, тепло- и светостойко, устойчиво к атмосферным воздействиям, к действию химических веществ и истиранию. Будучи похоже по внешнему виду и ряду свойств на шерсть, оно превосходит ее по носкости и значительно меньше мнется.

Волокно лавсан добавляют к шерсти для изготовления не мнущихся высококачественных тканей и трикотажа. Лавсан применяется также для транспортерных лент, ремней, парусов, занавесей и др.


Основным направлением расширения и улучшения ассортимента химических волокнистых материалов является не столько разработка новых видов полимеров, сколько модификация уже существующих волокон с целью придания им новых свойств.

Модификация волокон — направленное изменение текстильных волокон и нитей с целью придания им новых заранее заданных свойств.

Физическая модификация заключается в направленном изменении надмолекулярного строения, формы и внешней поверхности нитей (без изменения химического состава).

Физические методы используются на стадии формования и/или последующей обработки волокон.

Изменение условий вытягивания и термообработки в технологическом процессе получения волокон способствует улучшению физико-механических свойств волокон. Вытягивание химических нитей выполняется для перестройки их первичной структуры В растворе или расплаве макромолекулы имеют сильно изогнутую форму и расположены хаотически. При формовании степень вытягивания нитей невелика, поэтому молекулы в нити также располагаются хаотически и сильно изогнуты. Для распрямления и переориентации макромолекул проводят вытягивание нитей. В результате нити становятся более прочными. Сверхвысокоскоростное формование волокон из расплава изменяет условия структурообразования нити, в результате получаются принципиально новые виды волокон.

Композитная модификация заключается в добавлении к основному волокнообразующему полимеру мелкодисперсных или растворимых компонентов — носителей новых свойств.

Модифицирование путем введения добавок осуществляется на стадии подготовки исходного расплава (раствора) к формованию или непосредственно перед формованием волокон. Этот метод широко применяется при получении синтетических, а также вискозных волокон. В полимерный расплав (раствор) могут вводиться красящие пигменты, антипирены (замедлители горения), биологически активные вещества и другие добавки.

Химическая модификация заключается в направленном изменении химического состава волокнообразующего полимера.

При химической модификации изменение химического строения волокнообразующего полимера осуществляется введение в полимер новых активных групп путем сополимеризации (в структуру основного полимера вводятся звенья сополимера на стадии подготовки прядильного раствора и формования нити) или последующей химической обработкой уже сформованных волокон или текстильных полотен (изделий).

Химическое модифицирование предпочтительнее на стадии отделки текстильных полотен. При этом происходит модификация именно волокон, хотя мы говорим — полотен (тканей и др.). Химическое модифицирование полотен широко используется на практике как для полотен на основе химических волокон, так и из природных волокон или их смесок. Оно производится с применением самых разных реагентов и методов.

Введение в полимер новых активных групп позволяет улучшить потребительские свойства текстильных материалов и изделий: повысить окрашиваемость, гигроскопичность, снизить сминаемость и загрязняемость, а также придать антистатичность, огнезащищенность, бактерицидность и другие новые функциональные характеристики.

Большинство выпускаемых в настоящее время химических волокон и нитей являются модифицированными волокнами.

Внимание! Широкое применение волокон, полученных методами композитного и химического модифицирования, привело к тому, что предложенные несколько десятилетий назад методы распознавания волокон (по поперечным срезам, по растворимости, по качественным пробам на горение, . ), которые даже входят в стандартные прописи распознавания волокон, теперь не отвечают своему назначению.

Безусловно, дальнейшее развитие методов модификации будет все шире использоваться при производстве волокон и текстиля в будущем, поскольку это технически, экономически и экологически полностью оправдано.

Источники:
Большая Советская Энциклопедия;

1. Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие, — Мн.: Выш. шк., 2001- 412с.

2. Мальцева Е.П., Материаловедение швейного производства, — 2-е изд., перераб. и доп. — М.: Легкая и пищевая промышленность, 1983, — 232

3. Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов, — 4-е изд., перераб и доп., — М., Легпромбытиздат, 1986 – 424.

Читайте также: