Характеристика энергетики россии реферат

Обновлено: 02.07.2024

Развитие экономики любой страны, на настоящем этапе развития цивилизации, невозможна без использования энергии. Наиболее универсальная форма энергии - электричество. Оно вырабатывается на электростанциях и распределяется между потребителями посредством электрических сетей коммунальными службами. Производительность - и, в конечном счете, прибыль - в значительной степени зависит от стабильности подачи энергии. Прекращение подачи электроэнергии парализует все виды деятельности. Наличие энергии - одно из необходимых условий для решения практически любой задачи в современном мире.

Прикрепленные файлы: 1 файл

Тема: Развитие энергетики России

Развитие экономики любой страны, на настоящем этапе развития цивилизации, невозможна без использования энергии. Наиболее универсальная форма энергии - электричество. Оно вырабатывается на электростанциях и распределяется между потребителями посредством электрических сетей коммунальными службами. Производительность - и, в конечном счете, прибыль - в значительной степени зависит от стабильности подачи энергии. Прекращение подачи электроэнергии парализует все виды деятельности. Наличие энергии - одно из необходимых условий для решения практически любой задачи в современном мире.

Получением, а правильнее сказать, преобразованием энергии лучшие умы человечества занимаются не одну сотню лет. Производство энергии предполагает ее получение в виде удобном для использования, а само получение - только преобразование из одного вида в другой. Основой энергетики сегодняшнего дня являются топливные запасы угля, нефти и газа, которые удовлетворяют примерно девяносто процентов энергетических потребностей человечества.

Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. Просчеты в этой области имеют серьезные последствия. Тепло и свет в домах, транспортные потоки и работа промышленности - все это требует затрат энергии. Для того чтобы этого не произошло перебоев в снабжении электроэнергией - используются системы бесперебойного электропитания и автономные источники энергии.

Потребности в энергии продолжают постоянно расти. Наша цивилизация динамична. Любое развитие требует, прежде всего, энергетических затрат и при существующих формах национальных экономик многих государств можно ожидать возникновения серьезных энергетических проблем. Более того, в некоторых странах они уже существуют.

Россия, как часть мирового социума не стоит в стороне от процессов развития энергетики. В своем реферате мне хотелось бы осветить вопрос развития электроэнергетики в России.

1. Развитие энергосистем России

1.1. План ГОЭЛРО (1920-1935)

Самой приоритетной задачей, после провозглашения Советской власти стало восстановление разрушенного хозяйства огромной страны. Вся Россия находилась в глубочайшем политическом и экономическом кризисе. Большинство промышленных предприятий не работало из-за отсутствия сырья, энергии и изношенности оборудования. Трамвай остановился в 1918 году. Электричеством обеспечивались лишь особо важные промышленные объекты и учреждения

Начало развития электроэнергетики России связано с разработкой и реализацией плана ГОЭЛРО. Энергетики нашей страны первыми в мире получили опыт широкого государственного планирования целой отрасли промышленности, такой важной и определяющей, как электроэнергетика. Известно, что с плана ГОЭЛРО началось многолетнее планирование развития народного хозяйства в масштабе всей страны, начались первые пятилетки [2].

Проекта масштабной электрификации России разрабатывался ещё до революции (1917), однако в годы Первой мировой войны (1914-1918) не возможно было начать реализацию по причине больших военных расходов. В годы гражданской войны (1917-1922/1923) и интервенции правительство под руководством Ленина начало разработку перспективного плана электрификации страны, для чего, и была создана Комиссия под руководством Г.М Кржижановского. К работе было привлечено около 200 учёных и инженеров. В декабре 1920 г. план был одобрен VIII Всероссийским съездом Советов, через год его утвердил IX Всероссийский съезд Советов.

ГОЭЛРО был планом развития не одной энергетики, а всей экономики. В нем предусматривалось строительство предприятий, обеспечивающих эти стройки всем необходимым, а также опережающее развитие электроэнергетики. И все это привязывалось к планам развития территорий. Среди них — заложенный в 1927 году Сталинградский тракторный завод. В рамках плана также началось освоение Кузнецкого угольного бассейна, вокруг которого возник новый промышленный район. Советское правительство поощряло инициативу частников в выполнении ГОЭЛРО. Те, кто занимался электрификацией, могли рассчитывать на налоговые льготы и кредиты от государства.

Памятный знак на доме 24 по Мясницкой ул., Москвы, где разработан план ГОЭЛРО

Принципы централизации выработки электроэнергии и концентрации генерирующих мощностей па крупных районных электростанциях обеспечили высокую надежность работы и эффективность энергетического хозяйства страны. Все годы строительства электроэнергетика опережала темпы роста валовой промышленной продукции. Это принципиальное положение и в последующие годы, после завершения плана ГОЭЛРО, продолжало служить генеральным направлением развития электроэнергетики и закладывалось в последующие планы развития народного хозяйства. В 1935 г. (конечный срок выполнения плана ГОЭЛРО) его количественные показатели по развитию основных отраслей промышленности и электроэнергетики были значительно перевыполнены. Так, валовая продукция отдельных отраслей промышленности выросла по сравнению с 1913 г. на 205-228 % против 180-200 %, намеченных планом ГОЭЛРО.

Особенно значительным было перевыполнение плана развития электроэнергетики. Вместо намеченного планом сооружения 30 электростанций было построено 40. Уже в 1935 г. по производству электроэнергии СССР перегнал такие экономически развитые страны, как Англия, Франция, Италия и занял третье место в мире после США и Германии.

Динамика развития электроэнергетической базы СССР, а с 1991 г. - России, характеризуется данными табл. 1.1 и рис. 1.1.

Развитие электроэнергетической базы страны

кВт, в том числе:

млрд кВтч, в том

Примечание. Данные за 1930–1980 гг. относятся к СССР, данные за 1990-2003гг.- к Российской Федерации

1.2. Развитие энергетики (1935- конец 80)

К 1935 г. в СССР работало шесть энергосистем с годовой выработкой электроэнергии свыше 1 млрд. кВт·ч каждая, в том числе Московская – около 4 млрд кВт·ч, Ленинградская, Донецкая и Днепровская – более чем по 2 млрд кВт-ч. Первые энергосистемы были созданы на основе линий электропередачи напряжением 110 кВ, а в Днепровской энергосистеме напряжением - 154 кВ, которое было принято для выдачи мощности Днепровской ГЭС.

Со следующим этапом развития энергосистем, характеризующимся ростом передаваемой мощности и соединением электрических сетей смежных энергосистем, связано освоение электропередач класса 220 кВ. В 1940 г для связи двух крупнейших энергосистем Юга страны была сооружена межсистемная линия 220 кВ Донбасс - Днепр.

Нормальное развитие народного хозяйства страны и его электроэнергетической базы было прервано Великой Отечественной войной 1941–1945 годов. На территории ряда временно оккупированных районов оказались энергосистемы Украины, Северо-Запада, Прибалтики и ряда центральных районов Европейской части страны. В результате военных действий производство электроэнергии в стране упало в 1942 г. до 29 млрд кВт·ч, что существенно уступало предвоенному году. За годы войны было разрушено более 60 крупных электростанций общей установленной мощностью 5,8 млн. кВт, что отбросило страну к концу войны на уровень, соответствующий 1934 г.

Рис. 1.1. Протяженность ВЛ 110 кВ и выше (а) и установленная мощность трансформаторов 110 кВ и выше (б)

Во время войны было организовано первое Объединенное диспетчерское управление (ОДУ). Оно было создано на Урале в 1942 г. для координации работы трех районных энергетических управлений: Свердловэнерго, Пермэнерго и Челябэнерго. Эти энергосистемы работали параллельно по линиям 220 кВ.

В конце войны и особенно сразу же после ее окончания были развернуты работы по восстановлению и быстрому развитию электроэнергетического хозяйства страны. Так, с 1945 по 1958 г. установленная мощность электростанций увеличилась на 42 млн. кВт или в 4,8 раза. Производство электроэнергии выросло за эти годы в 5,4 раза, а среднегодовой темп прироста производства электроэнергии составил 14 %. Это позволило уже в 1947 г. выйти по производству электрической энергии на первое место в Европе и второе - в мире.

В 1970 г. к Единой энергосистеме европейской части страны была присоединена Объединенная энергосистема (ОЭС) Закавказья, а в 1972 г – ОЭС Казахстана и отдельные районы Западной Сибири.

Важным этапом развития ЕЭС явилось присоединение к ней энергосистем Сибири путем ввода в работу в 1977 г. транзита 500 кВ Урал – Казахстан – Сибирь, что способствовало покрытию дефицита электроэнергии в Сибири в условиях маловодных лет, и, с другой стороны, использованию в ЕЭС свободных мощностей сибирских ГЭС. Все это обеспечило более быстрый рост производства и потребления электроэнергии в восточных районах страны для обеспечения развития энергоемких производств территориально-промышленных комплексов таких как Братский, Усть-Илимский, Красноярский, Саяно-Шушенский и др. За 1960–1980 годы производство электроэнергии в восточных регионах возросло почти в 6 раз, тогда как в Европейской части страны, включая Урал, – в 4,1 раза. С присоединением энергосистем Сибири к ЕЭС работа наиболее крупных электростанций и основных системообразующих линий электропередачи стала управляться из единого пункта. С пульта Центрального диспетчерского управления (ЦДУ) ЕЭС в Москве с помощью разветвленной сети средств диспетчерской связи, автоматики и телемеханики диспетчер может в считанные минуты перебрасывать потоки мощности между энергообъединениями. Это обеспечивает возможность снижения устанавливаемых резервных мощностей [2].

1.3. Развитие энергетики (1990-2010)

Для производства энергии необходимы энергетические ресурсы. Практически все источники энергии, применяемые в настоящее время – это источники солнечного происхождения и являются результатом воздействия на планету Земля энергии Солнца. Органическое топливо (уголь, нефть, газ) – это аккумулированная солнечная энергия, накопленная за счет энергии солнца в течение миллионов лет, потребляется же она человечеством в считанные годы. Преобразованной солнечной энергией является энергия других источников, например ветра, рек, морских приливов и отливов, волн.
Энергоресурсы подразделяются на первичные (природные) и преобразованные.

Вложенные файлы: 1 файл

Топливно-энергетические ресурсы.doc

Характеристика топливно- энергетических ресурсов России

Для производства энергии необходимы энергетические ресурсы. Практически все источники энергии, применяемые в настоящее время – это источники солнечного происхождения и являются результатом воздействия на планету Земля энергии Солнца. Органическое топливо (уголь, нефть, газ) – это аккумулированная солнечная энергия, накопленная за счет энергии солнца в течение миллионов лет, потребляется же она человечеством в считанные годы. Преобразованной солнечной энергией является энергия других источников, например ветра, рек, морских приливов и отливов, волн.
Энергоресурсы подразделяются на первичные (природные) и преобразованные. Первичные – это ресурсы, имеющиеся в природе в начальной форме. Энергия, получаемая при использовании таких ресурсов, называется первичной.

Первичные энергоресурсы бывают:

• возобновляемые – это солнечная энергия, гидроэнергия, энергия ветра, годичные приросты древесины и торфа, геотермальная энергия, энергия приливов, морских течений – их запасы постоянно восполняются;
• невозобновляемые, запасы которых не имеют источников пополнения и постепенно уменьшаются в связи с растущим их потреблением (уголь, нефть, газ, ядерная энергия).

При изменении исходной формы первичных энергоресурсов в результате превращения или обработки образуются преобразованные энергоресурсы: бензин и другие виды нефтепродуктов, электричество, искусственный газ, водород, пар, горячую воду, тепло.

В современных условиях более 90% электро- и теплоэнергии получают, расходуя невозобновляемые энергоресурсы: различные виды угля, горючие сланцы, нефть, природный газ, торф, ядерное топливо.

Уголь – один из наиболее распространенных в природе энергоносителей. Доля угля в топливно-энергетическом балансе России составляет около 12%. Ресурсы угля во много раз превышают прогнозируемые ресурсы нефти и газа. Наиболее крупные приросты добычи угля могут дать Кузнецкий и Канско-Ачинский бассейны (80%).
Угли Кузнецкого бассейна – более высокого качества. По прогнозируемым запасам это одна из главнейших баз высококачественных энергетических углей не только для Сибири и Урала, но и для европейской части России.
Угли Канско-Ачинского месторождения (бурые угли) без обогащения не пригодны для хранения и перевозки на большие расстояния. Поэтому их целесообразно сжигать на крупных электростанциях мощностью 4000-6400 МВт на месте добычи. Но при этом встает вопрос о передаче электрической энергии на большие расстояния. Для увеличения добычи и сокращения дефицита топлива в европейской части развивается Печорский бассейн, имеющий достаточно большие ресурсы энергетических углей.

Основными потребителями угля являются тепловые электростанции,
черная и цветная металлургия. Они потребляют 65 % твердого топлива, поставляемого национальной экономике.

Нефть непосредственно как топливо используется мало. В основном применяют остаточный продукт переработки нефти – мазут. Мазут сжигают в топках энергетических котлов газомазутных энергоблоков в периоды недостатка газа (например, при сильных длительных холодах и временной нехватке природного газа, заготовленного в подземных
хранилищах).

Основные запасы нефти сосредоточены в Западно-Сибирском регионе – 72,3%; на европейскую часть страны приходится 21% общих запасов нефти. Дальнейшее наращивание добычи нефти в новых северных районах, удаленных от обжитых мест, становится все дороже. Пока на тепловых электростанциях России одна треть электроэнергии вырабатывается за счет сжигания газомазутного топлива.

Газ – наиболее чистый вид топлива. Газообразное топливо существует в нескольких формах: природный газ; попутный газ из недр земли при добыче нефти; доменный и коксовый газы, получаемые при металлургическом производстве.

Основная доля запасов природного газа (79,9%) находится в Западной Сибири. Здесь добывается 87% всего российского газа. Потенциальные запасы углей в несколько раз больше потенциальных запасов нефти и газа, при этом добыча последних обходится значительно дороже. По некоторым оценкам, в России запасов угля хватит на 250 лет, нефти – на 40, природного газа – на 65 лет. Но какими бы грандиозными ни казались запасы энергоресурсов, они ограничены. Кроме того, сложными являются задачи транспортировки в больших количествах угля, газа от места добычи до электростанции, а также передача электроэнергии от места ее производства до потребителя. Это связано с большими затратами на транспорт и компенсацию потерь в процессе транспортировки энергии. Преобразование топлива в конечные виды энергии связано с вредными выбросами твердых частиц, газообразных соединений, а также большого количества тепла, негативно воздействующего на окружающую среду.

Россия известна своими разработками ядерных технологий для атомных станций, однако доля ядерной энергии в её энергетическом секторе не выше соответствующего уровня других промышленных стран. В 2000 году доля атомной энергетики России составила 15% всего её производства, что определённо меньше, чем в Финляндии, где в 2000 году доля ядерного электричества была 32%, что соответствует среднему западноевропейскому уровню. С другой стороны, Россия строит планы увеличения доли атомной энергетики по-другому, нежели во многих западных странах. Эта стратегия, однако, не является какой-то особенной, потому что атомные станции строятся и в других промышленно-развитых государствах

Географически потребление ядерной энергии сконцентрировано в России в приграничных областях с Финляндией. В производящем электричество Северно-Западном федеральном округе, к которому среди прочих относятся Петербург, Карелия и Кольский полуостров, 41% вырабатываемого электричества приходится на долю АЭС. В Сибири электричество практически полностью производится либо с помощью гидростанций, либо с помощью фоссильного топлива (т.е. газа, угля и нефти). На Урале – практически целиком на фоссильном топливе. Таким образом, атомная энергетика остаётся источником электричества только для европейской территории России.

В России доверяют ядерной энергии. Основными положениями атомной стратегии страны являются: 1) безопасное и эффективное использование АЭС, 2) обновление устаревших АЭС с одновременным улучшением их безопасности и повышением производительности, 3) развитие и внедрение новых, технически более прогрессивных, ядерных реакторов.

Возобновляемые энергоресурсы (исключая гидроэнергетические) не нуждаются в транспортировке к месту потребления, но обладают низким энергетическим потенциалом, в связи с чем преобразование энергии большинства возобновляемых источников требует больших капитальных вложений. Возобновляемые источники энергии являются экологически чистыми. Из возобновляемых энергоресурсов в настоящее время в основном используется гидроэнергия и совсем в малых количествах (приблизительно 2%) энергия ветра, солнца (например, в Дагестане, на Дальнем
Востоке с помощью солнечной энергии получают тепло и электроэнергию), геотермальная энергия (на Камчатке строительство станций на горячих источниках позволяет не завозить топливо в этот регион).
В настоящее время поставлена задача оптимизации структуры топливного баланса и повышения энергетической безопасности страны за счет снижения доли газа, потребляемого электростанциями, и увеличения доли угля.

Ожидается, что в России к 2020 г. покрытие потребностей в энергии будет происходить при следующем изменении спроса на энергоресурсы:

Особую актуальность в настоящее время приобретает энергосбережение, позволяющее снизить масштабы потребления энергоресурсов в мире к 2020 г. на 20-25%. Энергосбережение должно осуществляться не за счет снижения потребления энергии, а за счет рационального ее использования. Внедрение топливосберегающих технологий влечет за собой снижение расхода высококачественных видов топлива во многих энергоемких отраслях промышленности. Наравне с экономией первичной энергии в процессе ее трансформации в электрическую и тепловую немаловажной задачей остается экономия энергии в промышленности, на транспорте и в коммунально-бытовом секторе.

Характерной особенностью энергетического хозяйства промышленности является наличие в ней разнообразных установок, а также использование не только первичных, но и вторичных энергоресурсов. К вторичным энергоресурсам относятся отходы, побочные и промежуточные продукты, образующиеся в технологических установках, которые не применяются в самом агрегате, но могут быть частично или полностью использованы для энергоснабжения других агрегатов.

1. Григорьев Л, Салихов М. Энергетический баланс России: анализ и оценка // "Экономическое обозрение", №6.2007. С.47-55

2. Климов С.Л. Угольная промышленность и энергетическая безопасность стран мира. 2002.672 с

3. Кузовкин А.И. Реформирование электроэнергетики и энергетическая безопасность. М. Издательство: Институт микроэкономики, 2006.388 с.

4. Портнов А. Урановая проблема и строительство новых АЭС в России // Промышленные ведомости. №6.2008

5. Региональная экономика и управление. Под. ред. В.И. Видяпина. И М.В. Степанова. М.: ИНФРА-М. 2009.666 с.

6. Розенберг Г.С., Рянский Ф.Н. Теоретическая и прикладная экология: Учебное пособие. Нижневартовск: Изд-во Нижневарт. пед. ин-та, 2005. С.245

7. Симчера В.М., Федоренко Н.П. Валовое промышленное производство России за 100 лет // Россия в окружающем мире. 2002 Россия в окружающем мире: 2002 (Аналитический ежегодник). Отв. ред.Н. Н. Марфенин / Под общ. ред.: В.И. Данилова-Данильяна, С.А. Степанова. М.: Изд-во МНЭПУ, 2002. - 336 с. С 1-15

8. Состояние и использование минерально-сырьевых ресурсов Российской Федерации. Аналитический обзор. М.: ФГУНПП, "Аэрогеология", Информационно-аналитический центр "Минерал". 2008.275 с.

9. Среднемесячные цены на важнейшие виды минерально-сырьевой продукции во второй половине 2008 года.М. ФГУНПП. Аэрогеология. 2009.16 с.

10. Халимов Э.М. Нефтяной комплекс России: состояние, проблемы развития // НефтьГазПромышленность, № 4 (24), 2006 г.

11. Энергетика России (1920-2020 гг.). Том 2. Энергетическая политика на рубеже веков. М.: ИД Энергия, 2008. - 1032 с.

Традиционной, исторически самой значимой отраслью является топливная энергетика. В 20-30-х годах XX века новый толчок энергетическому развитию СССР дало масштабное строительство районных тепловых и гидроэлектростанций в рамках ГОЭЛРО. В пятидесятые годы прогресс в энергетической области был связан с научными разработками в области атома и строительством атомных электростанций. В последующие годы происходило освоение гидропотенциала Сибири и ископаемых ресурсов Западной Сибири.

Работа состоит из 1 файл

История развития Энергетики в России.doc

Энергетика России — отрасль российской экономики.

Традиционной, исторически самой значимой отраслью является топливная энергетика. В 20-30-х годах XX века новый толчок энергетическому развитию СССР дало масштабное строительство районных тепловых и гидроэлектростанций в рамках ГОЭЛРО. В пятидесятые годы прогресс в энергетической области был связан с научными разработками в области атома и строительством атомных электростанций. В последующие годы происходило освоение гидропотенциала Сибири и ископаемых ресурсов Западной Сибири. Страна обладает существенными запасами энергетических ископаемых и потенциалом возобновляемых источников, входит в десятку наиболее обеспеченных энергоресурсами государств. Однако доля возобновляемых источников в энергетике в процентном отношении невелика, в отличие от энергетического комплекса Европы, где политика Евросоюза направлена на постепенный рост использования возобновляемых источников энергии и замещение ими традиционных.

Электроэнергетика

Ядерная энергетика

Гидроэнергетика

Страна обладает теоретическим потенциалом, оцениваемым до 2295 млрд. кВт·ч/год, при этом из них 852 млрд. кВт·ч/год экономически оправданы. Однако основная часть потенциала сконцентрирована в Сибири и на Дальнем Востоке — в значительном удалении от основных потребителей электроэнергии, а его реализация увязывается с промышленным развитием указанных регионов. Кроме удалённых от потребителей территорий менее значительным, и не до конца освоенным гидропотенциалом обладают высокогорные реки Кавказа, многоводные реки Урала, Кольского полуострова, Камчатки. В 2007 году российскими гидроэлектростанциями выработано 177,7 млрд. кВт·ч электроэнергии, что составило 17,8 % всей выработки. Крупнейшая компания оператор гидроэлектростанций — РусГидро владеет половиной гидрогенерирующих мощностей. Другие крупные гидрогенерирующие компании — ЕвроСибЭнерго и ТГК-1. Перспективное развитие гидроэнергетики связывают с освоением сибирского потенциала — достройкой Богучанской и Усть-Среднеканской ГЭС, поднятием мощности Вилюйской-III, в проектах Нижнеангарские ГЭС и станции в бассейне нижнего Енисея (Нижнекурейская и Эвенкийская), Южно-Якутский ГЭК. Осваивается потенциал Северного Кавказа — в строительстве Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС, в планах вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, развитие малой гидроэнергетики в Северной Осетии, и Дагестане. В центре и на севере Европейской части, в Приволжье рассматриваются достройка Белопорожской ГЭС, существенное повышение рабочей мощности Волжских ГЭС. Особое значение имеет развитие выравнивающих мощностей в основных потребляющих регионах — ведётся строительство Загорской ГАЭС-2, в планах Ленинградская ГАЭС. Огромным потенциалом обладают множественные российские морские и океанические заливы с высокими, достигающими высоты в 10 метров приливами. С 1968 года действует экспериментальная приливная электростанция — Кислогубская мощностью 1,7 МВт, планируется строительство опытной Северной ПЭС в 12 МВт. Существует проект мощной (11,4 ГВт) Мезенской ПЭС.

Топливная энергетика

Топливная энергетика включает комплекс отраслей, занимающихся добычей, переработкой и реализацией топливно-энергетического сырья и готовой продукции. Включает угольную, газовую, нефтяную, торфяную, сланцевую и уранодобывающую промышленность. В связи с развитием электрификации и теплофикации производств, обусловливающих интенсивный рост потребления энергии, роль топливной промышленность возрастает. Топливно-энергетическая промышленность прошла в своем развитии несколько этапов: угольный (до середины XX в.), нефтяной и газовый (до 80-х гг. XX в.). В то время как мировая энергетика вступила в переходный этап — постепенного перехода от использования минерального топлива к возобновляемым и неисчерпаемым энергоресурсам, вес топливной энергетики в России остаётся значительным и роль её не уменьшается.

Биоэнергетика

Древесина
Из возобновимых ресурсов наиболее широкое применение имеет энергетическое использование древесины в виде дров. Это прежде всего отопление домов, приготовление пищи и подогрев воды в слаборазвитых сельскохозяйственных районах где нет доступа к магистральному природному газу, относительно дорога доставка угля, и имеются значительные лесные запасы. Однако отдача от такого применения чаще всего относительно не велика. Объём таких заготовок оценивается специалистами до 50 млн. м³/год, при полном объёме рубок в 350 млн. м³ (1996 год) и максимально возобновимом объёме в 800 млн. м³/год. Однако освоение данного потенциала в возобновимом виде из-за труднодоступности возможно только при высоких инфраструктурных затратах. Применение естественных лесов в энергетике менее рентабельно, нежели в целлюлозно-бумажной или деревообрабатывающей отраслях. Наиболее высокая продуктивность, где возможно эффективное выращивание энергетических лесов, отмечается на Северном Кавказе, в Алтайском крае и центре европейской части. Одним из перспективных направлений развития использования древесины можно считать технологии гидролиза.

Торф
До 90-х годов ощутимую роль в топливной энергетике занимала торфяная промышленность, годовая добыча которой в середине 70-х достигала 90 млн. тонн. преимущественно топливного сырья, на середину 2000-х добыча торфа не превышает 5 млн. тонн в год. Разведанные запасы торфа свыше 150 млрд. т. (40 % влажности), ежегодно образуется до 1 млрд. м³ торфа, основные запасы сконцентрированы в западной Сибири и на северо-западе европейской части. Ресурсы торфяных месторождений несколько более концентрированы, однако при этом зачастую ещё более труднодоступны, чем лесные. Некоторое количество торфа сжигается на электростанциях: Шатурская ГРЭС в 2005 году использовала 0,67 млн. т., ТГК-5 в 2006 году применила 0,57 млн. т.

Геотермальная энергетика

На 2006 в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкессия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край). По имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн. м² с температурой воды 70—90 °C. На конец 2005 года установленная мощность по прямому использованию тепла составляет свыше 307 МВт. Все Российские геотермальные электростанции расположены на территории Камчатки и Курил, суммарный электропотенциал пароводных терм только Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский геотермальный потенциал реализован в размере чуть более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки

Ветроэнергетика

Технический потенциал ветровой энергии России оценивается в размере свыше 50 трлн. кВт·ч/год. Экономический потенциал составляет примерно 260 млрд. кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России. Особой концентрацией ветропотенциала отличаются побережья Тихого и Арктического океанов, предгорные и горные районы Кавказа, Урала, Алтая, Саян. В приближённых к потребителям и имеющим подходящую инфраструктуру возможно строительство крупных ветропарков, среди них можно выделить побережья Кольского полуострова, Приморья, юга Камчатки, Каспийское и Азовское побережья. Развитию масштабной ветроэнергетики в стране располагают запасы природного газа, лучше других видов топлива подходящего для высокоманевренной генерации, а в отдельных районах, как например Карелия, Мурманская область, Кавказ — действует маневренная гидроэнергетика. Весьма эффектно применение малых ветроустановок, например для поднятия грунтовой воды и непосредственной выработки тепла, в степной сельской местности. Установленная мощность ветряных электростанций в стране на 2007 год составляет около 16,5 МВт, суммарная выработка не превышает 25 млн. кВт·ч/год.

1655 г. Начался век пара на Руси. На реке Яузе сооружены две паровые мельницы.

1873 г. А.Н. Лодыгин изобрел электрическую лампу накаливания с угольным стержнем.

1879 г. Впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост) в Санкт-Петербурге.

1880 г. В русском техническом обществе учрежден электротехнический отдел.

1880 г. Первая в мире электротехническая выставка открылась в Санкт-Петербурге.

1883 г. Первая электростанция постоянного тока в Санкт- Петербурге дала свет 32 фонарям на Невском проспекте.

1887 г. Начало работ по электрификации Москвы.

1892 г. Первый электрический трамвай в Киеве.

1893 г. Начало внедрения системы электроснабжения трехфазного тока (первая установка – Новороссийский элеватор).

1895 г. Первая гидростанция в России (Санкт-Петербург, р. Большая Охта)

1897 г. Запуск первой крупной электростанции в России и передача мощности на большие расстояния (Москва, Раушская набережная).

1900 г. На Всемирной выставке в Париже инженер В.Г.Шухов удостоен Диплома и Большой золотой медали за создание самых экономичных универсальных паровых котлов.

1901 г. Первые электростанции в Курске и Ярославле.

1903 г. Первой теплофикационной системой, заработавшей в России, считают теплофикационную систему детской больницы им. принца Ольденбургского (ныне им. К.А. Раухфуса), где пароводяным отоплением было оборудовано 13 корпусов с подачей к указанным корпусам отработанного пара от местной электростанции (с добавлением острого пара). Внутри каждого корпуса были предусмотрены двухтрубные гравитационные системы водяного отопления с местными пароводяными бойлерами.

1908 г. Первая электростанция в Чите.

1908 -1910 гг. По совершенно аналогичной схеме проф. В.В. Дмитриев осуществил пароводяное отопление 37 корпусов Петербургской больницы – ныне больницы им. Мечникова.

1909 г. Водяное отопление с насосным побуждением было впервые осуществлено в России в здании петербургского Михайловского театра. Автором проекта был инж. Н.П. Мельников. Общая тепловая мощность установки около 1 Гкал/ч, в качестве источника тепла был использован отработанный пар от местной электростанции.

Энергетика России

Российский топливно-энергетический комплекс, начало которому было заложено ещё в XIXвеке, по объёмам выработки и экспорта электроэнергии занимает четвёртое место в мире. Сегодня российская энергетика – это одна из базовых отраслей, обеспечивающая страну энергетическими ресурсами. Количество занятого в ней персонала превышает 2 млн. человек. Вклад в экономику страны превышает 3% ВВП.

Электроэнергетика

Современная энергосистема России располагает 846 крупными электростанциями, общей мощностью более 250 ГВт. Выработка электрической энергии в 2019 году достигла 1096 млрд. кВт·ч, что на 0,4% больше аналогичного показателя в 2018 года.

Тепловая энергетика

Основу энергетической мощи страны составляют тепловые электростанции (ТЭЦ), суммарной установленной мощностью 164,6 ГВт. На их долю приходится две трети выработки электрической энергии в стране. Что в 2019 году равнялось 616,8 млрд. кВт·ч. Это на пол процента ниже уровня 2018 года.

Количественное расположение станций обусловлено экономическим потенциалом регионов, питающихся от объединённых энергосистем различных районов страны.

Распределение тепловых электростанций по объединённым системам

Объединённая энергосистема (ОЭС) ТЭЦ (шт.)
Центра 74
Средней Волги 36
Урала 98
Северо-Запада 41
Юга 20
Республики Крым 10
Сибири 53
Востока 19
Изолированных систем (остров Сахалин, полуостров Камчатка, Чукотский автономный округ, территории децентрализованного электроснабжения) 25

Тепловые электростанции включают в себя: государственные районные электростанции, теплоэлектроцентрали, газотурбинные, конденсаторные, парогазовые, утилизационные электростанции.

Исторически в нашей стране сложилась централизованная система теплоснабжения. Источниками тепловой энергии для неё выступают те же самые ТЭЦ и крупные котельные, совместно производящие 92,4% потребляемой тепловой энергии.

ТЭЦ

В качестве топлива для тепловых электрических станций служат:

  • Природный газ – 73%.
  • Уголь – 23,9%.
  • Мазут – 3%.
  • Торф – 0,1%.
  • Дизельное топливо не используется централизованно.

В настоящее время теплоэнергетика переживает своё второе рождение. Изношенное, в результате длительной эксплуатации оборудование заменяется современным. Увеличивается генерация электростанций за счёт монтажа новых высокопроизводительных энергоблоков, производительностью до 800 МВт (Берёзовская, Каширская, Пермская, Троицкая ГРЭС).

Уровень технологической оснащённости тепловых станций на начало 2019 года

Тип установок % от суммарной мощности ТЭЦ России
Паротурбинные 79
Парогазовые 15,5
Газотурбинные 4,8
Прочие (дизельные, газопоршневые) 0,7

Гидроэнергетика

Второе место среди отраслей электроэнергетики занимает гидроэнергетика. На её долю приходится одна пятая часть энергетической мощи страны, что составляет 51,7 ГВт. Общее количество произведённой гидростанциями электроэнергии в 2019 году составило 190,3 млрд. кВт·ч, что превышает соответствующий показатель 2018 года на 3,6 %.

Экономически целесообразный к использованию гидроэнергетический потенциал рек нашей страны составляет более 800 млрд. кВт·ч. Его размещение по территории государства крайне неравномерно:

  • 80% приходится на территорию Сибири и Дальнего Востока.
  • 20% расположено в европейской части страны.

Расположение 15 самых мощных ГЭС в России

Реки Количество электростанций (шт.)
Волга + Кама 6
Кунья (Московская область) 1 гидроаккумулирующая станция
Сулак (Дагестан) 1
Енисей 5
Амур 2

Гидроэлектростанции подразделяются в зависимости:

  • От вырабатываемой мощности: на малые – до 5 МВт, средние – до 25 МВт, мощные – свыше 25 МВт.
  • От высоты водного напора: на низконапорные – от 3 до 25 м, средненапорные – свыше 25 м, высоконапорные – выше 60 м.
  • От способа использования водяного потока: плотинные, приплотинные (электростанция строится ниже плотины), деривационные (предусматривают отвод воды по специальным стокам), гидроаккумулирующие.

Современная гидроэнергетика, кроме использования возобновляемого источника электрической энергии (99% генерации по стране), обеспечивает: водоснабжение, ирригацию, защиту близлежащих к водоёмам объектов от затопления, судоходство.

В перспективных планах энергетиков России стоит освоение рек:

  • Северного Кавказа.
  • Сибири: Енисей, Обь, Нижняя Ангара, Нижняя Тунгуска.
  • Дальнего Востока: Алдан, притоки Амура, Витим, Тимптон, Учур.

4 февраля 2020 года начала работу Замарагская ГЭС-1 в Северной Осетии, мощностью 346 МВт.

Атомная энергетика

Третьей по установленной мощности, составляющей на начало 2020 года около 30 ГВт, отраслью, обеспечивающей государство электрической энергией, является атомная энергетика. За 2019 год АЭС сгенерировали 208,8 млрд. кВт·ч. Это на 2,2 % больше, чем в предыдущем году.

  • Крупнейшим российским производителем электроэнергии.
  • Вторым производителем атомной энергии в мире.
  • Третьим мировым энергетическим гигантом по производству тераватт-часов электроэнергии.

На территории России к 2020 году располагается 11 атомных электростанций с 38 энергоблоками.

Атомные реакторы российской энергосистемы

Принцип действия Тип Мощность (Мвт) Количество (шт.)
С водой под давлением ВВЭР-1000 1000 12
ВВЭР-1000 1100 1
ВВЭР-1200 1200 3
ВВЭР-440 440 4
ВВЭР-440 417 1
КЛТ-40С 35 2
Канально-кипящие РБМК-1000 1000 10
ЭГП-6 12 3
На быстрых нейтронах БН-600 600 1
БН-800 800 1

Российская федерация обладает полным комплексом технологических процессов в области ядерной энергетики:

  • Добычей урановой руды, с последующей переработкой и обогащением.
  • Разработкой и производством топлива для ядерных реакторов.
  • Строительством и остановкой энергоблоков атомных электростанций.
  • Переработкой и утилизацией использованного ядерного топлива.

Это позволяет вести экспортные операции по распространению атомной энергетики на всех континентах, кроме Австралии и Океании. Одним из последних достижений отрасли стал запуск в эксплуатацию плавучей атомной электростанции. Снабжающей энергией самый северный город страны – Певек, расположенный в Чукотском автономном округе.

Атомная станция

Возобновляемая энергетика

Одно из наиболее перспективных направлений энергетики, являющееся альтернативой традиционным видам генерации. Суммарная выработка электроэнергии в 2019 году всеми электростанциями, использующими возобновляемые источники, составила всего лишь 2 млрд. кВт·ч. Это менее 0,2% от общей выработки по стране.

Это говорит о том, что возобновляемые источники энергии (ВИЭ) используются в нашей стране недостаточно. Хотя потенциал их эксплуатации достаточно высок.

Оценка возможностей экономически эффективного использования ВИЭ

Виды энергии Потенциал (млн. тонн условного топлива в год)
Геотермальная 115
Малая гидроэнергетика 65,2
Низкопотенциальное тепло 36
Биомасса 35
Солнечная 12,5
Ветра 10
  • По солнечной энергетике на 69,4 %.
  • По ветроэнергетике на 47,3 %.

Солнечная энергетика

К началу 2019 года в России общая мощность электростанций, основанных на использовании солнечной энергии, составляла 834,2 МВт. Количество выработанной ими электроэнергии за 2019 год составило 1,3 млрд. кВт·ч, что на 69,4 % превышает показатель 2018 года.

Столь высокие темпы прироста объясняются значительным увеличением количества солнечных электростанций (СЭС) с каждым годом.

Динамика запуска в эксплуатацию солнечных электростанций в России по годам

Год Количество (шт.) Мощность (МВт)
2015 4 40,2
2016 5 30
2017 30 356,9
2018 14 285
2019 (на 14.09) 17 257,5

Общее количество действующих, как в составе энергосистем, так и изолированно, и строящихся СЭС в Российской Федерации составляет 73 электростанции.

Солнечная энергетика

По способу преобразования солнечной радиации в электрическую энергию СЭС подразделяются на семь типов:

  • Аэростатные.
  • Башенные.
  • Комбинированные.
  • Солнечно-вакуумные.
  • Тарельчатые.
  • С использованием параболических зеркал.
  • Эксплуатирующие фотоэлектрические батареи.

Наиболее перспективными регионами, в плане использования солнечной энергии, являются южные области страны: Причерноморье, Северный Кавказ, побережье Каспийского моря, Южная Сибирь, Дальний Восток. Так как уровень солнечной радиации в этих районах достигает 1400 кВт·ч/м² в год.

Ветроэнергетика

По данным системного оператора энергетического комплекса России суммарная мощность ветряных электростанций единой энергосистемы составляла на 1 января 2019 года 183,9 МВт. Изолированные ветроэлектрические станции (ВЭС) обладают установленной мощностью в 9,125 МВт.

Общая выработка электрической энергии ВЭС ЕЭС России в 2019 году равнялась 0,3 млрд. кВт·ч. Что, несмотря на малую величину, демонстрирует увеличение по сравнению с 2018 годом на 47,3%.

Ветроэнергетика России сегодня располагает:

  • 16 действующими ВЭС.
  • 7 изолированными работающими станциями.
  • 5 ветровыми электрическими станциями, выведенными из эксплуатации.
  • 13 проектируемыми и строящимися ВЭС.

Ветреные станции строятся в основном на возвышенностях. Там, где скорость ветра составляет: более 4,5 м/сек. В зависимости от месторасположения, они бывают:

  • Горные.
  • Наземные.
  • Парящие.
  • Плавающие.
  • Прибрежные.
  • Шельфовые.

Ветроэнергетика

Экономически эффективный потенциал ветроэнергетики России оценивается в 6218 ТВтч/год. Для его реализации более всего подходят:

  • Морские побережья.
  • Южные степи.
  • Возвышенности и плоскогорья.
  • Отдельные ветровые зоны.

Геотермальная энергетика

Использование подземного тепла – одно будущих направлений отечественной энергетики. К 2019 году три геотермальные электростанции (ГеоЭС) Камчатки общей мощностью 74 МВт сумели выработать 427 млн. кВт·ч электрической энергии. Кроме того, на территории нашего государства располагаются также три выведенных из работы геотермальных станции: Паратунская, Менделеевская (находится в процессе реконструкции) и Океанская.

Геотермальный потенциал России многократно превосходит запасы углеводородов. Суточный поток в 14 млн. кубических метров горячей воды уже сегодня могут обеспечить её разведанные подземные запасы. Причём теплоноситель можно использовать для обогрева и технических нужд. Доступность данного вида энергоресурсов наблюдается:

  • В Калининградской области.
  • На Северном Кавказе.
  • В Западной Сибири.
  • На Камчатке и Курильских островах.

Топливная энергетика

Отрасль тяжёлой промышленности, занимающаяся добычей, обогащением, переработкой и потреблением нефти, газа, угля, торфа и сланцев с целью их дальнейшего потребления. В структуре энергетического баланса России:

  • На первом месте находится газ – 55%.
  • На втором – нефть 21%.
  • На третьем – уголь 17%.
  • На долю ядерной энергетики и возобновляемых ресурсов приходится 7%.

Нефтегазовая отрасль

Ведущая среди отраслей российской промышленности, обеспечивающая почти половину экспорта в финансовом выражении. За 2019 год в стране было добыто:

  • Нефти – 560,2 млн. т.
  • Газа – 737,59 млрд. м 3 .

Разведанные запасы нефти на территории России составляют 109,5 баррелей, что равняется 6,4% общемировых запасов. Доказанные газовые (природный + сланцевый газ) запасы оцениваются в 47,8 трлн. м 3 . Что показывает 24,23% в общемировом балансе.

Нефтегазовая отрасль

Нефтегазовая отрасль России сегодня представлена 11 крупнейших вертикально-интегрированных компаний. На их долю приходится более 95% добычи этого важнейшего энергоресурса. В семёрку крупнейших фирм по размеру прибыли, входят:

  • Газпром.
  • Роснефть.
  • Сургутнефтегаз.
  • Лукойл.
  • Татнефть.
  • Руснефть.
  • НОВАТЭК.

Основные нефтяные ресурсы страны сосредоточены в Западной Сибири. Кроме того, имеются богатые месторождения в Татарстане, Башкирии, на Северном Кавказе, в Прикаспийской низменности, на острове Сахалин и в шельфах ряда морей.

Там же располагаются значительные запасы газа, к которым можно добавить: Оренбургское, Северное (Республика Коми), Астраханское месторождения. Очень перспективными запасами газа обладают морские шельфы в Баренцевом, Карском и Охотском морях.

Добыча угля и других горючих ископаемых

Старейшая отрасль, начало становления, которой относится к первым десятилетиям XIX века, не утратила своих позиций и к настоящему времени. Уровень добычи угля в 2019 году равнялся 440,65 млн. т, что на 0,2% выше показателя 2018 года.

На территории нашей страны расположены 12 крупнейших каменноугольных и 4 буроугольных бассейнов. По уровню добычи этого природного ископаемого Россия занимает шестое место в мире, экспортируя его в десятки стран Европы и Азии. Качественные характеристики угля подразделяются его на антрацит, каменный и бурый уголь, являющиеся ещё и сырьём для химической промышленности.

Экономическая мощь России в этой области представлена:

К другим горючим ископаемым, традиционно используемым на территории России, относятся:

Читайте также: