Характеристика грунтов и способы их разработки реферат

Обновлено: 05.07.2024

Свойства грунтов – это их особенности, связанные с геологическим происхождением, составом, физическими и механическими ха р актеристиками. У строительных и плодородных грунтов классификация свойств сильно различается – в зависимости от особенностей их использования.

На этой странице мы расскажем про основные характеристики грунтов, приведем таблицы и сравнительные данные. Наша классификация основана на ГОСТах и СНиПах, но подана простым и понятным языком.

Далее речь пойдет о:

  • Физико-механических и химических свойствах
  • Строительных свойствах
  • Плодородных свойствах

Физико-механические и химические свойства грунтов

Свойства грунтов зависят от состава их твердой, жидкой и газообразной фазы, взаимодействия разных компонентов между собой. Характеристики этих материалов описаны в ГОСТах и нормативных документах. На их основе составлена классификация грунтов, принципы их использования.

Физические свойства

Физические свойства грунтов проявляются в природной среде – то есть, когда на них не оказывается внешнего воздействия. Эти параметры характеризуют физическое состояние и взаимодействие компонентов материала.

Группа физических характеристик включает:

  • Влажность – содержание воды в грунте в условиях природного залегания.
  • Влагоемкость – количество жидкости, которые может впитать грунт.
  • Водопроницаемость – скорость , с которой грунт пропускает сквозь себя влагу (в условиях нормального атмосферного давления).
  • Гранулометрический состав – содержание в грунте частиц разных размеров и структура материала.
  • Плотность – соотношение массы и объема.
  • Пористость – объем свободного (или заполненного водой) пространства между зернами грунта.
  • Выветрелость – степень разрушения грунта под воздействием солнца, ветра, осадков, химических и биологических факторов.
  • Пластичность – способность грунта менять форму при увлажнении, сохраняя связи между частицами.

Подробнее об этих характеристиках читайте в статье Физические свойства грунта

Механические свойства

Механические свойства показывают, как грунт реагирует на внешние нагрузки. Они играют важную роль в планировании строительства и во многом зависят от физических характеристик.

К механическим свойствам относятся:

  • Сжимаемость – способность грунта уменьшать собственный объем под внешней нагрузкой.
  • Просадочность – уплотнение грунта под воздействием увлажнения или давления на верхние слои.
  • Набухание – Увеличение объема грунта при увлажнении.
  • Морозное пучение – увеличение объема грунта при замерзании.
  • Прочность – способность грунта сопротивляться внешнему воздействию без разрушения структуры.
  • Упругость , или модуль упругости – степень деформации грунта под воздействием вертикальных нагрузок.
  • Угол внутреннего трения – сопротивление грунта вертикальному срезу.
  • Сцепление – степень взаимодействия частиц грунта между собой.
  • Сопротивление грунтов сдвигу – способность грунта выдерживать горизонтальную нагрузку без нарушения структуры.
  • Угол естественного откоса – угол между горизонтальной площадкой и конусом, который образовался при свободной засыпке грунта.
  • Граница текучести и раската – влажность грунта при потере пластичности.
  • Липкость – способность грунта в увлажненном состоянии прилипать к поверхностям.

Подробнее об этих характеристиках читайте в статье Механические свойства грунта

Химические свойства

Грунт – это система, состоящая из множества органических и неорганических соединений. Они взаимодействуют между собой и внешней средой, изменяя характеристики материала.

К химическим свойствам относятся:

  • Кислотность – это уровень рН грунта. Кислотность – один из важнейших факторов плодородия почвы.
  • Растворимость – свойство грунтов растворяться в различных жидкостях.
  • Коррозийные свойства – способность грунта разр у шать металлы.
  • Засоленность – наличие в грунте растворимых солей натрия, магния и кальция.

Физико-механические и химические свойства грунтов – это сложная тема. На практике, особенно в частном строительстве или садоводстве, далеко не все они имеют значение. В данной статье мы лишь перечислили и кратко описали данные характеристики.

Более подробную информацию по этой теме вы найдете в следующих статьях:

Далее мы расскажем о том, на какие свойства нужно обратить внимание при выборе грунта для разных работ.

Основные свойства грунтов в строительстве

Большинство грунтов используются в строительстве – начиная от простых земляных работ и до выполнения сложных задач (например, устройства фундамента или изготовления бетона).

Ниже мы привели таблицу, в которой указаны наиболее важные свойства грунтов, в зависимости от их назначения.

Укрепление грунта Выравнивание участков Устройство оснований Засыпка ям, траншей, котлованов Засыпка пазух фундамента Устройство гидроизоляции Устройство и ремонт временных и грунтовых дорог Обустройство обочин и насыпей Изготовление бетона
Физические характеристики Влажность +
Водопроницаемость + + + + + +
Гранулометрический состав + + + + +
Выветрелость +
Пластичность
Механические характеристики Сжимаемость +
Просадочность + + +
Набухание + +
Морозное пучение + + +
Прочность + + + +
Угол внутреннего трения +
Сцепление +
Сопротивление грунтов сдвигу +
Угол естественного откоса +
Липкость + +
Химические характеристики Растворимость + +
Коррозийные свойства +

Основные свойства грунтов в строительстве

Подробнее о том , какие характеристики важны при выборе грунтов для тех или иных работ, вы можете узнать на странице Строительные свойства грунтов.

О том, как используются грунты в строительстве, читайте в рубрике Строительный грунт.

Основные свойства грунта для садово-огородных работ

В данном случае главными являются плодородные характеристики, а также безопасность грунтов. Далеко не любой материал может быть использован в садовых работах.

Чаще всего внимание обращают на следующие характеристики:

  • Кислотность
  • Пористость
  • Гранулометрический состав
  • Влажность
  • Засоленность
  • Экологическая безопасность

Подробнее об этом вы можете прочитать на странице Плодородные свойства грунтов.

Итак, характеристики грунтов разделяются на три группы – физические, механические и химические. Первая группа позволяет выяснить , как ведет себя грунт в естественных условиях. Вторая группа характеризует состояние грунта под воздействием различных нагрузок. Ну и третья группа говорит о том, что происходит с грунтом, когда он вступает в химические реакции с другими материалами.

Понятие и сущность грунта, характеристика и специфика горных пород и грунтов по трудности разработки. Описание, отличительные черты и разделение пород по гранулометрическим элементам. Определение и вычисление коэффициента первоначального разрыхления.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 25.07.2015
Размер файла 47,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Общие сведения о грунтах

Грунт - горные породы, почвы, техногенные образования, представляющие собой многокомпонентную и многообразную геологическую систему и являющиеся объектом инженерно-хозяйственной деятельности человека [1].

Грунты могут служить:

1) материалом оснований зданий и сооружений;

2) средой для размещения в них сооружений;

3) материалом самого сооружения.

Грунт скальный - грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа.

Грунт полускальный - грунт, состоящий из одного или нескольких минералов, имеющих жесткие структурные связи цементационного типа.

Условная граница между скальными и полускальными грунтами принимается по прочности на одноосное сжатие (Rc 5 МПа - скальные грунты, Rc 5 МПа - полускальные грунты).

Грунт дисперсный - грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путем и их отложения.

Грунтами называют породы, залегающие в верхних слоях земной коры.

Различают грунты:

· песчаные (песок, супесь);

· глинистые (глины, суглинки);

· скальные (изверженные, метаморфические и осадочные);

· растительные;

· лессовые.

Свойства грунтов зависят от условий образования, структуры и состава пород.

Для сравнительной оценки горных пород по прочности в нашей стране широко используется шкала М.М. Протодьяконова (табл. 1), в соответствии с которой прочность породы оценивается коэффициентом крепости f - безразмерной величиной, равной одной десятой временного сопротивления породы сжатию, измеренного в МПа.

Таблица 1

Характеристика горных пород

В высшей степени крепкие

В отечественной практике для оценки трудности разработки грунтов используется один из следующих показателей: сопротивление образцов грунта сжатию; удельное сопротивление грунта копанию; удельная работа внедрения в грунт плоского штампа (табл. 2).

Классификация грунтов по трудности разработки

Объемная масса, т/м3

Сопротивление сжатию, МПа

Сопротивление копанию, МПа

Работа, число ударов

Грунт растительного слоя

Более универсален показатель работы, не зависящий от типа землеройного органа и других особенностей машин для земляных работ. В качестве единицы измерения прочности грунта принимается энергия удара груза массой 2,5 кг, падающего с высоты 0,4 м, которая равна 9,81 Дж. Экспериментально доказано, что работа, затраченная на погружение круглого стержня сечением 1 см 2 в грунт на глубину 10 см, пропорциональна прочности последнего. Для экспресс-оценки прочности грунта этим методом применяется плотномер ДорНИИ (рис. 1), названный по имени института, в котором был разработан.

Получили распространение следующие способы разрушения грунтов:

· механический, при котором отделение грунта от массива осуществляется ножевым или ковшовым рабочим органом машины;

· гидравлический, при котором грунт разрушается и удаляется струей воды; при работе водой применяется всасывание размытого грунта и его удаление из зоны забоя по пульпопроводу;

· взрывной, при котором грунт разрушается давлением газов, выделяющихся при взрыве;

· термический, основанный на растрескивании поверхности грунта в результате быстрого и неравномерного нагрева, например скоростной струей высокотемпературных газов.

Применяются и комбинированные методы разработки грунтов. Например, гидравлический способ может сочетаться с механическим, механический с термическим и т. д.

Основным объектом разработки в строительстве являются песчаные и глинистые, а также крупнообломочные и полускальные грунты, покрывающие большую часть земной поверхности.

Землеройные машины рассчитаны на разработку главным образом этих грунтов. грунт горный порода разрыхление

Мерзлыми называют все виды грунтов, если они имеют отрицательную температуру и содержат лед. К многолетнемерзлым относятся грунты, находящиеся в непрерывно мерзлом состоянии в течение более 3 лет. По существующей классификации мерзлые грунты делятся на твердомерзлые (обладающие наибольшей механической прочностью), пластично-мерзлые, которые сжимаются под нагрузкой сыпучемерзлые. Разработка рассмотренных мерзлых грунтов требует определенных затрат энергии. При этом применяются три группы способов разработки; защита от замерзания, оттаивание и механическое разрушение.

Разработка рассмотренных мерзлых грунтов требует определенных затрат энергии. При этом применяются три группы способов разработки; защита от замерзания, оттаивание и механическое разрушение.

Основными показателями мерзлых грунтов являются повышенная механическая прочность, пластические деформации, пучинистость и повышенное электросопротивление, величина которых зависит от температуры, влажности и вида грунта. С понижением температуры глубина промерзания увеличивается, что вызывает возрастание механической прочности грунта, сопротивления резанию и копанию, а значит уменьшение производительности землеройных машин.

Грунты характеризуются многокомпонентным составом и минерально-дисперсным строением, а также непрерывным изменением физико-механических свойств. Грунт состоит из совокупности твердых минеральных частиц (зерен), находящихся во взаимном контакте. Цементирующий материал между частицами отсутствует, так как грунт имеет поровое строение. Поры заполнены жидкой (вода) и газообразной (воздух, водные пары, углекислый газ) фазами, находящимися в свободном и связанном состоянии. Вода может быть и в твердом состоянии (лед), что резко изменяет свойства грунта. В полностью водонасыщенном грунте не содержится газа, такой грунт является двухкомпонентной системой. Неводонасыщенный грунт представляет трехкомпонентную систему. В природе наиболее распространены трехкомпонентные неоднородные грунты, представленные твердыми частицами и заполнителями пор между ними, что затрудняет их разработку. Совокупность твердых частиц и связанной воды составляет скелет грунта, определяющий свойства всей системы. Существенное влияние на свойства грунта оказывает минералогический состав твердых частиц, их форма, размеры и степень окатанности. Грунты состоят из частиц одной или нескольких фракций. Количественное соотношение минеральных частиц различной формы характеризует гранулометрический состав грунтов (таблица 3)

Классификация пород по гранулометрическим элементам (по В.В. Охотину)


Основные свойства грунтов и способы их разработки

Грунты представляют собой горные породы, слагающие поверхностные слои земной коры; они образовались в результате выветривания и разрушения основной материковой породы. Большая часть грунтов —минерального происхождения, но имеются грунты частично или полностью органического образования.

В условиях естественного залегания грунты состоят из твердых частиц различной крупности, образующих грунтовый скелет воздуха и воды. Последняя в зависимости от температуры грунта может быть в различных фазах своего состояния (твердом, жидком, газообразном).

По характеру связи между твердыми частицами грунты подразделяются на сыпучие, связные и скальные.

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:

Сыпучие, несвязные грунты характеризуются отсутствием сцепления между частицами, значительной водопроницаемостью, малой сжимаемостью, высокой величиной сил внутреннего трения и быстротой деформаций под нагрузкой.

Связные грунты отличаются малой водопроницаемостью; присутствие в них воды обусловливает молекулярные силы сцепления. Поэтому связные грунты характеризуются значительным оцеплением между частицами, большими деформациями под нагрузкой и длительностью деформаций.

В скальных грунтах их частицы жестко связаны между собой цементирующим веществом, и эта связь при ее нарушении не восстанавливается.
Более полная классификация и характеристика грунтов приведены в справочниках и специальной литературе.

Свойства грунтов оказывают существенное влияние на характер их разработки и производительность машин. В связи с этим при выборе типа машины для земляных работ надо учитывать характерные свойства и состояние разрабатываемых грунтов. Наиболее важные с этой точки зрения свойства грунтов — сопротивление разработке и устойчивость их как основания, на котором установлена машина, определяются в основном гранулометрическим составом и физико-механическими свойствами грунта.

Гранулометрический состав грунта характеризуется процентным содержанием по весу частиц различной величины. Крупность отдельных частиц нескальных грунтов составляет: гальки 40 мм; гравия 2—40 мм; песка 0,25—5 мм; песчаной пыли 0,05— 0,25 мм; пылеватых частиц 0,005—0,05 мм и глинистых частиц 0,005 мм.

Для оценки наиболее важных физико-механических свойств грунта имеют значение объемная масса, разрыхляемоеть, влажность, угол естественного откоса, связность (сцепление), трещиноватость, слоистость.

Объемная масса — отношение массы грунта в состоянии естественной влажности к его объему. Различают объемную массу в плотном теле и в разрыхленном грунте. Объемная масса грунтов, разрабатываемых землеройными машинами, колеблется в пределах 1,5—2,0 г/ж3 в зависимости от их минералогического состава, пористости и влажности.

С течением времени или под воздействием грунтоуплотняющих машин разрыхленные грунты уплотняются. Средние значения коэффициента первоначального разрыхления колеблются в пределах 1,08—1,32, а коэффициента остаточного разрыхления— в пределах 1,01—1,09. При разработке мерзлых грунтов коэффициент разрыхления возрастает примерно в 1,5—2,5 раза.

Свойства грунтов в сильной степени меняются в зависимости от содержания в них воды. Грунты принято считать сухими с влажностью менее 5%, влажными—с влажностью 5—30% и насыщенными или мокрыми при влажности более 30%.

Связность или взаимное сцепление частиц грунта характеризует способность грунта противостоять воздействию внешних сил, которые стремятся разъединить его частицы. От величины сил сцепления зависит сопротивление грунта резанию или размыву.

Грунты разрабатывают различными методами с большей или меньшей производительностью труда и машин. Поэтому каждый грунт может входить в группу легко разрабатываемых грунтов одним методом и в группу трудно разрабатываемых грунтов другим методом.

Грунты, разрабатываемые строительными машинами, обычно относят к следующим шести группам:
I группа — растительный грунт, торф, пески и супеси;
II группа — лессовидный суглинок, рыхлый влажный лесс, гравий до 15 мм;
III группа — жирная глина, тяжелый суглинок, крупный гравий, лесс естественной влажности;
IV группа — ломовая глина, суглинок со щебнем, отвердевший лесс, мягкий мергель, опоки, трепел;
V и VI группа — скалы и руда, а также мерзлые глинистые и суглинистые грунты.

В комплексе земляных работ ведущим процессом является разработка грунта. Поэтому способ разработки грунта определяет тип ведущей машины и все остальное оборудование для механизации данного технологического процесса.

Различают три основных способа разработки грунта и горных пород: механический, гидравлический и взрывной.

При механическом способе отделение части грунта или горной породы от основного массива осуществляется ножевым или ковшовым рабочим органом землеройной машины.

При гидравлическом способе разработка грунта в карьерах или полезных выемках производится: в сухих забоях —мощной компактной водяной струей, а в забоях под водой — путем засасывания грунта из-под воды заборной трубой при помощи мощного центробежного насоса — землесоса; плотные грунты разрыхляются при этом механической фрезой — рыхлителем.

При взрывном способе разрушение грунта или горной породы и перемещение их в нужном направлении осуществляется давлением газов, выделяемых при взрыве и сгорании взрывчатых веществ.

Могут иметь место и комбинированные способы разработки грунта, например, гидромеханический, при котором гидравлический способ комбинируется с механическим, и т. п.

В стадии исследования и экспериментов находятся физический и химический способы разрушения грунта и горных пород. При физическом способе полное разрушение или уменьшение прочности грунта и горных пород осуществляется с помощью ультразвука, электрогидродинамического эффекта, тока высокой частоты, прожиганием реактивными горелками и охлаждением.

Рис. 1. Образование и поперечное сечение стружки в грунтах:
а — образование стружки; б — поперечное сечение стружки; 1 — стружки в пластичных грунтах; 2 — стружки в малосвязных, связных и сухих грунтах; 3 — стружка в твердых грунтах; 4 — блокированное резание; 5 — полусвободное резание; 6 — свободное резание

При химическом способе для отделения грунта и горных пород от массива их переводят в жидкое или газообразное состояние.

Механический способ разработки грунтов землеройными машинами получил наибольшее распространение, так как он применим почти для всех грунтов, кроме скальных .пород, которые предварительно должны быть .подорваны. При помощи разнообразных землеройных машин выполняется не-менее 80—85% всего объема земляных работ.

Землеройные машины производят разрушение грунта в основном последовательным отделением части грунта (стружки) от массива. Перемещение срезанной стружки по рабочему органу машины и накапливание в нем грунта вызывают значительные сопротивления. Характер разрушения грунта и величина .возникающих при этом сопротивлений зависят от многих факторов — механических свойств грунта и его физического состояния, формы и расположения режущего органа и т. п.

Проф. Н. Г. Домбровским проведен большой комплекс исследований на одноковшовых экскаваторах и создана теория разрушения первоначальной структуры грунта. В соответствии с этой теорией в начале процесса копания режущий клин, воздействуя на грунт, производит уплотнение грунта. Затем, когда силы давления передней грани клина уравновесят максимальное сопротивление сдвигу (у пород пластичных и слабых) или сколу (у пород твердых), в плоскости скольжения произойдет сдвиг или отрыв части стружки и начнется новое уплотнение.

Рис. 2. Призма волочения при различных траекториях ковша:
а — горизонтальная; б — наклонная; в — почти вертикальная

Чем толще стружка и меньше угол копания б, тем больше область деформации грунта. Однако сопротивление деформации грунта
меньше, и сдвиг наступает быстрее при срезании тонкой стружки и большом угле копания.

В общем случае поперечное сечение стружки имеет вид, показанный на рис. 2, б.

Наиболее характерным и имеющим практическое значение является полусвободное резание, поскольку блокированное резание и свободное характерны только для начала и конца процесса разработки слоя или забоя. При этом, фактическое поперечное сечение разрушенной ковшом стружки больше, чем площадь как за счет зубьев, так и за счет сколов грунта снаружи боковых стенок.

Помимо чистого резания, при копании грунта происходит также перемещение срезанной части грунта по ковшу; часть его поступает в ковш, а часть образует перед режущей кромкой ковша призму волочения, величина которой зависит от рода состояния грунта, траектории и формы рабочего органа и угла копания.

В общем случае при копании грунта возникают три рода сопротивлений: сопротивление трению ковша о грунт Рт, сопротивление резанию грунта Рр и сопротивление перемещению призмы волочения и грунта в ковше Рп.

При работе в неоднородных грунтах, при тупой режущей кромке и неудачной ее конструкции значения Рю могут значительно возрасти.

Перспективными являются машины, осуществляющие процесс копания при движении рабочего органа сверху вниз и работающие по методу скола с обрушением. Энергоемкость процесса копания машин, работающих по этому принципу, по данным проф. Н. Г. Домбровского, в среднем на 40—50% меньше, чем у обычных, и в зависимости от рода грунта составит от 0,02 до 0,2 квт-ч на 1 м3. По такому принципу работают, например землеройно-фрезерные машины.
Энергоемкость процесса разработки грунта (на 1 м3) в зависимости от группы грунта, размеров и конструкции рабочего органа примерно составляет: а) при механическом способе разработки —от 1 до 3 квт-ч, достигая в отдельных случаях 6 квт-ч; б) при гидравлическом способе — от 10 до 12 квт-ч.

Грунтами называют горные породы и минерально-органические среды, образующие поверхностный слой земной коры.

Рыхлые горные породы и минерально-органические среды разрабатывают землеройными машинами непосредственно в состоянии их залегания. Скальные горные породы (скальные грунты), такие, как граниты, известняки, песчаники и др., характеризующиеся высокой прочностью, водонепроницаемостью и состоящие из сплошной твердой среды, землеройные машины непосредственно не разрабатывают, их предварительно дробят, как правило, взрывным способом.

Грунты представляют собой сложную трехфазную среду, состоящую из минеральных частиц, воды и воздуха. Твердые минеральные частицы, входящие в состав грунта, называют скелетом грунта.

Свойства грунтов определяются химическим составом и формой минеральных частиц, связью между ними и степенью влажности. Для выбора способов разработки и оценки энергетических затрат на разработку необходимо знать свойства грунтов, зависящие от их основных характеристик.

Процентным содержанием по массе частиц различной крупности определяется гранулометрический состав грунта. По гранулометрическому составу грунты разделяют на следующие группы: галечниковые (размер частиц 40—20 мм); гравийные (20—2 мм), песчаные (2—0,05 мм); пылеватые (0,05—0,005 мм); глинистые (менее 0,005 мм).

Чем мельче частицы грунта, тем больше отношение площади их поверхности к объему, т. е. их удельная поверхность. По мере увеличения удельной поверхности возрастают силы взаимодействия частиц между собой и грунты становятся прочнее.

Отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему называют плотностью грунта. Плотность большинства грунтов колеблется в узких пределах — 1,5 —2 т/м3.

С помощью этого показателя можно определить массу грунта в ковше экскаватора или в кузове самосвала, если объемы их известны.

Разрыхляемость — свойство грунта увеличивать свой объем в процессе разработки. Грунт до разработки находится в состоянии естественного залегания, или, как говорят, в плотном теле. После разработки объем его увеличивается. Характеризуют разрыхляемость коэффициентом разрыхления Кр~ Уразр/Улл, где Уразр — объем разрыхленного грунта; Упл — объем того же количества грунта в плотном теле. Для сыпучих неплотных грунтов Др =1,05… …1,2, для вязких плотных грунтов КР=1,2… 1,5.

Коэффициент разрыхления учитывают при расчете вместимости ковшей и кузовов, ширины ленты конвейеров и размеров отвалов грунта.

Рис. 126. Определение формы отвала грунта и безопасного расположения машины по углу естественного откоса

Липкость — способность грунта прилипать к поверхности рабочих органов. Наибольшую липкость имеют глинистые грунты. С возрастанием влажности до определенного предела липкость увеличивается, а затем снижается. Налипающий на рабочие органы грунт существенно затрудняет работу землеройных машин. Экскаваторы, предназначенные для работы в липких грунтах, оборудуют устройствами для очистки ковшей.

Влажность — отношение массы жидкости к массе сухой части грунта, которую выражают обычно в процентах. От влажности зависит связь между частицами грунта, следовательно, плотность, прочность и несущая способность.

При увеличении влажности плотность, прочность и несущая способность снижаются особенно сильно у глинистых грунтов, состоящих из мелких плоских частиц. Песчаные грунты состоят из более крупных частиц округлой формы, поэтому хорошо пропускают влагу, меньше впитывая и задерживая ее, имеют незначительное сцепление между частицами, а следовательно, меньшие плотность и прочность.

Прочность — свойство грунтов в определенных условиях и пределах, не разрушаясь, воспринимать те или иные нагрузки. Прочность определяется сцеплением между частицами грунта и силами внутреннего трения. Силы трения характеризуются коэффициентами внутреннего и внешнего трения.

Коэффициент внутреннего трения — коэффициент трения грунта по грунту — определяется тангенсом угла естественного откоса грунта, образующегося при Ртсыпке. С помощью коэффициента внутреннего трения определяют возможную вместимость ковша при заполнении его с шапкой, форму отвала, отсыпанного конвейером, безопасное расположение машины на краю траншеи или котлована.

Коэффициент внешнего трения — коэффициент трения между грунтом и материалом рабочего или транспортирующего органа — дает возможность определить угол наклона стенки бункера, по которой должен ссыпаться грунт, углы наклона ковшей в начале отсыпки, силы трения между стенками ковшей и грунтом.

Земляные работы – окомплекс строительных работ, включающий выемку (разработку) грунта, перемещение его и укладку в определённое место (процесс укладки в ряде случаев сопровождается разравниванием и уплотнением грунта). Земляные работы являются одним из важнейших элементов промышленного, гидротехнического, транспортного, жилищно-гражданского строительства. Цель земляных работ – создание инженерных сооружений из грунта (плотин, железных и автомобильных дорог, каналов, траншей и т.д.), устройство оснований зданий и сооружений, воздвигаемых из других материалов, планировка территорий под застройку, а также удаление земляных масс для вскрытия месторождений полезных ископаемых. Земляные сооружения создаются путём выемок в грунте или возведением из него насыпей. Выемка, отрываемая только для добычи грунта, называется резервом, а насыпь, образованная при отсыпке излишнего грунта, – отвалом.

В зависимости от размера частиц чаще всего принимают следующую
классификацию грунтов по фракциям:

· менее 0,005 мм – глинистые;

· 0,005-0,05 мм – пылеватые;

· 0,05-2 мм – песчаные;

· 2-20 мм – гравийные;

· 20-200 мм – галечные, щебеночные;

· более 200 мм – валуны или камни.

В зависимости от состава примесей грунты подразделяются на восемь категорий:

I–песок, супесь, мягкий суглинок, средней крепости влажный и разрыхленный без включений;

II – суглинок без включений, мелкий и средний гравии, мягкая влажная или разрыхленная глина;

III – крепкий суглинок, глина средней крепости влажная или разрыхленная;

IV– крепкий суглинок с щебнем и галькой, крепкая и очень крепкая влажная глина, сланцы;

V – сланцы, отвердевшие глина и лесс, очень крепкие мел, гипс, песчаники, мягкие известняки, скальные и мерзлые породы;

VI – ракушечники крепкие сланцы, известняка, песчаники средней крепости, мел, гипс;

VII – известняки, мерзлый грунт средней крепости;

VIII – скальные и мерзлые породы, очень хорошо взорванные (куски не более1/8 ширины ковша).

Различают земляные работы открытые (на поверхности земли), подземные и подводные. Земляные работы в современном строительстве почти полностью механизированы и выполняются высокопроизводительными машинами. К подготовительным и вспомогательным земляным работам относятся: очистка территории, разбивка земляных сооружений, отвод поверхностных вод, устройство дренажа сооружений, крепление стенок выемки, закрепление грунтов и др. Основные способы земляных работ: механический, взрывной, гидромеханический.

При механическом способе земляных работ (наиболее распространённом) разработка грунта осуществляется землеройными и землеройно-транспортными машинами (экскаваторы, скреперы, бульдозеры, грейдеры, грейдер-элеваторы, погрузчики, канавокопатели и др.). Для транспортирования грунта (из выемок к месту укладки) на значительные расстояния применяется т.н. транспортный способ, при котором разработка грунта производится землеройными машинами (главным образом экскаваторами) с погрузкой в рельсовый или безрельсовый транспорт или на ленточные конвейеры.

При сооружении каналов, железных и автомобильных дорог, отрывке котлованов и траншей с перемещением грунта на небольшие расстояния (150-200 м) обычно используется бестранспортный способ, когда выемка грунта (с несколькими перекидками) и удаление его за пределы контуров сооружений производятся экскаваторами-драглайнами. Этот способ весьма эффективен, особенно на открытых горных разработках. При земляных работах с транспортированием грунта в насыпи на расстояние до 3000 м целесообразно применение самоходных скреперов и погрузчиков. Прицепные скреперы с ковшами ёмкостью 10—15 м3 при наличии тягачей, имеющих ограниченную скорость, обычно используются для перемещения грунта на расстояние до 100 м. Осуществляя послойную разработку грунта, скреперы дают возможность отбирать для укладки в насыпь высококачественные грунты. Наряду с этим скреперы разравнивают и частично уплотняют грунт, что существенно облегчает последующие работы по уплотнению грунтов. Тяжёлые грунты при разработке скреперами рекомендуется предварительно рыхлить.

Разработка неглубоких выемок, планировочные работы, полувыемки-полунасыпи (на косогорах), разравнивание, обратные засыпки с перемещением грунта на 100-150 м производятся бульдозерами. Особенно эффективно применение групп бульдозеров (по 2-3 в ряд), что увеличивает производительность каждого бульдозера за счёт уменьшения потерь грунта. Для рытья траншей наряду с одноковшовыми экскаваторами используются и многочерпаковые траншейные. Планировочные земляные работы, профилировка земляного полотна автомобильных дорог, а также рытьё небольших канав (нагорных, кюветов и др.) могут выполняться самоходными грейдерами. При возведении различных земляных сооружений, засыпке фундаментов и траншей требуется послойное уплотнение грунта. Оно производится обычно катками дорожными (гладкими, шиповыми, вибрационными и др.), в стеснённых условияхь – трамбовками, вибротрамбовками, трамбовочными плитами.

Гидромеханический способ земляных работ, называемый гидромеханизацией, осуществляется с помощью гидромониторов, разрабатывающих земляной массив напором водяной струи, или землесосных снарядов, всасывающих грунт вместе с водой. При гидромеханизации все 3 элемента земляных работ (разработка, транспортирование, укладка грунта) объединяются в непрерывный процесс, что обеспечивает высокую эффективность этого метода. Применяются также и комбинированные способы земляных работ, например механический способ со взрывным, гидромеханическим и т.п. Выбор методов земляных работ и средств механизации обусловливается проектом производства работ.

При взрывном способе земляных работ используется сила взрыва зарядов взрывчатых веществ для перемещения грунта в нужном направлении. Во многих случаях (особенно при больших объёмах работ) взрывной способ даёт большой экономический эффект.

Взрывы, вызванные химическими превращениями, присущи особой группе химических соединений и смесей - взрывчатым веществам (ВВ). Взрывчатыми называются химические вещества или смеси веществ, способных под влиянием внешних воздействий к быстрому самораспространяющемуся химическому превращению с выделением большого количества тепла и газообразных продуктов.

Для удобства изучения и практического применения все ВВ делят на сходные по каким-либо свойствам группы (классы). По своему практическому применению ВВ делят на четыре группы:

1. инициирующие ВВ;

2. бризантные (дробящие) ВВ;

3. метательные ВВ, или пороха, и ракетные топлива;

4. пиротехнические составы.

Капсюль-детонатор ТАТ-1-Т применяется в конструкциях электрических и электромеханических взрывателей для инициирования ВВ от электровоспламенителей.

Капсюли-детонаторы в зависимости от способа их иницииро­вания подразделяются на лучевые и накольные. Лучевые капсюли-детонаторы взрываются от воздействия луча огня огнепроводного шнура, капсюля-воспламенителя, электровос­пламенителя, а также от взрыва детонирующего шнура и воздей­ствия ударной волны взрыва близко расположенного заряда ВВ.

Электровоспламенители предназначаются для инициирования капсюлей-детонаторов и воспламенения пороховых зарядов. Имеются электровоспламенители с нихромовым мостиком на­каливания (НХ-10-1,5, НХ-ПЧ) и с платиноиридиевым мостиком накаливания.

ОШ предназначается для инициирования КД в зажигательных трубках и воспламенения за­рядов дымного пороха.

Детонирующий шнур предназначается для осу­ществления одновременного взрыва нескольких заря­дов, например, при подрывании мостов, зданий и т.п., а также для бескапсюльного взрывания зарядов ВВ, заложенных в труднодоступных местах.

Подрывные заряды предназначаются для взрывных работ, к ним относятся:

· тротиловые шашки, брикеты из пластита-4 и аммонита А-80;

· со­средоточенные заряды СЗ-1, СЗ-3, СЗ-3а, СЗ-6;

· удлиненные заряды СЗ-6м, СЗ-4П, СЗ-1П;

· кумулятивные заряды КЗ-2 (КЗ-1), КЗУ и КЗК.

Тротиловые шашки изготовляются трех видов:

· массой ВВ 400 г, размером 50х50х100мм;

· массой ВВ 200 г, размером 25х50Х100 мм;

· массой ВВ 75 г, диаметром 30 мм, длиной 70мм.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Методы разработки грунтов, виды и разновидности. В целом, в этой статье предстоит поговорить именно о методах разработки грунтов, которые применяются в тех или иных случаях в зависимости от конкретных условий и местности. Также поговорим кратко о трамбовке и уплотнении грунтов и оснований в целом.

Способы и методы разработки грунта

Основные методы и средства для разработки грунта

На сегодняшний день, с учётом современных технологий, разработка грунтов, то есть устройство выемок в почве, может выполняться следующими способами:

  1. Механическим.
  2. Гидромеханическим.
  3. Взрывным.
  4. Комбинированным.

Каждый из них по своему хорош или даже уникален, учитывая, что не всегда допустимо, к примеру, использовать взрывной или гидромеханический способ рытья в городской черте. Поэтому здесь оптимально применение исключительно механического способа. Ну, а в целом, дальше смотрите подробней, чем отличаются указанные способы друг от друга.

Способы и методы разработки грунта

Гидромеханическая разработка грунта

Подобный метод изначально основывается на применении кинетической силы, точней энергии воды. Благодаря подобной энергии, удается не только разрабатывать грунт, но также его транспортировать и даже укладывать. Применение подобных методов оптимально в случаях, когда требуется переработать огромные объёмы грунтов. Также рационально применять при обустройстве различных насыпей и путепроводов, естественно при условии достаточной усадки. При этом не забывайте, что технологически использование подобного метода основывается на водных ресурсах, поэтому без них никуда. Сама технология включает такие процессы:

  1. Размыв грунта.
  2. Переход в пульпу (полужидкое состояние грунта).
  3. Транспортировка.
  4. Укладка (то есть намыв).

Способы и методы разработки грунта

Разработка грунта механическим методом

Механический метод основывается на использовании в процессе разработки, а также в том числе транспортировки (перемещения) и укладки исключительно машины и прочие механизмы. Основным процессом технологии является разработка грунтов.

Способы и методы разработки грунта

Разработка грунта землеройными машинами

К данному роду машинам можно смело отнести экскаваторы следующего типа:

  • одноковшовые;
  • многоковшовые;
  • фрезерные.

Довольно интересный момент, каждая из разновидностей также подразделяется на подвиды, к примеру, одноковшовые экскаваторы могут быть: драглайновыми, грейферами. Многоковшовые различаются на цепные и роторные.

Также нужно понимать различие в зависимости от устройства ходовой части. Различаются на:

Плюс определенная доля отличий наблюдается в системе управления, а именно:

  • электрические;
  • пневматические;
  • гидравлические.

Разработка грунтов в промышленных масштабах и объёмах выполняется экскаваторами с объёмом ковша от 0.15 до 4 кубических метров. В мелких работах соответственно задействуют меньшую технику.

Способы и методы разработки грунта

Разработка грунта землеройно-транспортными машинами

Ну, а здесь ещё проще, техника используется следующих моделей:

  1. Бульдозеры.
  2. Грейдеры.
  3. Скреперы.

Вся перечисленная техника относится к так называемому периоду циклического действия.

Разработка грунтов при помощи подобных машины применяется при необходимости выполнения планировки участка или территории, срезке растительности, возведения отсыпных насыпей и тому подобное. В том числе работы после экскаватора, который не смог переместить весь грунт. Вся эта техника доставляется на большегрузных прицепах и разгружается при помощи автокранов, что позволяет оперативно начать работы в любом месте. Отличными экземплярами отечественной техники славятся Ивановец и Челябинец, а купить её можно тут.

Укладка и уплотнение грунта

Укладка насыпей различного типа, а также уплотнение производится во время планировочных мероприятий и во время возведения насыпей, засыпке уже имеющихся траншей, создания фундаментов и прочего. Процессы уплотнения необходимы для того, чтобы повысить несущие способности почвы. То есть уменьшение сжимаемости, а также снижения водопроницаемости. Кстати, уплотнение может быть нескольких типов:

Но, касаемо технологии, в обоих случаях обязательно применяются механизмы в зависимости от уровня сложности и предназначения подготавливаемой территории.

Разделяют также следующие разновидности уплотнения грунтов:

  1. Укатка.
  2. Трамбование.
  3. Вибрирование.

Но наиболее рациональным и оптимальным считается так называемый комбинированный метод, включающий в себя одновременное воздействие на грунт, к примеру, укатка и вибрирование.

Для создания равномерной территории отсыпанный заранее грунт разравнивается с помощью бульдозеров и прочих машин. Кроме того, не стоит забывать важный нюанс, что для сухих грунтов необходимо проводить дополнительное увлажнение территории, а для влажных, наоборот, осушать участок.

Вытрамбовывание грунта

Часто встречающийся процесс в горных местностях, где наблюдается просадка грунтов. Вытрамбовывание позволяет повысить прочностные характеристики участка. Зачастую такие участки представляют собой глиняные или песчаные местности, в том числе с повышенным уровнем водонасыщения.

Сам процесс вытрамбовывания осуществляется путем передачи ударной волны на выбранный участок. В результате проведенных работ наблюдается уплотненная зона почвы, в пределах которой исключается просадка. То есть в принципе на заданный период времени исключается дальнейшие просадочные процессы, прочность и плотность грунта повышаются.

Земляные работы

Способы и методы разработки грунта

Земляные работы или переработка грунта входят в целом в процесс строительства. Включают в себя следующие составляющие:

  1. Разработка грунтов.
  2. Транспортировка.
  3. По необходимости укладка и уплотнение.

Все виды подобных работ подразделяются на следующие подвиды:

  1. Открытые.
  2. Подземные.
  3. Подводные.

Разница между ними понятна, и, думаю, объяснять не требуется.

В целом, комплекс работ сводится к тому, что нужно сделать выемку либо наоборот насыпь. В первом случае, когда речь заходит только о выработке грунта — это подготовка резервуара. Под насыпью подразумевают создание отвала, что по большому счету является отложным.

Разработка мерзлых грунтов

Способы и методы разработки грунта

Разработка грунтов мерзлого типа отличается трудоемкостью и сложностью технологии. Подобные работы могут проводиться по следующим направлениям:

  1. Прогревом почвы глубинными электродами.
  2. Прогревом с помощью водяных или паровых циркуляционных игл.
  3. Взрывом.
  4. Механическим разрыхлением.
  5. Ручным типом разработки.

В нашей стране с учётом огромного количества территорий подвергающимся холодному влиянию большее распространение получил именно механический способ разрыхления с использованием, соответственно, технических средств.

Для подобного рыхления используется ударная нагрузка такой техники, как экскаваторы или копры. Стрелы этой техники оснащаются специальными ударными инструментами, располагающимися на краях: шары, клинья или различные зубья.

Форма стрелы выбирается, исходя из особенностей грунта, фактора сопротивления. Плюс к этому, не маловажный нюанс, это масса используемого инструмента и сила удара. Если мы говорим о клиньях, то вес их зачастую порядка 4 тонн, вес же шаров немногим меньше.

Читайте также: