Химическая эволюция земли реферат

Обновлено: 05.07.2024

Одна из современных гипотез утверждает, что наша планета никогда не была расплавлена полностью (Лосев, 1985, с. 40–41). Предположение о том, что Земля сформировалась в виде относительно холодного твердого тела и затем постепенно разогревалась теплом, выделившимся при распаде радиоактивных элементов, принадлежит Ю. Ю. Шмидту. Оказывается, в процессе аккумуляции планет в газопылевом облаке, где главным их источником являлись твердые частицы, могли образоваться очаги расплавленной магмы, в которых начиналась дифференциация Земли на силикатную мантию и железное ядро (Рускол и Сафронов, 1990, с. 72–79). Действительно, если бы планета изначально была огненно-жидким телом, то должны были бы сохраниться мощные отложения карбонатных осадков, выпавших из охлаждающейся атмосферы. Подобных осадков нет.

Имеются и другие факты, подтверждающие идею Шмидта. Например, из раскаленной атмосферы улетучились бы благородные газы, но они сохранились, и т. д. Знание начальных сценариев формирования Земли важны для понимания ее роли в возникновении жизни, а, следовательно, и ее биосферы.

Изучая химический состав пузырьков воздуха, извлеченных из древних пород Земли, ученые установили, что он состоял из азотно-аммиачно-углекислых компонентов.

Этот факт свидетельствует о том, что на первых этапах становления планеты в ее атмосфере отсутствовал кислород. Она была восстановительной. Если бы это было не так, то появляющиеся первые органические вещества сразу бы окислялись. Выяснено, что в лабораторных опытах получить органические соединения из неорганических элементов можно только при отсутствии кислорода. Кстати, не из-за агрессивности ли кислорода многие животные, в том числе и человек, не имеют его про запас (депо этого газа). Так, без пищи можно прожить много дней, без воды три дня, а без кислорода – минуты.

Правильно ли ученые составили представление о химическом составе первичной атмосферы?

Доказательством этому является тот факт, что в древних морских отложениях железных руд было обнаружено высокое содержание закисного железа (FeO) по отношению к окисному (Fe2O3). Если бы атмосфера была окислительной (содержащей кислород), то окисное железо не вымывалось бы в океан, а, следовательно, сохранялось в коре континентов.

Существуют убедительные доказательства того, что в становлении трех геосфер (атмосфера, гидро– и литосфера) основополагающую роль сыграл ряд совпавших между собой процессов:

1) разогретая планета;

2) бескислородная атмосфера;

3) активная вулканическая деятельность.

Особая роль в зарождении жизни на Земле принадлежит воде. Если рассмотреть химический состав живого вещества, можно убедиться в том, что среди многих ее веществ на первом месте по массе стоит вода (75 и более процентов). Высокое содержание воды в клетке – важнейшее условие ее деятельности. Уже этого факта достаточно для того, чтобы утверждать, что все живые организмы вышли из океана. Поэтому, например, не вызывает удивления тот хорошо известный факт, что соотношения основных химических компонентов в морской воде и в крови практически одинаковы.

В чем же уникальность воды?

Оказывается, что она может находиться в трех фазах – жидкой, твердой (лед) и газообразной (пар) – и является хорошим растворителем. Очень существенным моментом в функционировании океана является постоянство его солевого состава как в горизонтальном, так и в вертикальном направлении.

Выше уже упоминалось о том, что основатель учения о биосфере В. И. Вернадский даже предлагал принять соотношение основных компонентов морской воды за константу нашей планеты, аналогично тому, как характерной константой вещества служит точка его плавления. Стабильность химического состава морской воды свидетельствует о том, что океан следует рассматривать как систему, способную сохранять постоянство своего внутреннего состояния – гомеостаз. Следовательно, гидросфера является саморегулирующейся системой, находящейся в относительно равновесном (стационарном) состоянии. При отклонении же ее параметров от таковых включаются механизмы, приводящие ее в первоначальное состояние. Это возможно при условии, что океан подчиняется принципу Ле-Шателье. Данная особенность океана, по-видимому, предопределила у живых организмов постоянство внутренней среды (плазма крови и др.), нарушение которой чревато самыми серьезными последствиями для его жизнедеятельности. Вот почему, даже будучи изолированными от океана, неузнаваемо меняясь по форме и содержанию в новой обстановке на протяжении миллионов лет, живые организмы не утратили химических особенностей морской воды.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

СКОЛЬКО НАС НА ЗЕМЛЕ?

Самая маленькая химическая фабрика

Подводная химическая лаборатория

Подводная химическая лаборатория Растения — это удивительная химическая лаборатория, из неживой природы создающая живую природу, или, как говорят ученые, биомассу. Двигателем, запускающим в ход все процессы в этой лаборатории, является свет нашей звезды — Солнца.

Глава 211. Абиогенная (химическая) эволюция (VIII)

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, лишь отодвигает событие в прошлое и не решает задачу), либо

2.2.6. Физиотерапия, физико-химическая диагностика и лечение.

2.2.6. Физиотерапия, физико-химическая диагностика и лечение. Механические, тепловые и лучевые воздействия, а также электромагнитные поля способны вызывать существенные изменения в организме, влиять на активность его функциональных систем и формообразование. Характер

Глава 3. Происхождение жизни: химическая эволюция

Глава 3. Происхождение жизни: химическая эволюция Ничтожное ничто — начало всех начал. Теодор Рётке, "Вожделение" Теория химической эволюции — современная теория происхождения жизни — также опирается на идею самозарождения. Однако в основе ее лежит не внезапное (de novo)

Глава 211. Абиогенная (химическая) эволюция (VIII)

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, она лишь отодвигает событие в прошлое и не решает

Химическая защита

Химическая защита За многие миллионы лет развития органической жизни на Земле в постоянной борьбе за существование у насекомых выработались химические способы защиты: ядовитое тело, ядовитые железы, ядовитые органы и т. д. Они так же многообразны, как и насекомые.Самый

Тяга к земле

Тяга к земле У меня, как, наверное, и у вас, есть такие знакомые. Они всю жизнь жили в городе, работали в главке, тресте, министерстве, имели дело с бумагами и людьми, любили эту работу. В отпуск ездили в санаторий, вечерами ходили в театр, читали, принимали гостей. Работать

ХИМИЧЕСКАЯ ЭКОЛОГИЯ

ХИМИЧЕСКАЯ ЭКОЛОГИЯ Потеющие и плохо пахнущие ноги — это вовсе не смертельно и даже не опасно для здоровья, но только если вы не живете в странах, где распространена малярия. Комаров — переносчиков малярии привлекает запах различных химических веществ, которые выделяет

Химическая теория

Наша планета - Земля, возникла около 4 миллиардов 600 миллионов лет назад одновременно с другими планетами Солнечной системы и самой близкой к нам звездой Солнцем.
Современный мир живых существ, населяющих Землю, поражает своим разнообразием. От 5 до 100 миллионов видов, по подсчетам ученых населяют планету. Как было достигнуто это разнообразие?

Работа содержит 1 файл

Наша планета.doc

Наша планета - Земля, возникла около 4 миллиардов 600 миллионов лет назад одновременно с другими планетами Солнечной системы и самой близкой к нам звездой Солнцем.

Современный мир живых существ, населяющих Землю, поражает своим разнообразием. От 5 до 100 миллионов видов, по подсчетам ученых населяют планету. Как было достигнуто это разнообразие? Какова отправная точка развития жизни и есть ли она вообще? До сих пор не удалось получить исчерпывающие ответы на эти вопросы. Предложено немало гипотез и теорий о происхождении жизни, но все они и поныне остаются весьма спорными. Так что фраза Чарльза Дарвина: "Рассуждать в настоящее время о возникновении жизни просто нелепо. С таким же успехом можно говорить о возникновении материи",- по-прежнему актуальна.

Полагают,что в те времена атмосфера была совершенно не такая, как теперь. Легкие газы - водород,гелий, азот,кислород и аргон - уходили из атмосферы,так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Однако простые соединения,содержащие(среди прочих)эти элементы,должны были удерживаться;к ним относятся вода, аммиак,двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°С, вся вода, вероятно,находилась в парообразном состоянии.

Атмосфера была, по-видимому,“ восстановительной”,о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было,вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают,что, как это ни парадоксально,органические вещества (основа живых организмов)гораздо легче создаются в восстановительной среде, чем в атмосфере,,богатой кислородом.В 1923 г. А. И. Опарин высказал мнение,что атмосфера первичной Земли была не такой,как сейчас, а примерно соответствовала сделанному выше описанию.Исходя из теоретических соображений,он полагал, что органические вещества, воз­можно углеводороды,могли создаваться в океане из более простых соединений;энергию для этих реакций синтеза, вероятно,доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая),падавшая на Землю до того,как образовался слой озона,который стал задерживать большую ее часть.

Химическая эволюция — это совокупность процессов, протекавших в Космосе и на ранних этапах существования Земли, приведших к возникновению жизни.

Первый этап химической эволюции на Земле

На первом этапе образовались литосфера, гидросфера, атмосфера. Литосфера возникла вследствие вулканизма. Ежегодно вулканы выбрасывают на поверхность Земли около 1 км. За время существования Земли, при нынешней активности вулканов, было выброшено такое количество лавы, которой достаточно для образования коры Земли.

Гидросфера также создана вулканами: 3 % массы лавы составляет водяной пар. Пар конденсировался. Это привело к появлению осадков и Первичного океана. Атмосфера образовалась при дегазации лав. Вначале Земля имела первичную атмосферу. Но масса юной Земли оказалась недостаточной для удержания газов, и они улетучивались. Земля увеличила свою массу за счет космической пыли и метеоритов: на Землю ежегодно выпадает 107 кг пыли. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 10" т органического материала. Вторичная атмосфера возникла тоже за счет дегазации лав

Кислород появился в атмосфере благодаря фотолизу — разложению паров воды в верхних слоях атмосферы солнечными лучами. Позже обогащение атмосферы кислородом шло за счет фотосинтеза. Два с половиной миллиарда лет назад исчезли золотоураносные конгломераты, которые формируются только в отсутствии кислорода. В тот же период появляются красноцветы, образующиеся только при наличии кислорода.

Второй этап химической эволюции на Земле

На этом этапе происходило образование низкомолекулярных органических соединений (аминокислот, спиртов, углеводов, органических кислот). Жизнь на Земле основана на углеродистых соединениях. Почему именно углерод стал основой жизни? Во-первых, потому, что углерод образует соединения в виде крупных молекулярных цепочек. Во-вторых, углеродистые соединения взаимодействуют медленно. В-третьих, углерод образует сложные соединения с особой структурой, существенной для протекания важнейших жизненных процессов.

Химическая эволюция началась задолго до возникновения Земли — она началась в Космосе. В межзвездном пространстве обнаружено более 50 органических соединений. В Космосе обычен формальдегид, окись углерода, вода, аммиак, цианистый водород. Эти вещества, как показали эксперименты, могут быть предшественниками аминокислот и других органических соединений. Во внеземном пространстве обнаружены углеводороды, альдегиды, эфиры, аминокислоты, нуклеотиды, ароматические соединения. Обнаружено вещество, имеющее в своем составе 18 атомов углерода. Синтез примитивных углеводородов, начавшийся в Космосе, продолжался во время формирования Солнечной системы и Земли.

Предположения о процессах второго этапа химической эволюции имеют экспериментальное подтверждение. В 1850 г. немецкий химик А. Штеккер осуществил химический синтез аминокислот из аммиака, альдегидов, синиль ной кислоты. В 1861 г. А. М. Бутлеров, нагревая формальдегид в крепком щелочном растворе, получил смесь Сахаров. Д. И. Менделеев получал углеводы, подвергая карбиды действию водяного пара. Студент Чикагского университета С. Л. Миллер в 1953 г. для дипломной работы, выполненной под руководством С. Фокса, собрал специальный аппарат для проверки возможности абиогенетического синтеза органических соединений. В этом герметическом приборе в течение недели по замкнутой схеме циркулировала смесь газов, которые, по общему мнению, наиболее вероятно содержались в ранней атмосфере Земли: СН4, Н, NH?. Кипящая вода - источник водяного пара — и холодильник поддерживали циркуляцию газовой смеси. В приборе непрерывно пропускали искры при напряжении 60 тыс. вольт. После этого воду подвергли хроматографическому и химическому анализу Было обнаружено 6 аминокислот (глицин, аланин, аспаргиновая и глутаминовая кислоты и др.), мочевину, молочную, янтарную, уксусную кислоты. Всего было обнаружено 11 органических кислот.

В том, что абиогенетический синтез органики возможен, убеждает такой факт: одно извержение вулкана в настоящее время сопровождается выбросом до 15 т органического вещества. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 108 т органического материала. Все это, предположительно, могло создать тот "бульон", о котором писали А. Опарин и Дж. Холдейн.

Эволюцию, которую прошли химические соединения на нашей планете, можно разделить на четыре стадии: 1) неорганическую; 2) органическую; 3) биохимическую; 4) антропогенную.

Неорганическая стадия связана с химическими превращениями без образования цепей из атомов углерода, который, как известно, обладает наибольшим эволюционным потенциалом. На этой стадии образовывались наиболее простые вещества и происходили относительно несложные процессы.

Вторая стадия — органическая — по сути есть химия соединений углерода. Здесь происходит резкое усложнение химизма и формируются все необходимые предпосылки для возникновения жизни.

Следующая стадия — биохимия, иди химия живого. С возникновением жизни высшей и наиболее сложной формой материи становится биологическая. К специфике соотношения химического и биологического можно отнести следующие закономерности:

· жизнь возникает в ходе протекания химических процессов, хотя переход от неживого к живому пока воспроизвести не удается;

· с возникновением жизни большая часть химических веществ продолжает существовать по своим собственным законам вне живых организмов. При этом неживое вещество служит внешней средой, с которой живое находится в постоянной динамичной связи (обмен веществ между организмом и средой);

· некоторая часть химических веществ после возникновения живого включается в состав живых организмов. Биохимия, или химия живого, намного сложнее химических процессов, идущих вне живого организма. Одновременно биохимия — часть химической науки и в ней действуют в особых формах все химические законы. Биохимические процессы являются основой жизни, они воздействуют на биологические явления, накладывая на них определенные ограничения.

· биохимические процессы развиваются под контролем биологических процессов и закономерностей, например естественного отбора. В живом организме химический синтез направлен на поддержание его жизнеспособности.

· в живой природе возникает новое качество — биологическое, которое имеет в своей основе сложные химические механизмы и в то же время не может быть сведено даже к самому сложному набору химических процессов.

В процессе эволюции возникли атмосфера и гидросфера Земли.

Атмосфера Земли: в настоящее время Земля обладает атмосферой массой примерно5,15*1018 кг, т.е. менее миллионной доли массы планеты. Вблизи поверхности она содержит78,08% азота, 20,95% кислорода,0,94% инертных газов,0,03% углекислого газа и в незначительных количествах другие газы.Давление и плотность в атмосфере убывают с высотой.Половина воздуха содержится в нижних 5,6 км,а почти вся вторая половина сосредоточена до высоты 11,3 км.На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности.На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий.Часть молекул разлагается на ионы, образуя ионосферу. Выше1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы,заполненную очень энергичными ядрами атомов водорода и электронами,захваченными магнитным полем планеты.

Гидросфера Земли: вода покрывает более70% поверхности земного шара,а средняя глубина Мирового океана около 4 км. Масса гидросферы примерно 1,46*1021кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей Земли.Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн.тонн углекислого газа, а растворенного кислорода –8 трлн. тонн.

Центральные части Солнца и других звезд почти не имеют в своем составе настоящих химических элементов и образованы в основном из плазмы. Плазма - полностью ионизированный газ, состоящий из хаотически движущихся положительно заряженных (атомные ядра) и отрицательно заряженных (электроны) частиц

Прикрепленные файлы: 1 файл

хим и био эволюция.docx

Химическая эволюция: начальные этапы.

Центральные части Солнца и других звезд почти не имеют в своем составе настоящих химических элементов и образованы в основном из плазмы. Плазма - полностью ионизированный газ, состоящий из хаотически движущихся положительно заряженных (атомные ядра) и отрицательно заряженных (электроны) частиц.

Строение вещества звезд определяется степенью ионизации (процентом вещества, находящегося в состоянии плазмы). В центральной части Солнца температура составляет от 3 до 20 млн. градусов. При этой температуре степень ионизации достигает 100%, т.е. все вещества находятся в состоянии плазмы. На глубине, равной 0,1 радиуса Солнца, температура снижается до 400 000* С, а на поверхности Солнца температура падает до 5500* С. При этом степень ионизации снижается до 0,01%, т.е. 99,99% веществ на поверхности Солнца находится в виде атомов, имеющих электронные оболочки.

Спектральными анализами на поверхности Солнца обнаружено около 60 химических элементов, среди которых преобладают водород и гелий. Это объясняется тем, что другие элементы с более высокой атомной массой и более сложной структурой атомного ядра и электронной оболочки не могут долго существовать при высокой температуре. Количество атомов водорода в солнечной атмосфере в 4-5 раз больше количества атомов гелия; количество атомов всех других элементов в 1000 раз меньше количества водорода.

В глубинах Солнца и звезд, в плазме происходит образование сложных ядер из простейших вследствие захвата протонов и нейтронов. Образование ядра гелия из водорода идет в три этапа. Из ядра водорода (протона) и нейтрона образуется ядро тяжелого водорода (дейтерия - D) - дейтрон. При соединении дейтрона с еще одним протоном образуется ядро легкого изотопа гелия - Не|. В результате слияния двух ядер легкого гелия образуется ядро обычного, тяжелого гелия - Не2 и высвобождается два протона.

В ходе термоядерных реакций создаются ядра новых элементов. При соединении трех ядер гелия возникает ядро изотопа углерода.

В результате присоединения к ядру углерода других частиц гелия возникают изотопы кислорода, неона, магния и других элементов. Таким образом, возникновение атомов химических элементов - начальный этап неорганической эволюции. Водород, углерод, кислород, азот, фосфор (так называемые биогенные элементы) широко распространены в космосе и имели большую возможность реагировать между собой с образованием простейших неорганических соединений - следующий этап неорганической эволюции. Этому способствовало наличие энергии в космосе в виде электромагнитного излучения и тепла, испускаемого звездами. Преобладание водорода, кислорода, азота и фосфора в живых системах не случайно: водород - хороший восстановитель, легко образует с кислородом и азотом водородные связи, имеющие большое значение в образовании биологических структур и для процессов жизнедеятельности. Кислород обладает большой окислительной активностью, а для фосфора характерно образование макроэргических связей, в которых запасается энергия при химических реакциях.

Третий этап химической эволюции - образование простейших органических соединений - связан со специфической валентностью углерода - главного носителя органической жизни, его способностью к соединению почти со всеми элементами, к образованию цепей и циклов, с его каталитической активностью и другими свойствами. Простейшие органические молекулы широко распространены в межзвездной среде.

Первый этап химической эволюции на Земле.

Химическая эволюция — это совокупность процессов, протекавших в Космосе и на ранних этапах существования Земли, приведших к возникновению жизни. На первом этапе образовались литосфера, гидросфера, атмосфера. Литосфера возникла вследствие вулканизма. Ежегодно вулканы выбрасывают на поверхность Земли около 1 км. За время существования Земли, при нынешней активности вулканов, было выброшено такое количество лавы, которой достаточно для образования коры Земли.

Гидросфера также создана вулканами: 3 % массы лавы составляет водяной пар. Пар конденсировался. Это привело к появлению осадков и Первичного океана. Атмосфера образовалась при дегазации лав. Вначале Земля имела первичную атмосферу. Но масса юной Земли оказалась недостаточной для удержания газов, и они улетучивались. Земля увеличила свою массу за счет космической пыли и метеоритов: на Землю ежегодно выпадает 107 кг пыли. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 10" т органического материала. Вторичная атмосфера возникла тоже за счет дегазации лав и состояла из СО, СОз, Нз, НзО, N, МНз. Кислород появился в атмосфере благодаря фотолизу — разложению паров воды в верхних слоях атмосферы солнечными лучами. Позже обогащение атмосферы кислородом шло за счет фотосинтеза. Два с половиной миллиарда лет назад исчезли золотоураносные конгломераты, которые формируются только в отсутствии кислорода. В тот же период появляются красноцветы, образующиеся только при наличии кислорода.

Второй этап химической эволюции на Земле.

На этом этапе происходило образование низкомолекулярных органических соединений (аминокислот, спиртов, углеводов, органических кислот). Жизнь на Земле основана на углеродистых соединениях. Почему именно углерод стал основой жизни? Во-первых, потому, что углерод образует соединения в виде крупных молекулярных цепочек. Во-вторых, углеродистые соединения взаимодействуют медленно. В-третьих, углерод образует сложные соединения с особой структурой, существенной для протекания важнейших жизненных процессов.

Химическая эволюция началась задолго до возникновения Земли — она началась в Космосе. В межзвездном пространстве обнаружено более 50 органических соединений. В Космосе обычен формальдегид, окись углерода, вода, аммиак, цианистый водород. Эти вещества, как показали эксперименты, могут быть предшественниками аминокислот и других органических соединений. Во внеземном пространстве обнаружены углеводороды, альдегиды, эфиры, аминокислоты, нуклеотиды, ароматические соединения. Обнаружено вещество, имеющее в своем составе 18 атомов углерода. Синтез примитивных углеводородов, начавшийся в Космосе, продолжался во время формирования Солнечной системы и Земли.

Предположения о процессах второго этапа химической эволюции имеют экспериментальное подтверждение. В 1850 г. немецкий химик А. Штеккер осуществил химический синтез аминокислот из аммиака, альдегидов, синильной кислоты. В 1861 г. А. М. Бутлеров, нагревая формальдегид в крепком щелочном растворе, получил смесь Сахаров. Д. И. Менделеев получал углеводы, подвергая карбиды действию водяного пара. Студент Чикагского университета С. Л. Миллер в 1953 г. для дипломной работы, выполненной под руководством С. Фокса, собрал специальный аппарат для проверки возможности абиогенетического синтеза органических соединений. В этом герметическом приборе в течение недели по замкнутой схеме циркулировала смесь газов, которые, по общему мнению, наиболее вероятно содержались в ранней атмосфере Земли: СН4, Н, NH. Кипящая вода - источник водяного пара — и холодильник поддерживали циркуляцию газовой смеси. В приборе непрерывно пропускали искры при напряжении 60 тыс. вольт. После этого воду подвергли хроматографическому и химическому анализу. Было обнаружено 6 аминокислот (глицин, аланин, аспаргиновая и глутаминовая кислоты и др.), мочевину, молочную, янтарную, уксусную кислоты. Всего было обнаружено 11 органических кислот.

В том, что абиогенетический синтез органики возможен, убеждает такой факт: одно извержение вулкана в настоящее время сопровождается выбросом до 15 т органического вещества. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 108 т органического материала. Все это, предположительно, могло создать тот "бульон", о котором писали А. Опарин и Дж. Холдейн.

Начальные этапы биологической эволюции .

Образование первичных клеточных организмов положило начало биологической эволюции. Считается, что отбор коацерватов и пограничный этап химической и биологической эволюции продолжались около 750 млн лет. В конце этого периода появились первые примитивные безъядерные клетки — прокариоты. Первые живые организмы — гетеротрофы - использовали в качестве источника энергии (пищи) органические соединения, растворенные в водах первичного океана. Поскольку в атмосфере Земли не было свободного кислорода, гетеротрофы имели анаэробный (бескислородный) тип обмена веществ, эффективность которого невысока. Увеличение количества гетеротрофов привело к истощению вод первичного океана, где оставалось все меньше готовых органических веществ, которые можно было использовать для питания.

В более выгодном положении оказались организмы, которые развили способность использовать энергию солнечного излучения для синтеза органических веществ из неорганических — фотосинтеза. Таким образом, появился принципиально новый источник питания. Например, современные фотосинтезирующие пурпурные бактерии благодаря солнечному излучению окисляют сероводород до сульфатов. Высвобождающийся в результате реакции окисления водород идет на восстановление диоксида углерода до углеводов с образованием воды. Использование органических соединений в качестве источника (донора) водорода привело к появлению автотрофных организмов (способных синтезировать из неорганических веществ все необходимые для жизни органические вещества).

Следующий шаг эволюции связан с развитием у фотосинтезирующих организмов способности использовать воду в качестве источника водорода для синтеза органических молекул. Усвоение углекислого газа такими организмами сопровождалось выделением кислорода и включением углерода в органические соединения. Так в атмосфере Земли начал накапливаться кислород. Первыми фотосинтезирующими организмами, выделяющими в атмосферу кислород, были цианобактерии (цианеи).

Переход от первичной атмосферы к среде, содержащей кислород, представляет собой важнейшее событие как в эволюции живых существ, так и в преобразовании минералов. Во - пеpвых, кислород, выделяющийся в атмосферу, в верхних ее слоях под действием мощного ультрафиолетового излучения Солнца превращается в активный озон (О3), который способен поглощать большую часть жестких коротковолновых ультрафиолетовых лучей, разрушительно действующих на сложные органические соединения. Во-вторых, в присутствии свободного кислорода возможен кислородный тип обмена веществ, энергетически более выгодный. Образование свободного кислорода вызвало к жизни многочисленные новые формы аэробных живых организмов и более широкое использование ими ресурсов окружающей среды.
В результате взаимополезного симбиоза различных прокариотических (не обладающих оформленным клеточным ядром) клеток возникли ядерные, или эукариотические, организмы (эукариоты). Основой симбиоза была, вероятно, гетеротрофная амебоподобная клетка. Питанием для нее служили более мелкие клетки и, в частности, дышащие кислородом аэробные бактерии, способные функционировать и внутри клетки-хозяина, производя энергию. Те крупные амебовидные клетки, в теле которых аэробные бактерии оставались невредимыми, оказались в более выгодном положении, чем клетки, получавшие энергию анаэробным путем — брожением. В дальнейшем бактерии-симбионты превратились в митохондрии (органеллы клеток, где протекают реакции, обеспечивающие клетки энергией). Когда к поверхности клетки-хозяина прикрепилась вторая группа симбионтов - жгутикоподобных бактерий, сходных с современными спирохетами, подвижность и способность к нахождению пищи такого организма резко возросли. Так возникли примитивные животные клетки - предшественники нынешних жгутиковых простейших.
Образовавшиеся подвижные эукариоты путем симбиоза с фотосинтезирующими (возможно, цианобактериями) организмами дали водоросль, или растение, причем строение пигментного комплекса у фотосинтезирующих анаэробных бактерий сходно с пигментами зеленых растений. Такое сходство указывает на возможность эволюционного преобразования фотосинтезирующего аппарата анаэробных бактерий в аналогичный аппарат зеленых растений.
Изложенную гипотезу о возникновении эукариотических клеток через ряд последовательных симбиозов приняли многие современные ученые, поскольку она хорошо обоснованна. Во-первых, одноклеточные водоросли и сейчас легко вступают в союз с животными - эукариотами; например, в теле инфузории туфельки обитает водоросль хлорелла. Во-вторых, некоторые органоиды клетки — митохондрии и пластиды — по строению ДНК очень похожи на прокариотические клетки-бактерии и цианобактерии.

Возможности эукариот по использованию среды существенно выше, чем у прокариот, поскольку они имеют диплоидный (двойной) набор генов. У прокариот любая мутация сразу проявляется в виде признака. Если мутация полезна, организм продолжает существовать, если вредна - он погибает, т.е. прокариоты непрерывно приспосабливаются к изменениям окружающей среды, но лишены возможности формировать крупные структурные изменения. Появление двойного набора генов у эукариот сделало возможным накопление непроявляющихся фенотипических мутаций и, следовательно, формирование резерва наследственной изменчивости - основы эволюционных преобразований.
Возможности одноклеточных в освоении среды обитания были ограничены, так как дыхание и питание простейших осуществляются через поверхность тела. При увеличении размеров клетки одноклеточного организма его поверхность возрастает по квадратичному закону, а объем - по кубическому, поэтому биологическая мембрана, окружающая клетку, не могла обеспечивать кислородом слишком большой организм. Иной эволюционный путь осуществился позже, около 2,6 млрд лет назад, когда появились многоклеточные организмы, эволюционные возможности которых значительно шире.
Первая гипотеза о происхождении многоклеточных организмов принадлежит Э. Геккелю (вторая половина XIX в.). При ее построении он исходил из исследований эмбрионального развития ланцетника (род животных класса бесчерепных), проведенных А.О. Ковалевским и другими зоологами. Геккель полагал, что начальная стадия развития зародыша (стадия зиготы) соответствует одноклеточным предкам, а стадия развития зародыша многоклеточных животных в процессе бластуляции (заключительной фазе периода дробления яйца) — шарообразной колонии жгутиковых. В дальнейшем, согласно этой гипотезе, произошло впячивание (инвагинация) одной из сторон шарообразной колонии и образовался гипотетический двухслойный организм, названный Геккелем гастреей. Теория Геккеля сыграла важную роль в истории науки, способствуя утверждению монофилетических (т.е. из одного корня) представлений о происхождении многоклеточных.

Основу современных представлений о возникновении многоклеточных организмов составляет гипотеза фагоцителлы И.И. Мечникова. По его представлениям, многоклеточные произошли от колониальных простейших - жгутиковых. Пример такой организации - ныне существующие колониальные жгутиковые типа вольвокс. Среди клеток колонии выделяются движущиеся, снабженные жгутиками, фагоцитирующие добычу и уносящие ее внутрь колонии, и половые, функцией которых является размножение. Так колония превратилась в примитивный, но целостный многоклеточный организм. О справедливости гипотезы фагоцителлы говорит строение примитивного многоклеточного организма - трихоплакса, который по строению соответствует гипотетической фагоцителле и поэтому должен быть выделен в особый тип животных - фагоцителлоподобных, заполняющих брешь между многоклеточными и одноклеточными организмами.

Одна из современных гипотез утверждает, что наша планета никогда не была расплавлена полностью (Лосев, 1985, с. 40–41). Предположение о том, что Земля сформировалась в виде относительно холодного твердого тела и затем постепенно разогревалась теплом, выделившимся при распаде радиоактивных элементов, принадлежит Ю. Ю. Шмидту. Оказывается, в процессе аккумуляции планет в газопылевом облаке, где главным их источником являлись твердые частицы, могли образоваться очаги расплавленной магмы, в которых начиналась дифференциация Земли на силикатную мантию и железное ядро (Рускол и Сафронов, 1990, с. 72–79). Действительно, если бы планета изначально была огненно-жидким телом, то должны были бы сохраниться мощные отложения карбонатных осадков, выпавших из охлаждающейся атмосферы. Подобных осадков нет.

Имеются и другие факты, подтверждающие идею Шмидта. Например, из раскаленной атмосферы улетучились бы благородные газы, но они сохранились, и т. д. Знание начальных сценариев формирования Земли важны для понимания ее роли в возникновении жизни, а, следовательно, и ее биосферы.

Изучая химический состав пузырьков воздуха, извлеченных из древних пород Земли, ученые установили, что он состоял из азотно-аммиачно-углекислых компонентов.

Этот факт свидетельствует о том, что на первых этапах становления планеты в ее атмосфере отсутствовал кислород. Она была восстановительной. Если бы это было не так, то появляющиеся первые органические вещества сразу бы окислялись. Выяснено, что в лабораторных опытах получить органические соединения из неорганических элементов можно только при отсутствии кислорода. Кстати, не из-за агрессивности ли кислорода многие животные, в том числе и человек, не имеют его про запас (депо этого газа). Так, без пищи можно прожить много дней, без воды три дня, а без кислорода – минуты.

Правильно ли ученые составили представление о химическом составе первичной атмосферы?

Доказательством этому является тот факт, что в древних морских отложениях железных руд было обнаружено высокое содержание закисного железа (FeO) по отношению к окисному (Fe2O3). Если бы атмосфера была окислительной (содержащей кислород), то окисное железо не вымывалось бы в океан, а, следовательно, сохранялось в коре континентов.

Существуют убедительные доказательства того, что в становлении трех геосфер (атмосфера, гидро– и литосфера) основополагающую роль сыграл ряд совпавших между собой процессов:

1) разогретая планета;

2) бескислородная атмосфера;

3) активная вулканическая деятельность.

Особая роль в зарождении жизни на Земле принадлежит воде. Если рассмотреть химический состав живого вещества, можно убедиться в том, что среди многих ее веществ на первом месте по массе стоит вода (75 и более процентов). Высокое содержание воды в клетке – важнейшее условие ее деятельности. Уже этого факта достаточно для того, чтобы утверждать, что все живые организмы вышли из океана. Поэтому, например, не вызывает удивления тот хорошо известный факт, что соотношения основных химических компонентов в морской воде и в крови практически одинаковы.

В чем же уникальность воды?

Оказывается, что она может находиться в трех фазах – жидкой, твердой (лед) и газообразной (пар) – и является хорошим растворителем. Очень существенным моментом в функционировании океана является постоянство его солевого состава как в горизонтальном, так и в вертикальном направлении.

Выше уже упоминалось о том, что основатель учения о биосфере В. И. Вернадский даже предлагал принять соотношение основных компонентов морской воды за константу нашей планеты, аналогично тому, как характерной константой вещества служит точка его плавления. Стабильность химического состава морской воды свидетельствует о том, что океан следует рассматривать как систему, способную сохранять постоянство своего внутреннего состояния – гомеостаз. Следовательно, гидросфера является саморегулирующейся системой, находящейся в относительно равновесном (стационарном) состоянии. При отклонении же ее параметров от таковых включаются механизмы, приводящие ее в первоначальное состояние. Это возможно при условии, что океан подчиняется принципу Ле-Шателье. Данная особенность океана, по-видимому, предопределила у живых организмов постоянство внутренней среды (плазма крови и др.), нарушение которой чревато самыми серьезными последствиями для его жизнедеятельности. Вот почему, даже будучи изолированными от океана, неузнаваемо меняясь по форме и содержанию в новой обстановке на протяжении миллионов лет, живые организмы не утратили химических особенностей морской воды.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

СКОЛЬКО НАС НА ЗЕМЛЕ?

Самая маленькая химическая фабрика

Подводная химическая лаборатория

Подводная химическая лаборатория Растения — это удивительная химическая лаборатория, из неживой природы создающая живую природу, или, как говорят ученые, биомассу. Двигателем, запускающим в ход все процессы в этой лаборатории, является свет нашей звезды — Солнца.

Глава 211. Абиогенная (химическая) эволюция (VIII)

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, лишь отодвигает событие в прошлое и не решает задачу), либо

2.2.6. Физиотерапия, физико-химическая диагностика и лечение.

2.2.6. Физиотерапия, физико-химическая диагностика и лечение. Механические, тепловые и лучевые воздействия, а также электромагнитные поля способны вызывать существенные изменения в организме, влиять на активность его функциональных систем и формообразование. Характер

Глава 3. Происхождение жизни: химическая эволюция

Глава 3. Происхождение жизни: химическая эволюция Ничтожное ничто — начало всех начал. Теодор Рётке, "Вожделение" Теория химической эволюции — современная теория происхождения жизни — также опирается на идею самозарождения. Однако в основе ее лежит не внезапное (de novo)

Глава 211. Абиогенная (химическая) эволюция (VIII)

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, она лишь отодвигает событие в прошлое и не решает

Химическая защита

Химическая защита За многие миллионы лет развития органической жизни на Земле в постоянной борьбе за существование у насекомых выработались химические способы защиты: ядовитое тело, ядовитые железы, ядовитые органы и т. д. Они так же многообразны, как и насекомые.Самый

Тяга к земле

Тяга к земле У меня, как, наверное, и у вас, есть такие знакомые. Они всю жизнь жили в городе, работали в главке, тресте, министерстве, имели дело с бумагами и людьми, любили эту работу. В отпуск ездили в санаторий, вечерами ходили в театр, читали, принимали гостей. Работать

ХИМИЧЕСКАЯ ЭКОЛОГИЯ

ХИМИЧЕСКАЯ ЭКОЛОГИЯ Потеющие и плохо пахнущие ноги — это вовсе не смертельно и даже не опасно для здоровья, но только если вы не живете в странах, где распространена малярия. Комаров — переносчиков малярии привлекает запах различных химических веществ, которые выделяет

Химическая теория

Поговорим о происхождении жизни на Земле и химической эволюции. Без химических формул.

Глава первая, в которой мы предаемся шовинизму


Глава вторая, в которой мы встречаем первые трудности


Глава третья, в которой трудности нарастают

Другая проблема возникла по мере улучшения наших знаний о Венере, Марсе и о прошлом нашей собственной планеты. Оказалось, что сегодняшние атмосферы соседей близки по составу к атмосфере молодой Земли, которая, видимо, почти целиком состояла из углекислого газа. Серьезных количеств аммиака в ней не было, азот существовал лишь в форме чистого молекулярного газа (N2), а сера – как инертный оксид (SO2). Этот набор очень далек от того, что представляли себе Опарин, Холдейн и Миллер, и прежде всего тем, что не содержит вещества, подходящего на роль восстановителя (как аммиак, например), необходимого для фиксации углекислого газа и получения из него хотя бы простейшей органики.

Даже у бактерий геном насчитывает миллионы нуклеотидов, которые кодируют тысячи белков. Его работа требует сложной машинерии, необходимой для копирования ДНК и чтения ее для превращения в РНК, а затем и в белок с помощью хитроумно устроенных рибосом, и т. д. Все это окружено мембраной, пронизанной постоянно работающими белками, обеспечивающими избирательный транспорт веществ в клетку и из нее. Здесь мало лишних деталей: без каждой из них клетка жить неспособна. А главное, она неспособна жить без инструкций, которые содержит ДНК и которые реализуют белки. Сама по себе ДНК неспособна ни катализировать химические реакции, ни удваиваться. Это довольно инертное вещество, служащее лишь удобным носителем информации. С другой стороны, белки не размножаются и не могут выступать в этой роли. Еще одна философская проблема – курицы и яйца – только, кажется, совсем неразрешимая.


Глава четвертая, в которой появляется надежда на РНК

Удалось химикам и решить проблему с появлением всех четырех азотистых оснований. Если использовать не синильную кислоту, а другое довольно распространенное в космосе и несложное соединение – формамид, – то в отсутствие воды под действием ультрафиолета и на поверхности частиц оксида титана он даст все нужные основания. И если в нашей жизни такие условия выглядят экзотикой, то в космосе они встречаются не так уж и редко; диоксид титана то и дело улавливается в верхних слоях атмосферы, где нет воды, зато ультрафиолетового излучения предостаточно.

Чтобы азотистые основания, фосфат и рибоза образовали РНК, они должны объединиться в нуклеотиды, а те, в свою очередь, в достаточно длинные цепочки. Аденин сравнительно легко присоединяет рибозу, а затем и одну за другой три фосфатные группы. Видимо, по этой причине аденозинтрифосфат (АТФ) стал универсальной молекулой-носителем энергии: остальные азотистые основания не удавалось запустить по этому пути несколько десятилетий. Решить эту проблему получилось только в 2009 г., когда Джон Сазерленд из Манчестерского университета нашел изящную и сложную реакцию, на входе которой используются не сами основания и рибоза, а их предшественники – гликольальдегид, глицеральдегид, цианамид, и т. д., – а на выходе получаются нужные нуклеотиды. Уже через несколько лет было показано, что в присутствии L-аминокислот такая реакция дает преимущественно соединения с D-рибозой.


Такие реакции должны были происходить на юной Земле непрерывно: вряд ли такой нестабильный источник веществ, как астероиды или кометы, могли принести их в достаточном количестве, постоянно обновляя запасы. Для этого требуется восстанавливать углекислый газ до простейших соединений углерода, как это делают растения, используя воду и солнечный свет. Другой способ демонстрируют метаногенные микробы, которые вообще не терпят присутствия кислорода и используют восстановитель – сероводород, поступающий из-под земной коры с богатыми минералами и горячими водными растворами.

Как показали эксперименты, в этих условиях сероводород восстанавливает сульфид железа до пирита (FeS2), на поверхности которого удерживаются протоны, способные восстанавливать и азот до аммиака, и углекислоту до метилмеркаптана. Реализуются здесь и более сложные реакции, ведущие к появлению органических кислот и вообще целого спектра органики, более богатого, чем в реакциях Миллера.


Глава шестая, в которой образуется рибосома

В самом деле, хоть Энгельс и не был прав полностью, нам все-таки придется перейти к белкам, без которых не существует ни одна известная нам форма настоящей жизни. Сегодня синтез белка из отдельных аминокислот обеспечивается сложным молекулярным комплексом, рибосомой, а также примерно 40 транспортными РНК. Каждая из них доставляет определенную аминокислоту и присоединяется к определенной последовательности из трех нуклеотидов на матричной РНК. Реакции соединения аминокислот в белковую цепочку проводят рибосомы, которые включают в себя несколько десятков белков и три молекулы РНК.

Такой рибозим способен синтезировать белковые цепочки из отдельных аминокислот – неловко, неточно, не слишком быстро, особенно в сравнении с современными сложными биохимическими системами, которые отточены миллиардами лет эволюции, – но все-таки способен. Он мог походить на домен V рибосомной РНК и даже не использовать матрицу, синтезируя случайные пептидные цепочки. Лишь затем он научился связывать матричную и транспортные РНК. Но как это могло помогать самому рибозиму выжить и вытеснить конкурентов – даже тех, что катализировали появление собственных копий?


Глава седьмая, про генетический код

Тут нам придется вспомнить, что РНК не является таким удачным носителем информации, как ДНК – и прежде всего за счет своей довольно высокой химической лабильности. Ее больное место – та самая гидроксильная (2′) группа рибозы, которой нет у дезоксирибозы ДНК. Предполагается, что некоторые белки могли связываться с РНК, закрывая – и защищая – опасный участок. Альфа-спираль, весьма обычная для белков структура, отлично для этого подходит. Остается, чтобы среди матричных РНК, кодирующих защитные белки, нашлись и другие, которые кодирут белки, расщепляющие другие РНК и поставляющие новые нуклеотиды, и третьи, для копирования самих РНК – дело у нас почти в шляпе.

Начинается размножение, изменчивость и отбор – гонка вооружений, которая зовется эволюцией. В этой системе генетическое кодирование обеспечивают молекулы транспортных РНК, которые связывают тройки соседних нуклеотидов (кодоны) с той или иной аминокислотой. Считается, что эта связь появилась более или менее случайно и, например, тройка аденин – урацил – урацил соответствует аминокислоте изолейцину.

С другой стороны, определенные закономерности в этом коде можно найти: скажем, изолейцин кодируют также кодоны аденин – урацил – цитозин и аденин – урацил – аденин, структурно довольно близкие и оставляющие пространство для ошибок. Даже при не очень точном связывании каждого отдельного нуклеотида близкие тройки обеспечивают появление нужной аминокислоты с достаточной точностью. У нас получился минимальный набор: матричные РНК белков для копирования РНК, прото-рибосомные РНК для синтеза белков и транспортные РНК.

Глава восьмая, где жизнь помещается в клетку и получает ДНК

Правда, до жизни мы еще не добрались: нам нужна клетка, а клетку делает мембрана, которая ограничивает ее от внешнего мира и обеспечивает контролируемый обмен веществ. Ограничившись мембраной, жизнь обрела форму и смогла объединять и накапливать внутри нужные молекулы РНК и вести синтез белков, покинуть плоскость сернистых отложений и перейти к трехмерному существованию в форме пузырьков в жидкости, расселяться и осваивать новое пространство.

Глава девятая, последняя, но не последняя

С этого момента мы можем говорить уже о биологической эволюции в полном смысле этого слова. По мере того как атмосфера остывала и становилась менее плотной, протоорганизмы вовсю столкнулись с проблемой истощения старых запасов минеральных отложений. Одни из них ушли в изолированные, труднодоступные участки, став предками современных архей, до сих пор населяющих черные курильщики или гейзеры.

Другие жили повыше и научились защищаться от солнечного ультрафиолета пигментами, а затем смогли использовать эти пигменты для фотосинтеза, став окончательно независимыми от своей геотермальной прародины. Им понадобилось развить системы транспорта минералов в клетку и из нее. Они слились с другими бактериями, которые освоили эффективный синтез АТФ из глюкозы и впоследствии стали митохондриями.

Читайте также: